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ith the increasing demand for electrical energy, there is a need to replace 
conventional energy resources with renewable energy resources. To properly 
implement renewable resources at a larger scale, DC/DC converters play a major 

role. Owing to the variable and unreliable nature of renewable energy resources like PV 
systems there is a requirement for converters that can regulate the voltage at the output side. 
High-gain DC/DC converters are preferred for the integration of the solar system in smart 
grids or microgrids. In this context, a high-gain boost converter utilizing a coupled inductor is 
a preferable choice. High gain is achieved by the proper selection of the turn’s ratio of coupled 
inductors in such converters. Whereas to obtain voltage regulation there is a need to employ 
an effective control scheme. In this paper current-injected control topology has been utilized 
for coupled inductor-based boost converter. The proposed converter with an appropriate 
control scheme aims to achieve high voltage gain, reduced switching losses, minimization of 
current ripple, and less conduction losses while increasing the efficiency of the overall system. 
A small signal model based on the state space averaging technique is used to derive control to 
output transfer function for the proposed converter. A hardware prototype has been 
implemented for the validation of theoretical work. The overall efficiency of the converter is 
calculated to be around 96% at specific load conditions. 
Keywords: Coupled Inductor, Non-Isolated Converter, Small Signal Modeling, Current Mode 
Control, High Gain Converter, Dc-Dc Boost Converter 
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Introduction: 
Renewable energy resources have gained immense attention due to the depletion of 

conventional energy resources like fossil fuels. The increasing environmental issues have also 
made it necessary to look for resources that can provide clean energy. The growing trend 
towards industrialization, urbanization, and an increase in population requires sustainable and 
eco-friendly energy resources to meet the energy demand [1]. Renewable energy resources like 
wind, solar, or fuel cells are a source of sustainable energy that has a positive impact on the 
environment. Renewable energy resources can develop a distributed energy system/hybrid 
system that can provide decentralized energy [2]. The integration of renewable energy resources 
requires DC-DC converters that can efficiently boost the low terminal voltage. 

Due to the fluctuating and low output voltage of RES, the role of DC-DC power 
electronic boost converters is significant [3]. The proper selection of such converters depends 
on various factors like the elements (size), efficiency, and voltage gain [4], [5]. Ripple in the input 
current, voltage and current stress on the switch also play an imperative role. To implement 
MPPT for PV the high ripple in the input current is problematic and undesirable [6]. In 
comparison to transformer-based isolated DC-DC converters, non-isolated DC-DC converters 
are preferable. Some of the issues associated with isolated converters include voltage stress on 
the switch, core saturation, and voltage spikes due to the leakage inductor of the transformer 
[7]. 

Conventional boost converters aren’t compatible with applications that require high 
voltage. Although the voltage gain of a conventional boost converter can be increased by setting 
a high value of duty ratio. But then again, the higher value of the duty cycle causes conduction 
losses, voltage stress on the switch, reverse recovery issue of the diode, and large ripple in 
inductor current. It is uneconomical and impractical to use a conventional boost converter with 
a high value of duty ratio. The requirement of high rating switches requiring large ON-state 
resistance, the impact of ESR (equivalent series resistor) of the inductor, and electromagnetic 
interface limit the use of CBC [8],[9]. 

Various converters have been suggested that involve transformers to achieve high 
voltage gain [10],[11]. Isolated converters based on transformers can achieve high voltage with 
a low duty ratio, but these topologies are costly and require multistage power conversion. 
Voltage lift techniques have also been implemented [12]. Switched inductor-based converters 
can achieve high gain [13] but require a large count of components especially magnetic 
devices/inductors and a couple of diodes. Similarly, active network converters based on 
switched capacitors can also be used in high-voltage applications but require two switches along 
with the circuitry of the gate drive which increases overall cost [14]. Coupled inductor-based 
step-up converters are preferred to achieve the goal of high gain and low voltage stress [15] but 
the main problem is the high current ripple and no control for voltage regulation. Some 
topologies utilize coupled inductor to overcome the issue of voltage stress and current ripple 
but require large number of components [16],[17]. 

In this paper, a coupled inductor boost converter based on current mode control has 
been proposed to achieve high gain, efficiency, and voltage regulation. By properly adjusting the 
turns ratio of the coupled inductor high gain can be achieved but it causes a voltage spike and 
high ripple current. To overcome this problem current mode control CMC or current-injected 
control is implemented which is comprised of an outer loop (voltage control) and an inner loop 
(current control). The proposed converter aims to achieve the goals of high gain, high efficiency 
no reverse recovery issues, and less power/conduction losses. Boost converter has a problem 
of non-minimum phase that is due to the presence of zero in the right half s-plane. The voltage 
regulation is also an important factor for PV applications due to variations and unreliable 
terminal voltage. To deal with all such problems dual loop control is utilized. Current mode 
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control is usually preferred over-voltage mode control due to the slow response of VMC w.r.t 
load variations. The proposed converter aims to achieve the following goals: 
1. High gain & high overall efficiency. 
2. Minimum count of magnetizing and switching components. 
3. Implantation of a simple and robust control structure to reduce current ripples. 
4. Voltage regulation, stability, and reliability. 

The main objective of this research is to develop a highly efficient, high-gain CI 
(coupled-inductor) based boost converter utilizing a current-injected control for voltage 
regulation and stability. By optimizing the turns ratio, the design minimizes switching losses and 
reduces duty cycle constraints, ensuring improved voltage conversion efficiency. A dual-loop 
feedback control mechanism is implemented, comprising an inner current loop for fast transient 
response and an outer voltage loop for precise regulation. This approach effectively suppresses 
voltage oscillations, electromagnetic interference (EMI), transient overshoots, and peak inductor 
currents, maintaining a steady output voltage despite input fluctuations. The proposed system is 
particularly beneficial for renewable energy sources like photovoltaic (PV) systems & fuel cells, 
where stable power conversion is essential. 

This work presents a current-injected mode control for a coupled inductor boost 
converter, offering enhanced voltage gain, dynamic response, and noise immunity. Unlike 
conventional boost converters, this design reduces switching stress by achieving high gain at 
lower duty cycles. The dual-loop control strategy effectively addresses right-half-plane (RHP) 
zero instability, ensuring system stability. Additionally, a compensation-ramp technique is 
integrated to suppress subharmonic oscillations, enhancing phase margin and gain characteristics 
without additional passive components. The proposed converter is validated through 
MATLAB/Simulink simulations and hardware implementation, demonstrating superior 
efficiency, transient response, and total harmonic distortion (THD) reduction, making it ideal 
for renewable energy and electric vehicle (EV) charging applications. 

The paper has been divided into different sections for the convenience of the reader. 
Section 2 includes the basic introduction of the coupled inductor and the working principle of 
the proposed converter. In section 3 small signal model based on the state space averaging 
technique is used to derive control of the output transfer function. Section 4 covers the 
implementation of a current-injected control scheme to achieve voltage regulation and stability. 
It also gives a brief comparison of voltage mode control with current-injected mode control. 
Section 5 defines the effectiveness of the proposed converter in comparison to relevant 
converters that have been proposed in recent years. Section 6 involves the simulation results 
obtained via Matlab/Simulink as well as the hardware results that validate the theoretical work 
and performance of the proposed converter. Section 7 is the last section of this paper which 
includes future recommendations and conclusions. 
Methodology: 
Basic Understanding & Working of the Proposed Converter: 

The basic circuit diagram of the proposed converter is shown in Figure 1. The 
replacement of the coupled inductor with a boost converter helps to achieve high gain. There 
are 2 modes of operations based on the state (ON/OFF) of the switch (MOSFET) during the 
switching period. The converter is merely comprised of the coupled inductor at the input side, 
high rating MOSFET, diode, capacitor, and resistive load at the output. The subsections define 
detailed working requirements and modes of operation. The basic understanding of coupled 
inductors is also briefly defined. The converter has been operated in the continuous conduction 
mode for simplicity. 
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Figure 1. Coupled inductor-based step-up high gain boost converter [18] 

Coupled inductors are used to achieve high gain without utilizing the high value of duty 
cycle i.e., duty cycle d >70%. On the other hand, wire resistance associated with the inductor 
introduces a limit on the selection of the duty cycle. In the case of a conventional boost converter 
increase in duty cycle to get high gain affects the overall efficiency. One option can be to use a 
wire of thick diameter, but it results in increased conduction losses with more current stress. 
The reverse recovery problem of the diode becomes predominant. At the same time reverse 
voltage appearing during the off state becomes larger in value and introduces conduction losses. 
Therefore, to overcome such problems coupled inductors are utilized. They simply have double 
winding at the same core instead of single winding. It helps to not only achieve high gain but 
also reduces conduction/switching losses with less voltage stress [18]. 
Operation modes (ON & OFF Position of MOSFET/Switch) for the Proposed 
Converter: 

The two modes of operation have been shown with equivalent circuit diagrams for the 
ON and OFF states of the switch (MOSFET). In 1st mode of operation, as shown in Figure 2 
(a), the switch (MOSFET) is in the ON state, and thus the 1st coil of the inductor stores energy 
through the source. In this state the diode gets open (reverse biased). While in the 2nd state of 
operation, as shown in Figure 2 (b), the diode gets forward-biased, and the switch (MOSFET) 
is in the OFF state. During this duration, the energy is delivered to the capacitor, and the load 
is connected in parallel via a diode which is conducting. In 2nd mode of operation, the 2 coils of 
the coupled inductor get in series thus same current flows through them. 

 
(a) 

 
(b) 

Figure 2 (a). Equivalent circuit for 1st mode (b) Equivalent circuit for 2nd mode 
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Mathematical Modeling Based on 2 Modes of Operation: 

In 1st mode, energy gets stored through an input (DC) supply in L1when the switch 
(MOSFET) is in the ON state. In this state, the diode gets in a reversed biased state. The voltage 
applied across 1 coil eventually causes the voltage across the other coil that is linked magnetically 

to the 1st coil. Let the voltage across 1st coil be represented as vl1 and can be given as: 

vl1 = L1.
dil1

dt
 (1) 

The term L1indicates the inductance related to 1st coil and is termed the self-inductance 
of that coil. The change in current causes a flux in the common core around which 2 coils are 
being wound. The flux can be represented as: 

Փ = il1 ∗ c ∗ Nl1 (2) 

Here, c is dependent on the core’s geometry and magnetic properties whereas Nl1 is no. 
of turns of 1st coil. It is to be noted that flux is contained and linked with the common core. The 
voltage and flux relation for 1st coil is given as [19]: 

vl1 = Nl1.
dՓl1

dt
 (3) 

Similarly, for the 2nd coil the induced voltage or emf while considering that flux is the 
same in both the 1st as well as 2nd coil, the expression for induced voltage in the 2nd coil is: 

vl2 = Ml.
dil1

dt
 (4) 

Here the term Ml Is the mutual inductance among the 2 coils wounded at the same core 
to form couple-inductor with the units same as inductance i.e., Henry- ‘H’. The term c depends 
upon the core’s properties. The voltage induced in 2nd coil can also be given as:  

vl2 = n. vin (5) 
In 2nd state of operation, the switch gets open (OFF state) and the diode gets forward 

biased. The voltage across 1st coil is: 

vl1 =
Nl1.(vo−vin)

Nl1+Nl2
 (6) 

Whereas the equivalent inductance is represented by Lequ Is given as: 

Lequ = L1 + L2 + (2 ∗ M) (7) 

Lequ =  L1. (1 + n)2 (8) 

The relation between inductors L1, L2, and turns ratio can be expressed as  

n2 = (Nl2/Nl1)2 = L2/L1 (9) 
The concept of coupled inductors is quite simple as it utilizes a single core with 2 

inductors wound on it. The turns ratio is selected according to the desired application and the 
connection of windings can either be in parallel or series as per requirement. The turn ratio can 
be higher depending on the design specifications. Mutual inductance also plays an important 
role in the overall performance of the coupled inductor. The value of k (coupling coefficient of 
the coupled inductor) is chosen between 0.95 & 0.99. Typically, its value is chosen as k=0.95. 
Where the coupling coefficient and mutual inductance are related as:  

M = (√L1. L2). k (10) 

State Space Modeling: 
Using the equivalent models of proposed converters based on ON as well as OFF states. 

State space-based modeling with matrix algebra makes it easy to understand the overall system 
design. It is usually based upon 1st order differential equations that model inductors and 
capacitor’s current and voltage respectively. The calculations are based mainly on the time 
domain and the overall system is represented in the format of matrix. 

The basic equation form for such a system is mainly given as: 

ẋ = (A. x) + (B. u) (11) 

Y = C. x (12) 
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1) When the switch is closed, as shown in Figure 3, then it has the following form. 

ẋ = A01x + B01u (13) 
2) When the switch is open then: 

ẋ = A02x + B02u (14) 
As per average modeling is concerned then by combining 2 modes as mentioned above, 

we get the following form: 

ẋ = Aav
̅̅ ̅̅̅x + Bav

̅̅ ̅̅̅u (15) 
Whereas 

Aav
̅̅ ̅̅̅ = A01. d + A02(1 − d) (16) 

Similarly 

Bav
̅̅ ̅̅̅ = B01. d + B02(1 − d) (17) 

Here A represents dynamics for the state of the system and B for the controllable input. 

 
Figure 3. State 1 when the switch is ON 

x1_on = iL1_on (18) 

x2_on = VC_on (19) 

[
x₁̇
x₂̇

] . = [
0 0

0 −
1

C1R1

] . [
iL1_on

VC_on
] + [

1

L1

0
] . Vdcin

(20) 

A01 = [
0 0

0 −
1

C1R1

]  and B01 = [
1

L1

0
](21) 

 
Figure 4. State 2 when the switch is OFF 

The state when the switch (MOSFET) is in off state, as shown in Figure 4, then both 
coils are in series with each other. 

dVC_off

dt
=

1

C₁
(iL1_off −

1

R1
(VCoff

)) (22) 

Thus, in mode 2 we have: 
diL1_off

dt
=

1

Lequ
(Vdcin

− VC_off) (23) 

Here notice that Lequ Shows the series combination of both inductors. 

The matrix form of the above differential’s equations can be: 
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[
x₁̇
x₂̇

] . = [
0 −

1

Lequ

1

C1
−

1

C1R1

] . [
iL1_off

VC_off
] + [

1

Lequ
 

0
] . Vdcin

 (24) 

A02 = [
0 −

1

Lequ

1

C1
−

1

C1R1

]   and B02 = [
1

Lequ

0
](25) 

Now final step is to combine the 2 states through the averaging method: 

ẋ = [
0 −

(1−d)

Lequ

1−d

C1
−

1

C1R1

] . x +  [
1

L1
(d) +

1

Lequ
(1 − d)

0
] . Vdcin

 (26) 

For derivation of the transfer function i.e. control to output requires 2 main parameters 
that are output or capacitor voltage and inductor’s current. Here the input side voltage is taken 
as disturbance whereas control d (duty cycle) is chosen. Therefore, the state-space model after 
some modifications is presented generically as: 

x′̇ = [
iLe

VCo
] (27) 

u′̃ = [
Vdcin

′

d′
] (28) 

A′ = [
0 −

(1−d)

Lequ(1+n)

1−d

C1(1+n)
−

1

C1R1

] B′ = [

1+(n.d)

Lequ(1+n)

VC
′ +n.Vdcin

′

(1+n)

0 −
iL′

C1(1+n)

] (29) 

The control-to-output transfer transfer-function is derived as [18]: 

GVC_d =
VC′

d′
=

iL
′ .s

(1+n)
+

(1−d′).(VC
′ +n.Vdcin

′)

(n+1)²

s2+s+
(1−d′)

(1+n)2.R₁

 (30) 

The subharmonic oscillations play a major role in CMC implementation. A 
compensation ramp can eliminate this effect of subharmonic oscillations [20]. It is predominant 
especially when d>0.5 or 50% which means there is a major instability problem while dealing 
with current-injected control.  

 design equations for the compensation ramp slope are given below, ensuring stable 
operation. In the current injected mode-based coupled inductor boost converter configuration, 
the ramp compensation is essential to prevent sub-harmonic oscillations that arise when the duty 
cycle D is set above 50 %. A compensation ramp (Se) is added to the inductor current signal to 
dampen oscillations and stabilize the current loop. While the slop is introduced into the control 
signal to counteract duty cycle-dependent oscillations. 

Vout = (1+n) Vdcin
/(1-d) (31) 

The required compensation ramp slope Se is: 
Se > (Soff−Son)/ 32) 

Where: 
Son = Slope of the on-time inductor current 
Soff = Slope of the off-time inductor current 
The Slopes for the on-time inductor current is given as: 

Son = Vdcin
/ Lequ (33) 

The Slopes for the off-time inductor current are given as:  

Soff = [(1+n) Vdcin
 - Vdcin

]/ Lequ (34) 

where Lequ is the equivalent inductance considering coupling effects 
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Se > 

(1+n)Vdcin
−Vdcin

 

Lequ   
 − 

Vdcin
Lequ 

 

2
 (35) 

After rearranging the final equation is: 

Se > 
n−1

2
 .

Vdcin

Lequ
 (36) 

The op-amp used for designing frequency-based compensation involves feedback to 
achieve stability. Type 2 and type 3 compensators are usually preferred for boost converters to 
implement voltage or current-injected control.  Type 2 compensator has an RC network for 
getting better phase response and flatten gain. Type 3 compensator helps to improve the phase 
response even further with the addition of 2 poles,2 zeros, and a pole at zero location [21]. 
However, the relevant transfer function derived using the simplified block diagram of current-
injected control is given as [22]: 

T. F(VC) =
GV.Km

Km.[(GV.Kvd)+Gi]
 (37) 

Results and Discussion: 
Implementation of the Proposed Converter with Voltage Mode Control: 

Voltage Mode Control (VMC) is a feedback control technique used in power converters 
to regulate output voltage by comparing the feedback voltage with a reference value as shown 
in Figure 5. The error signal generated is used to control the duty cycle of a MOSFET via PWM 
modulation. While VMC is useful in applications with input or load voltage variations, light 
loads, or when avoiding the complexities of dual-loop control, it faces challenges due to the 
right-half-plane zero, which complicates loop compensation, especially in boost converters. As 
a result, VMC is often less effective than Current Mode Control (CMC), which provides more 
precise control by using the inductor current as a state variable and is preferred in applications 
requiring fast dynamic response, current sharing, or noise immunity. CMC also offers better 
stability and efficiency in high-power and multi-phase converters, making it the favored choice 
in many designs. The voltage mode-based control was implemented on Matlab/Simulink and 
the output voltage as well as current waveforms are shown in Figure 6.  

 
Figure 5. Circuit diagram for proposed converter, utilizing VMC 
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Figure 6. (a) Voltage at the output side 

 
Figure 6. (b) output current Iout for voltage mode-based converter control (VMC) based 

proposed converter 
Implementation of the proposed converter with the current injected mode control 

Current-mode control (CMC) is often preferable over Voltage-Mode Control (VMC) 
due to its faster dynamic response, particularly under load variations. CMC incorporates two 
feedback loops as shown in the block diagram for the proposed converter (Figure 7), improving 
stability and mitigating the impact of right-half s-plane zeros. This enhances transient response 
and allows for reduced total harmonic distortion (THD) and better input disturbance rejection. 
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Figure 7. Block diagram for current-injected control with current (inner) and voltage (outer) 

loops 
For current-injected mode control the inductor current or switch current is taken as 

feedback, and it is compared to control current, as shown in the circuit diagram in Figure 8. The 
current mode-based control design is helpful in not only achieving regulated output voltage but 
also improving stability as well as transients. 

 
Figure 8. Circuit diagram for current-injected control with slope compensation 
Type 3 compensation is rather easy, as shown in Figure 9, simplifies rules and achieves 

stability effectively. The role of ramp involvement is merely to minimize the involvement of 
subharmonic oscillations. Current injected control methodology is also termed as a current 
programmed mode which contains a total of 2 loops. Sometimes it’s also termed as multiple 
loop control as it has 2 loops, one being the current loop which is an inner loop and the other 
is the voltage loop which is an outer loop in the overall control mechanism. 



                                 International Journal of Innovations in Science & Technology 

March 2025|Special Issue UOG                                                                 Page |11 

 
Figure 9. Type 3 compensator via op- amp [21] 

To relate the control current with the respective output voltage a simplified transfer 
function is derived using a small signal model. With the addition of compensation/artificial 
ramp, the difference between the control current and inductor sensed current becomes 
prominent. In the block diagram, given in Figure 10, the km block represents the role of 
compensation ramp. 

 
Figure 10. Current injected control-based simplified block diagram for the proposed 

converter 
By using a Type-3 compensator, often implemented with an op-amp, CMC can achieve 

phase boosts greater than 90°, improving stability and performance. Furthermore, CMC limits 
overcurrent conditions, preventing system failures and offering robust control. In systems with 
duty cycles greater than 50%, subharmonic oscillations are mitigated by adding a compensation 
ramp. This makes CMC particularly beneficial for better efficiency, high gain converters that can 
be utilized for renewable energy system integration, and electric vehicles, where rapid and stable 
voltage regulation is critical. The overall system for current-injected control with slope 
compensation was implemented in Matlab/Simulink and its output voltage as well as current 
waveforms are given in Figure 11. 
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Figure 11(a). Output Voltage waveform of the proposed converter with CMC 

 
Figure 11 (b). Output Current waveform of the proposed converter with CMC 

Effectiveness of Proposed Converter W.R.T Relevant Converters: 
The major emphasis was to develop a converter that could achieve high gain and 

efficiency. The comparison has been built to show the effectiveness of the converter as shown 
in table 01. The comparison has been done based on component count (like for switch, diode, 
and capacitor), and voltage stress of capacitor and switch. Finally, the converter's voltage gain 
vs duty ratio curves have been plotted as shown in Figure 12.  

Table 1. Comparison table of proposed converter with other relevant topologies 

Topology Proposed 
Converter 

Ref [23] Ref [17] Ref [15]  

No of switches 1 1 2 1 2 

No of 
capacitors 

1 3 2 4 5 

No of diodes 1 4 2 4 8 

Switch side 
voltage stress. 

[1 + n. d]Vᵢ

(1 − d)
 

Vᵢ

(1 − d)
 

[1 + (2n)]Vᵢ

(1 − d)
 

Vᵢ

(1 − 2. d)
 

Vᵢ

(1 − d)
 

Output 
capacitor side 

stress 

less high high high high 
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Figure 12. Voltage gain to duty ratio comparison curves 

Discussion: 
To testify to the performance of the proposed converter a hardware prototype has been 

built. The efficiency curve is drawn for various loads varying from 10W to 100W when 
connected at the load side. For a load of 100W, the overall efficiency is calculated to be around 
95- 96% for a voltage of 8-10V at the input side and 97-101V at the output side. The hardware 
prototype implementation is shown in Figure 13. The selection of components and their values 
are set as per mathematical calculations as given in Table 02. The high conversion efficiency for 
the proposed converter has been observed to have a peak value of around 96%. The efficiency 
vs output power curve is also given in Figure 14. 

The output voltage and current waveforms of the proposed Coupled Inductor Boost 
Converter demonstrated significant improvements over the existing topologies referenced in the 
literature. Unlike conventional boost converters, where high-duty cycles lead to excessive voltage 
ripples and instability [8][9], the proposed topology achieves higher voltage gain at moderate-
duty cycles, as seen in the voltage waveform, where the output voltage remains stable with 
minimal overshoot and steady-state error. In contrast to switched capacitors and interleaved 
boost converters, which experience high inrush currents and increased switching losses [14], 
[15], the proposed converter maintains a well-regulated and smooth current waveform, reducing 
stress on power components. Additionally, compared to transformer-based isolated converters, 
which often suffer from leakage inductance-induced oscillations [10], [11], the proposed design 
ensures a more controlled voltage response with faster settling time. Implementing current mode 
control further enhances overall stability by mitigating right-half-plane (RHP) zero effects, 
ensuring faster transient response and lower current ripples compared to voltage mode control 
(VMC), as compared in section 4 of the paper where voltage mode control is first separately 
implemented and then current-injected mode control is implemented, involving both outer 
(voltage loop) and inner (current loop). Efficiency curves also validate the superiority of this 
design, showing higher efficiency (>95%) across different load conditions, whereas 
conventional topologies often exhibit a drop in efficiency due to increased conduction losses. 
These results confirm that the proposed converter is better suited for renewable energy 
applications and high-power DC systems, providing stable operation, lower ripple, and 
improved dynamic response compared to the existing literature.  

Various control strategies exist for boost converters, each with unique advantages and 
limitations in terms of dynamic response, noise rejection, and implementation complexity. While 
the current study employs current-injected mode control (CMC) to enhance system stability and 
efficiency, alternative control techniques such as Voltage Mode Control (VMC), Sliding Mode 
Control (SMC), Predictive Control (MPC), and Fuzzy Logic Control (FLC) have been widely 
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explored in the existing literature. A comparative analysis of these methods provides valuable 
insights into their suitability for different power electronics applications. 

Voltage Mode Control (VMC) is one of the simplest and most commonly used 
techniques for regulating the output voltage of a boost converter. It operates using a single 
feedback loop where the output voltage is compared to a reference, and the error is processed 
through a compensator, typically generating a pulse-width modulation (PWM) signal. While 
VMC is easy to implement and cost-effective, it suffers from slow dynamic response and poor 
noise rejection, making it less effective for applications requiring fast transient regulation. 
Furthermore, the presence of a right-half-plane (RHP) zero in boost converters complicates 
loop compensation and limits performance. In comparison, CMC provides faster dynamic 
response and better noise immunity, as it directly controls the inductor current rather than 
relying solely on output voltage feedback. 

Sliding Mode Control (SMC) is a nonlinear control strategy that dynamically adjusts the 
duty cycle based on system states, ensuring robust performance even under uncertain conditions. 
This approach excels in fast transient response and noise rejection, making it ideal for high-
performance applications in harsh environments. However, the primary drawback of SMC is 
the chattering effect, where high-frequency switching introduces oscillations that may degrade 
system efficiency. Additionally, the complexity of designing an appropriate sliding surface and 
ensuring stability requires extensive mathematical modeling. Compared to SMC, CMC offers 
smoother control action and easier implementation, albeit with a slightly slower response under 
extreme load variations. 

Predictive Control (Model Predictive Control – MPC) takes a model-based approach, 
forecasting system behavior and optimizing control inputs in real time. MPC is particularly 
effective in handling multi-objective control, such as voltage regulation, efficiency optimization, 
and disturbance rejection. Its major advantages include excellent dynamic performance and 
precise control, making it suitable for smart grids, electric vehicle (EV) charging systems, and 
renewable energy applications. However, MPC requires high computational power, as it relies 
on solving complex equations at each control interval. This makes it less practical for low-cost 
power converters, where CMC remains a more feasible option due to its lower computational 
burden and easier implementation. 

Fuzzy Logic Control (FLC) is another alternative that relies on linguistic rules and 
heuristic decision-making rather than mathematical models. FLC is highly adaptable to nonlinear 
systems and does not require precise modeling, making it beneficial for renewable energy 
converters where environmental conditions fluctuate unpredictably. However, FLC faces 
challenges in tuning membership functions and lacks optimality in fast transient response, as it 
operates more reactively than proactively. Compared to CMC, which provides structured, real-
time response control, FLC is better suited for applications where adaptability to unpredictable 
variations is required rather than stringent performance optimization. 

The performance of the proposed converter based on the current mode control scheme 

is checked by simulating it on MATLAB with the following design parameters: Vin =
100V, Vout = 600,  L1 = 600uH, L2 = 2.4mH, R1L =  40Ω, C1 = 56uF, fs = 50kHz, D =
0.534. 

Table 2. Component’s selection and relevant values 

Parameter Value Unit 

Inductor L1 600uH Henry 

Inductor L2 2.4mH Henry 

Mutual Inductance 1.14e-3H Henry 

Diode (RHRG75120) - - 

Mosfet (IRF640N) - - 
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Capacitor 220uF farad 

Input Voltage 100V volt 

Load Resistance 40Ω ohm 

Pulse width (%) 53.4% - 

Operating Frequency 50k Hz 

 
Figure 13. Prototype design implementation for the proposed converter 

 
Figure 14. Efficiency vs power at the output (W) 

Conclusion & Future Recommendation: 
Coupled inductors-based boost converters having efficient control are well known to 

attain regulated voltage at the output. While achieving the goals of high gain and high efficiency. 
Such step-up high-gain converters can be efficiently integrated with renewable energy resources 
and electric vehicle applications. Current-injected control (or CMC) is being implemented and 
presented in this thesis/research work to obtain regulated voltage at the output. A small signal 
model with average method state space modeling is represented as well. Current-injected mode 
control (or CMC) is utilized to achieve fast transient response, low THD (total harmonic 
distortion), input disturbance rejection, and stable DC link. Coupled inductor topology is utilized 
to obtain high gain by the adjustment of turn’s ratio properly. Renewable resources like solar-
based energy generation systems prioritize such converters owing to their variable nature. Such 
high-gain converters are also helpful in increasing the low voltage obtained from such resources. 
MPPT (maximum power point tracking) helps to achieve maximum power from the PV panel 
using perturb and observe technique irrespective of temperature and irradiance. The proposed 
converter has been implemented on the Matlab Simulink model and it’s also verified via a 
hardware-based laboratory prototype. 
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Recommendations for Future Work: 
As a future recommendation the proposed converter can be effectively integrated with 

EV i.e., electrical vehicle-based applications. With the increase in the rates of fuel and depletion 
of conventional resources like natural gas, and fossil fuels and likewise, it is mandatory to look 
for advanced techniques that can help to implement electric cars on a large scale. This step will 
pay a lot for economic development throughout the world. Another application of the proposed 
converter involves the penetration of PV (solar arrays) on the source side. There is ongoing 
research on a wide scale regarding smart grids and microgrids. The variable as well as unreliable 
nature of PV module system requires such dc-dc converters which can provide voltage 
regulation. The concept of active building is also under consideration which again emphasizes 
the requirement of efficient high-gain step-up dc/DC converters. 
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he rapid and ongoing depletion of fossil fuel reserves is driving up energy costs and 
harming the environment due to greenhouse gas emissions, leading to a global energy 
crisis. This situation highlights the urgent need to produce renewable fuel from biomass. 

This research focuses on extracting bio-oil from banana tree waste under different operating 
conditions. In this study, the pyrolysis process of banana tree waste was carried out in a fixed-
bed reactor to maintain controlled conditions and prevent unwanted cracking. To optimize the 
process, the effects of temperature, particle size, and nitrogen flow rate on bio-oil yield were 

investigated. Experiments were conducted at temperatures ranging from 400 to 600 ℃, with 
feedstock particle sizes of 0.5 – 2.0 mm and nitrogen flow rates between 0.5 and 2 liters per 
minute. The optimal conditions for maximizing bio-oil yield were determined. Under these 

conditions, the maximum bio-oil yield of 32.13% was obtained at a temperature of 500 ℃, with 
a particle size of 1.2 – 2.0 mm and a nitrogen flow rate of 1 liter per minute. The results also 
demonstrate how temperature, particle size, and nitrogen flow affect the bio-oil yield during 
pyrolysis. The study concludes that banana tree waste can be efficiently converted into bio-oil 
through proper processing, contributing to sustainable energy production while minimizing 
environmental impact. The chemical composition of the bio-oil was analyzed using the GC-MS 
technique, which identified various compounds, including phenols, acids, and other chemical 
components. 
Keywords: Biomass; Renewable Energy; Banana Tree Waste; Pyrolysis; Bio-oil. 
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Introduction: 
The rapid depletion of fossil fuel reserves, rising fuel prices, increased fuel consumption, 

greenhouse gas emissions, and environmental degradation have all contributed to the current 
energy crisis [1]. Agricultural waste, such as crop husks, leaves, stems, and shells, is often 
underutilized and poorly managed. Instead of converting this waste into bioenergy, compost, or 
animal feed, it is commonly burned in open fields, which releases greenhouse gases like carbon 
dioxide and methane, further exacerbating global warming [2]. This practice lowers air quality, 
contributes to acid rain, and affects nearby water bodies. Through atmospheric deposition, these 
pollutants can enter aquatic ecosystems, reducing water pH and harming aquatic life [3]. Banana 
trees, with their abundant cultivation and high biomass yield, especially in Asia, Africa, and Latin 
America, are an attractive source of biomass for producing biofuels and other chemicals [4]. 
According to the Food and Agriculture Organization of the United Nations (FAO), global trade 
in tropical fruits reached 7.7 million tons in 2019, reflecting a 6.4% (465,000 tons) increase from 
previous years [5]. Biomass from banana trees has various uses: pseudo-stems can serve as 
mulch, a starch source, or raw material for ropes, fabrics, or paper, while peels can be used as 
compost or animal feed. Discarded fruits are also suitable for animal consumption [4]. Despite 
these potential uses, about 60% of banana biomass is wasted through open burning and 
dumping, which poses significant risks to human and environmental health [5]. 

Pyrolysis is one of the most effective methods for converting biomass into biofuel. This 
process involves heating biomass at high temperatures in an inert atmosphere, typically using 
argon or nitrogen gas [6]. Nitrogen acts as a carrier gas, preventing oxidation and ensuring 
controlled thermal decomposition [7]. Due to its high energy content, banana waste can yield 
biofuels and other valuable products through pyrolysis. A typical ton of banana waste consists 
of 750 kg (75%) pseudo-stems, 100 kg (10%) leaves, 40 kg (4%) rachis, and 110 kg (11%) peels. 
These byproducts are ideal raw materials for bio-refineries, which can produce biofuels and bio-
based chemicals [8]. During pyrolysis, biomass decomposes in the absence of oxygen, yielding 
bio-char and bio-oil rich in carbon. The primary components of lignocellulosic biomass—

cellulose, lignin, and hemicellulose—degrade when heated between 300 and 500 ℃ [9]. 
Some researchers prefer pyrolysis due to its optimal operating conditions, including 

moderate temperatures (300-500 ℃) and medium heating rates [10]. Compared to slow pyrolysis, 
it provides higher bio-oil yields and avoids the excessive formation of bio-char and bio-gas 
associated with fast pyrolysis [11]. Fixed-bed reactors are often favored over fluidized-bed 
reactors because they produce higher bio-oil yields. The slower heating rate in fixed-bed reactors 
allows more thorough pyrolysis of the feedstock, resulting in valuable liquid products with 
minimal gas and char. Although fluidized-bed reactors operate quickly, their high gas production 
reduces their efficiency for maximizing bio-oil yield [12]. Several factors influence banana waste 
pyrolysis in fixed-bed reactors, including temperature, heating rate, particle size, and residence 
time. Temperature plays a critical role in product distribution, with lower temperatures favoring 
bio-char and gas formation and higher temperatures promoting bio-oil production [13]. 

Typically, temperatures between 350 and 650 ℃ are used to maximize bio-oil yield, while 
residence times of 2 to 10 minutes help achieve a balanced output [10]. 

The characteristics of bio-oil are heavily influenced by feedstock type and pyrolysis 
conditions [14]. Key factors affecting the pyrolysis yield and efficiency of banana tree waste 
include its lignocellulose composition, moisture content, and ash concentration. Without proper 
drying, the high moisture content in banana waste can lower pyrolysis efficiency. The 
concentrations of cellulose, hemicellulose, and lignin also significantly impact bio-oil yields, with 
higher cellulose content generally leading to greater bio-oil output. Additionally, ash content 
affects the thermal stability of the feedstock, further influencing process efficiency [15]. 
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Objectives: 
This study aims to explore how different pyrolysis parameters affect the production of 

bio-oil from banana tree waste. It evaluates the efficiency of extracting high-quality bio-oil from 
this waste. Additionally, it seeks to determine the optimal temperature, particle size, and nitrogen 
flow required to maximize bio-oil yields during the pyrolysis process in a fixed-bed reactor with 
a capacity of 30 grams. The study also examines how varying operating conditions influence 
both bio-oil yield and its characteristics. Finally, the research assesses the properties of the 
obtained bio-oil. 
Materials and Methods: 
Collection and Preparation of Feedstock: 

Banana tree waste was chosen as the feedstock due to the widespread cultivation and 
high demand for this banana variety in Pakistan. The banana leaves used in the experiments 
were collected from a farmer in Nawabshah, Khairpur, Sindh, Pakistan. Only mature banana 
trees, over 10 months old, were selected to ensure high-quality leaves. The leaves were carefully 
cut from the stem, measuring between 30 to 50 cm, and placed on a sterile canvas to avoid soil 
contamination. The fresh, moist leaves were then divided into 4 to 8 sections and manually 
chopped into smaller pieces before drying. Initially, the chopped leaves were air-dried outdoors 
in the Sukkur region for 5 to 6 days. To further reduce moisture content, the leaves were oven-
dried at 105 °C for 8 hours, ensuring they were sufficiently desiccated for subsequent analysis. 
Feed Characterization: 

The banana tree waste was chopped to reduce particle size, and sieve analysis was conducted 
using screens with mesh sizes of 200, 400, 600, 800, and 1000. Two particle size ranges were 
selected: 0.5–1.2 mm and 1.2–2.0 mm. Proximate analysis was performed to measure moisture 
content, volatile matter, ash content, and fixed carbon in the banana waste samples. Moisture 
content was determined using ASTM E871-82 [16], which specifies that dried materials should 
have a moisture level below 10%. Volatile matter was assessed according to ASTM E872 [16], 
and ash content was measured following ASTM E1102-84 [17]. Fixed carbon content was 
calculated by subtracting the moisture, volatile matter, and ash percentages from 100. Each 
analysis was repeated three times to ensure accuracy and reliability. The Perkin-Elmer Series II 
CHNS/O 2400 Analyzer was used for ultimate analysis, measuring the carbon, hydrogen, 
nitrogen, sulfur, and oxygen content in the feed samples. The fixed carbon and oxygen contents 
were calculated using the following formulas: 

• Fixed Carbon (%) = 100 - (volatile matter + moisture content + ash content) 
• Oxygen (%) = 100 - (Carbon + Hydrogen + Nitrogen + Sulfur) 

 Lignocellulosic analysis was conducted to quantify the biomass's hemicellulose, lignin, 
cellulose, and extractive content, using standard methods ASTM D1106 [18], ASTM D1103 
[19], ASTM D1104 [20], and ASTM D1105 [21]. The samples' higher heating value (HHV) was 
measured using an Adiabatic Bomb Calorimeter (IKA C-200). The lower heating value (LHV) 
was then calculated using the following formula: 

LHV (dry, MJ/kg) = HHV (dry) - 2.442 (8.936 × H / 100) 
Experimental Methodology: 

The pyrolysis of banana tree waste was performed in a fixed-bed reactor under 
atmospheric nitrogen pressure. The reactor had a length of 10 cm and an inner diameter of 5 
cm. This reactor type was selected due to its ease of operation, controlled heating conditions, 
and ability to facilitate gradual pyrolysis, which enhances bio-oil yield. Unlike fluidized-bed 
reactors, the fixed-bed reactor minimizes secondary cracking by maintaining a stable reaction 

environment with better residence time control. Nitrogen gas (N₂) was used as an inert medium 
to prevent combustion and oxidation, thereby ensuring that thermal decomposition of the 
biomass produced volatile compounds. Nitrogen flow also influenced vapor residence time, 
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which in turn affected the yield and composition of bio-oil by reducing excess char or gas 
formation. 

A schematic diagram of the pyrolysis setup is shown in Figure 1. Briefly, 30 grams of 
banana tree residues were loaded into the reactor, and nitrogen gas was purged at a flow rate of 
0.5 liters per minute. The initial temperature of the reactor was set to 25 °C, and a thermocouple 
was used to monitor the internal temperature. The vapors generated during the pyrolysis process 
were condensed using a spiral condenser, with cooling water maintained at 4 °C. The condensed 
bio-oil was then collected in a collection chamber. 

Pyrolysis experiments were conducted in three series using a fixed-bed reactor. Before 
each experiment, the reactor's temperature was stabilized and controlled using a thermocouple 
connected to a control panel to ensure uniform heating. 

In the first series, the focus was on studying the effect of reaction temperature on the 
yield distribution. Banana leaves were pyrolyzed at temperatures of 400, 450, 500, 550, and 600 
°C to determine the optimal temperature for maximizing bio-oil yield. All other operating 
parameters were kept constant. The second series aimed to examine the impact of particle size 
on bio-oil yields. Banana residue particles were divided into two size ranges: 0.5–1.2 mm and 
1.2–2.0 mm. These particle sizes were tested under varying temperatures to observe their effect 
on bio-oil production. In the third series, nitrogen gas was used as an inert medium to create 
an oxygen-free environment, preventing combustion. Since pyrolysis is a thermal degradation 
process that requires the absence of oxygen, nitrogen ensured that the system remained oxygen-
free, preserving the controlled conditions necessary for pyrolysis. The nitrogen flow rate was 
regulated using a flow meter connected to the gas cylinder, helping maintain a stable inert 
atmosphere. 

 
Figure 1. Experimental diagram of Pyrolysis process 

Before each run, thermal equilibrium was reached, and key parameters like temperature 
and nitrogen flow were kept constant. This setup allowed the controlled release of volatile 
compounds, minimized combustion risks, and maintained the desired inert environment. By 
adjusting the nitrogen flow rate, the pyrolysis process was optimized, product distribution 
improved, and temperature fluctuations controlled, thereby enhancing overall efficiency. The 
methodology’s flow diagram is shown in Figure 2. 
The bio-oil yield was calculated using the following formula: 

% Yield of bio-oil (wt. %) = (Bio-oil mass (g) / Dry feedstock mass (g)) × 100% 
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Figure 2. Flow diagram of Pyrolysis process 

Product Analysis: 
The extraction of bio-oil under optimal pyrolysis conditions, which yielded the highest 

liquid output, was thoroughly analyzed. To determine the chemical composition of the collected 
bio-oil, Gas Chromatography-Mass Spectrometry (GC-MS) was employed. The analysis focused 
on the bio-oil produced at a pyrolysis temperature of 500 °C, where chemical constituents were 
carefully evaluated. To prepare the samples for GC-MS analysis, a Liquid-Liquid Extraction 
(LLE) technique was used to remove water content. This step is essential in isolating and 
purifying the liquid products, particularly for separating organic compounds from the aqueous 
phase generated during pyrolysis. Since pyrolysis produces a complex mixture of gases, solids, 
and liquids—including water, organic compounds, oils, acids, alcohols, and phenols—the 
presence of water can hinder the analysis and application of the liquid products. 

In the LLE process, dichloromethane was mixed with the liquid sample in a 1:1 
volumetric ratio. Specifically, 5 mL of the liquid bio-oil and 5 mL of dichloromethane were 
combined and stirred thoroughly. The mixture was then centrifuged at 4000 rpm for 10 minutes, 
causing it to separate into two distinct phases: the organic phase (settling at the bottom) and the 
aqueous phase (accumulating at the top). The aqueous phase was discarded, and the lower 
organic fraction was collected for further preparation. To optimize chromatographic 
performance, 1 μL of the organic fraction was diluted with 990 μL of hexane. The solution was 
then filtered using a syringe filter to remove any remaining particles and transferred to a GC 
vial. Finally, the prepared sample was injected into the GC-MS system, where the chemical 
compounds in the bio-oil were identified and quantified with high sensitivity and precision. 
Results: 
Impact of Operating Parameters on Bio-Oil Yield (%): 

The study aimed to evaluate how different operating conditions influence product yield. 
The following section discusses the key findings based on various parameters. 
Temperature’s Impact on Bio-Oil Yield (%): 

The maximum bio-oil yield from banana tree waste was observed at a pyrolysis 
temperature of 500 °C, with a recorded yield of 32.13 wt. %. As the temperature increased from 
400 °C to 500 °C, the bio-oil yield rose from 26.60 wt. % to 32.13 wt. %. However, when the 
temperature was further increased from 500 °C to 600 °C, the bio-oil yield decreased to 28.20 
wt. %. This trend indicates that increasing the temperature up to 500 °C enhances bio-oil 



                                International Journal of Innovations in Science & Technology 

March 2025|Special Issue UOG                                                                            Page |23 

production while reducing bio-char yield. However, beyond 500 °C, the yield of bio-oil declines 
due to secondary cracking. At excessively high temperatures, pyrolysis vapors undergo 
secondary cracking, which increases gas production while reducing the yields of both bio-oil and 
bio-char. This explains the drop in bio-oil yield when the temperature rises from 500 °C to 600 
°C. 

 
Figure 3. Temperature’s impact on Bio-Oil Yield % 

Figure 3 illustrates the relationship between temperature, nitrogen flow rates, and bio-
oil yield percentage, showcasing the combined impact of these parameters on pyrolysis 
efficiency. The graph demonstrates that the highest bio-oil yield is achieved at a pyrolysis 
temperature of 500 °C and a nitrogen flow rate of 1 liter per minute (L/min). This optimal 
combination enhances the thermal breakdown of organic compounds while maintaining the 
inert conditions necessary for preventing combustion and ensuring efficient product 
distribution. 

As shown in the figure, increasing the temperature to 500 °C improves bio-oil yield due 
to enhanced volatilization of the feedstock, while excessively high temperatures lead to a decline 
in yield due to secondary cracking. Additionally, the nitrogen flow rate plays a crucial role in 
maintaining a uniform temperature profile and facilitating the escape of volatile compounds, 
contributing to an optimized pyrolysis environment. 
Particle Size’s Impact on Bio-Oil Yield (%): 

The study revealed that bio-oil yield (%) increased with larger particle sizes, irrespective 
of the temperature. At lower pyrolysis temperatures, such as 400 °C and 450 °C, smaller particle 
sizes (0.5 – 1.2 mm) resulted in reduced bio-oil yields. However, as particle size increased to the 
range of 1.2 – 2.0 mm, a significant improvement in yield was observed, particularly at 
temperatures between 500 °C and 600 °C. Figure 4 shows the particle size’s impact on bio-oil 
yield percentage.  
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Figure 4. Particle Size’s impact on Bio-oil Yield % 

Nitrogen flow’s impact on the Bio-oil Yield %: 
As described and evident in the graph, the flow rate significantly affects the pyrolysis 

process. The carrier gas flows through the condenser with less contact time, it produces less 
vapor condensation at higher flow rates, which leads to lower yields. At lower flow rates, the 
pyrolysis reaction is incomplete, and an undesirable product is formed. In contrast, a higher yield 
is obtained with a flow rate of 1 liter/min because the vapors in the condenser have more time 
to interact with the walls, allowing them to condense from gas to liquid. In this study, the yield 
percentage was found to be higher at a 1 liter/min flow rate compared to 0.5 and 2 liters/min. 
The nitrogen flow rate was observed to significantly affect the yield percentage, as shown in 
Figure 5. 

 
Figure 5. Nitrogen Flow’s impact on Bio-oil Yield % 

Characterization and Composition of Bio-oil: 
The chemical compounds in the bio-oil produced from the pyrolysis of banana tree waste 

were identified using the GC–MS technique. The results, listed in Table 1, were analyzed at the 
University of Gurat's Department of Chemistry. GC-MS analysis was performed to investigate 
the chemical composition of the pyrolysis liquid under optimal conditions. The findings, 
illustrated in Figure 6, provide a detailed overview of the chemical makeup of the pyrolysis liquid. 
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Table 1. Chemical compounds in bio-oil 

Sr No. Chemical products identified in bio-oil 

1 Acetic acid 
2 Propionic acid 
3 Phenol 
4 Phenol, 3-methyl- 
5 Benzene carboxylic acid 
6 1,2-Benzenediol 
7 D-Allose 
8 9,12- Octadecadienoic acid (Z,Z)- 
9 Octadecenoic acid 
10 10-Octadecenoic acid 
11 Tetradecanoic acid 
12  Dodecanoic acid  

 
Figure 6. Spectrum of GC-MS analysis 

Discussion: 
Characterization of Banana tree waste: 

The physical and chemical properties of banana tree waste are shown in Table 2, along 
with relevant research findings on other biomass samples.  Understanding the potential for 
bioenergy production from banana waste requires analyzing its pyrolysis behavior in a fixed-bed 
reactor. The banana tree waste had a moisture content of 8.21 wt. %, which falls within the 
acceptable range of 7% to 15% for the pyrolysis process [22]. Higher moisture levels reduce the 
biomass's heating value, leading to less energy production and bio-oil with higher moisture 
content, which decreases fuel efficiency [22]. The volatile matter content in banana tree waste 
was 78.36 wt. %, which is high when compared with other biomass sources like rice husk and 
wheat straw [8]. Its ash content was 6.43 wt. %, consistent with typical vegetable biomasses, 
which usually contain between 0.4 wt. % and 22.6 wt. % ash [20]. A higher ash content can 
impact the yields and quality of the char and bio-oil produced during pyrolysis [20]. The fixed 
carbon content was 7.02 wt. %, also within the typical range of 7% to 20% for vegetable 
biomasses [20]. The biomass had a high carbon content (43.10 wt. %) and hydrogen content 
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(7.19 wt. %), along with low nitrogen (0.15 wt. %) and sulfur (0.24 wt. %). Low sulfur and 
nitrogen levels are beneficial because they reduce the emission of corrosive and toxic nitrogen 
and sulfur oxides. 

According to Table 2, the higher heating value (HHV) of banana tree waste was 17.728 
MJ/kg, comparable to other agricultural biomass sources. A higher HHV means more energy 
can be generated during pyrolysis [7]. Banana tree waste, like other biomass feedstocks, contains 
lignocellulosic components that undergo thermal breakdown, releasing vapors and gases during 
pyrolysis. This process yields liquid and gaseous bio-products [22]. The average cellulose, 
hemicellulose, and lignin contents in banana tree waste were 30.91%, 25.17%, and 17.53%, 
respectively, aligning with values reported in earlier studies [22]. The heating rate is a critical 
parameter in the pyrolysis process, significantly influencing both the yield and quality of bio-oil. 
Studies have shown that slower heating rates, typically used in fixed-bed reactors, allow for more 
thorough thermal degradation of biomass, leading to higher bio-oil yields with fewer non-
condensable gases and less char production. This is because slower heating provides sufficient 
time for volatiles to be released and condensed into liquid form, as observed in pyrolysis studies 
on rice husk and wheat straw, which reported optimized bio-oil yields at moderate heating rates. 
In contrast, fast pyrolysis methods, often conducted in fluidized-bed reactors, tend to prioritize 
higher heating rates, which favor the production of lighter hydrocarbons and reduce bio-oil 
viscosity but can lead to lower overall yields due to secondary cracking of vapors. Additionally, 
the chemical composition of bio-oil is influenced by heating rates, with higher rates producing 
bio-oil with greater water content and more unstable oxygenated compounds, while slower rates 
enhance the formation of phenolic compounds and acids, which improve bio-oil stability. This 
study, conducted at moderate heating conditions, aligns with existing research that emphasizes 
the benefits of controlled heating for optimizing bio-oil output and enhancing its chemical 
characteristics for potential biofuel applications. Future work could explore the synergistic 
impact of heating rates with catalysts to further improve bio-oil yield and reduce oxygen content. 
Products Yield: 

The mass yields of pyrolysis products from various biomasses, including date palm 
waste, rice husk, and banana tree waste, are summarized in Table 3 based on findings from 
different authors. The bio-oil yield from banana tree waste was found to be 32.13 wt. %. The 
differences in bio-oil yields between banana tree waste and other biomasses can be attributed to 
variations in reactor design, experimental setup, processing capacity, and feedstock type. Based 
on thermal analysis, pyrolysis of banana tree waste was conducted at 500 °C in a fixed-bed 
reactor. In a separate study, researchers reported that at 525 °C, fast pyrolysis of date palm waste 
produced 27.4 wt. % bio-oil. However, as the pyrolysis reaction accelerated, bio-oil production 
decreased [23]. Similarly, another study using rice husk in a fixed-bed reactor produced 30.18 
wt. % bio-oil at approximately 500 °C [24]. 

In related experiments, banana waste pseudo-stem was used to produce bio-oil through 
fast pyrolysis. The process was conducted at temperatures ranging from 470 °C to 540 °C, with 
the highest bio-oil yield of 29.4% obtained at 500 °C. The reduced liquid yield at higher 
temperatures was attributed to secondary cracking of pyrolysis vapors and liquid products, 
which led to increased gas production [22]. Oxidative fast pyrolysis further reduced bio-oil yields 
due to biomass volatilization and partial combustion within the reactor, resulting in higher 
production of water and non-condensable gases. 
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Table 2. Comparison of characteristics of banana tree waste with another biomass residue 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 3. comparison of Bio-oil yield % of banana tree waste and with another biomass 

Biomass residue Temperature (℃) Bio-oil yield (wt. %) Reference 

Banana tree waste 500 32.13 This study 
Date Palm waste 525 27.4 [23] 
Rice Husk 500 30.18 [24] 

 
 

Analysis / Elements Banana tree waste (This study) Corn Cob[25] Sugarcane Bagasse[22] Rice Husk[25] 

Proximate Analysis (wt. %)     
Moisture content 8.21 12.77 10.4 10.89 
Ash content 6.43 2.30 16.4 15.14 
Volatile matter 78.36 91.16 74.0 73.41 
Fixed Carbon 7.02 6.54 13.0 11.44 
Ultimate Analysis (wt. %)     
Carbon 43.10 42.10 43.2 41.92 
Hydrogen 7.19 5.90 6.70 6.34 
Nitrogen 0.15 0.50 0.30 1.85 
Sulphur 0.24 0.48 0.20 0.47 
Lignocellulosic Analysis (wt. %) 
Cellulose 30.91 42.2 38 32.0 
Hemicellulose 25.17 30.7 27 15.0 
Lignin 17.53 12.2 19 23.5 
Calorific Values (MJ/kg)     
HHV 17.287 16 18 12.87 
LHV 15.637 14 17 12.20 
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Another study investigated agricultural biomass, such as sugarcane bagasse, in the 
pyrolysis process. At an optimal temperature of 525 °C, a maximum bio-oil yield of 33.25 wt. % 
was obtained. However, as the temperature increased, bio-oil yield decreased, while bio-gas 
production increased [22]. Previous research also reported a bio-oil yield of 30.18 wt. % from 
rice husk pyrolysis at 500 °C [24]. Table 3 provides a comparison of bio-oil yields from banana 
tree waste and those obtained in studies on date palm waste and rice husk pyrolysis. This study 
aims to explore how factors such as temperature, particle size, and nitrogen flow influence bio-
oil yield. 

The chemical composition of the bio-oil produced through banana tree waste pyrolysis 
was identified and analyzed using GC-MS analysis. The chromatograms displayed prominent 
peaks corresponding to major compounds, while smaller peaks indicated unidentified 
compounds. The bio-oil from banana tree waste contained various chemical compounds, with 
phenols being the dominant constituents [26]. Key chemical components in the bio-oil included 
phenol, 3-methylphenol, and 1,2-benzenediol [27]. Acetic acid and propanoic acid were also 
detected during the bio-oil analysis [28][29]. Other identified compounds included tetradecanoic 
acid, 1,2-tetradecanoic acid, benzenedicarboxylic acid, and octadecanoic acid [30]. Additionally, 
D-allose, 1,2-benzenediol, and 9,12-octadecanoic acid (ZZ) were present in the bio-oil [31]. 
Conclusion: 

This research investigated the pyrolysis of banana tree waste using a fixed-bed reactor. 
Several operating parameters were studied, including temperature, particle size, and nitrogen 
flow. Based on the experimental findings, the following conclusions were drawn: 
a) Under optimal conditions in a fixed-bed reactor—specifically, a temperature of 500 °C, 
particle size of 1.2 to 2.0 mm, and nitrogen flow rate of 1 liter/min—the maximum bio-oil yield 
was achieved. These conditions resulted in a highest bio-oil yield of 32.13 wt. %. 
b) Increasing the temperature from 400 to 500 °C raised bio-oil production from 26.60 wt. % 
to 32.13 wt. %. However, when the temperature increased beyond 500 °C (up to 600 °C), bio-
oil production decreased. 
c) Higher nitrogen flow rates during the pyrolysis process reduced the bio-oil yield. 
d) GC-MS analysis revealed that the bio-oil produced from banana tree waste was rich in phenol 
groups, acids, alkyl benzene, and several other chemical compounds. 
Ongoing research is currently focused on evaluating the impact of heating rates on the pyrolysis 
process. Future studies will explore the introduction of catalysts to enhance pyrolysis reactions 
and increase the yield of desired products. Additionally, we plan to integrate pyrolysis with other 
energy systems to improve overall energy recovery and utilization. 
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his paper presents an automated process for extracting text from video frames by 
specifically targeting text-rich regions, identified through advanced scene text detection 
methods. Unlike traditional techniques that apply OCR to entire frames—resulting in 

excessive computations and higher error rates—our approach focuses only on textual areas, 
improving both speed and accuracy. The system integrates effective preprocessing routines, 
cutting-edge text detectors (CRAFT, DBNet), and advanced recognition engines (CRNN, 
transformer-based) within a unified framework. Extensive testing on datasets such as ICDAR 
2015, ICDAR 2017 MLT, and COCO-Text demonstrates consistent gains in F-scores and 
word recognition rates, significantly outperforming baseline methods. Additionally, detailed 
error analysis, ablation studies, and runtime evaluations offer deeper insights into the strengths 
and limitations of the proposed method. This pipeline is particularly useful for tasks like video 
indexing, semantic retrieval, and real-time multimedia analysis.  
Keywords: Optical Character Recognition, Scene Text Detection, Scene Text Recognition, 
Video Analysis, Deep Learning  
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Introduction: 
Machine learning (ML) has advanced rapidly across various fields, driving progress in 

recognition systems, optimization methods, optical character recognition (OCR) technologies, 
and security frameworks [1], [2], [3], [4], [5], [6], [7]. These developments provide a solid 
foundation for applying AI and ML to enhance the accuracy, fairness, and efficiency of 
automated decision-making systems. As digital video content continues to grow on streaming 
platforms, instructional archives, and media-sharing websites, the demand for effective text 
recognition and extraction from video frames has become increasingly important. Text in 
video frames—such as signs, subtitles, or labels—is crucial for applications like content 
summarization, automated captioning, semantic retrieval, and video indexing [8], [9], [10]. 
However, traditional OCR methods often process the entire frame, which is inefficient due to 
background clutter and irrelevant details. This not only increases the computational load but 
also raises error rates. 

Recent advances in deep learning have addressed this issue by focusing on text-dense 
regions. Modern detection models [11], [12] and transformer-based recognition systems [13], 
[14] are improving accuracy across different fonts, scripts, and text orientations. This research 
presents an enhanced video text extraction pipeline that targets only the text-rich areas of each 
frame, boosting efficiency and minimizing errors from unnecessary sections. The exponential 
growth of video content across various platforms, including educational archives, media-
sharing websites, and streaming services, has intensified the demand for efficient and accurate 
text extraction from video frames. Text appearing in videos often carries critical semantic 
information, such as subtitles, annotations, signage, or scene labels, which can facilitate tasks 
like video indexing, content retrieval, and automated captioning. Traditional Optical Character 
Recognition (OCR) methods, while effective in document analysis, struggle to handle the 
complexities of scene text in videos due to diverse fonts, orientations, multilingual scripts, and 
background clutter. This has prompted researchers to develop advanced, deep learning-based 
frameworks that focus on identifying text-rich regions, thereby minimizing unnecessary 
computations and improving the reliability of extracted text. 

Recent advancements in deep learning, particularly in scene text detection and 
recognition, have introduced new possibilities for enhancing the accuracy and efficiency of 
video text extraction. By employing models that leverage character-level awareness, 
differentiable binarization, and attention mechanisms, modern pipelines can overcome 
challenges associated with text distortion, low contrast, and multi-oriented scripts. However, 
continuous video streams present additional hurdles, such as handling temporal variations in 
text, managing computational overhead for real-time applications, and minimizing false 
positives caused by dynamic backgrounds.  
Key contributions of our work are as follows: 
In-Depth Analysis: We thoroughly examine performance limits and trade-offs by providing 
accurate error measurements, conducting ablation studies on preprocessing techniques, and 
analyzing runtime performance. 
Comprehensive Evaluation: Our approach is benchmarked against ICDAR 2015, ICDAR 
2017 MLT, and COCO-Text datasets, where it outperforms existing baseline methods. 
Region-Based Approach: By using state-of-the-art (SOTA) detectors such as CRAFT and 
DBNet, we isolate text-dense regions, which minimizes the effect of non-text background 
noise and enhances text extraction accuracy. 
Advanced Text Recognition: We further employ SOTA text recognizers like CRNN and 
transformer-based models to handle complex text patterns and diverse script styles more 
effectively. 
Objectives of the Study: 
The primary objectives of this study are as follows: 
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1. To develop an efficient region-based video text extraction pipeline that improves the 
accuracy and speed of text detection and recognition by focusing on text-rich regions, 
thereby reducing computational overhead compared to traditional full-frame OCR 
methods. 

2. To evaluate the performance of advanced text detection models, such as CRAFT 
(Character Region Awareness for Text Detection) and DBNet (Differentiable 
Binarization Network), in accurately localizing text in complex video frames with 
varied fonts, orientations, and backgrounds. 

3. To assess the effectiveness of deep learning-based text recognition models, including 
CRNN (Convolutional Recurrent Neural Network) and a transformer-based 
recognizer, in handling curved, multilingual, and stylized text extracted from video 
frames. 

4. To implement and analyze preprocessing techniques, such as grayscale conversion, 
adaptive binarization, and noise reduction, to enhance text clarity and improve the 
accuracy of detection and recognition. 

5. To benchmark the proposed pipeline on established datasets, including ICDAR 2015, 
ICDAR 2017 MLT, and COCO-Text, and compare its performance (in terms of F-
score, Character Recognition Accuracy, and Word Recognition Rate) with baseline and 
reference methods. 

Literature Review: 
Earlier video text extraction techniques mainly relied on traditional OCR engines and 

heuristic-based localization methods, which struggled with complex layouts, diverse fonts, and 
irregular text orientations [15]. With the rise of deep learning, more advanced scene text 
detectors emerged. EAST [16] introduced a fast, regression-based approach, while CRAFT 
[11] improved recall by utilizing character-level cues and affinity representations. DBNet [12] 
further enhanced precision and stability by incorporating differentiable binarization. On the 
recognition front, Tesseract [17] gained popularity as an OCR tool in conventional 
applications. However, scene text posed additional challenges, requiring more advanced 
solutions. CRNN [13] combined convolutional and recurrent layers to adapt to curved and 
multi-oriented text lines. Transformer-based models [14], [18] introduced attention 
mechanisms, allowing them to handle multilingual text and various typographical styles. 

Recent frameworks have started integrating detection and recognition into unified 
pipelines [19], [20]. While these methods show promise, applying them directly to continuous 
video content remains computationally demanding. Our approach refines the region-based 
method by focusing on text-rich areas, achieving both higher accuracy and improved efficiency 
for large-scale video analysis tasks. Beyond standalone OCR and text detection pipelines, 
recent research has focused on context-aware extraction, which incorporates semantic 
understanding of text within the video’s visual and temporal context. Multi-frame approaches 
have been proposed to improve robustness by aggregating information across consecutive 
video frames [21], [22]. These methods help mitigate issues like low resolution, motion blur, 
and occlusions, which are common in dynamic video environments. However, their increased 
accuracy often comes at the cost of slower processing speeds, creating a trade-off between 
precision and computational efficiency. Furthermore, hybrid techniques that combine rule-
based post-processing with deep learning models have been explored to improve text 
coherence and alignment [23]. These methods leverage domain-specific knowledge, such as 
recognizing text patterns within scene elements like street signs, subtitles, or license plates, to 
enhance extraction accuracy. Although effective for specific use cases, such techniques often 
suffer from reduced generalizability when applied to varied video content. 

To address these challenges, research has also shifted toward lightweight models 
optimized for real-time applications. Techniques such as knowledge distillation, model 
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pruning, and quantization have been used to reduce the size and complexity of deep learning 
models without compromising performance. Such advancements are particularly relevant for 
real-time video text extraction tasks in resource-constrained environments like mobile devices 
or embedded systems. By building upon these developments, our work seeks to enhance both 
detection and recognition stages while maintaining computational efficiency. By refining 
region-based approaches and leveraging state-of-the-art models, we aim to improve accuracy, 
reduce background noise, and streamline large-scale video text extraction. 
Methodology: 

This section explains the complete process used to identify and extract relevant text 
from video content. The framework is designed to balance accuracy, speed, and flexibility to 
handle various visual situations. As shown in Figure 1, the workflow moves through several 
key stages: sampling frames from the video, applying a customized preprocessing method, 
detecting areas containing text, using advanced algorithms to recognize the extracted text, and 
performing post-processing to refine and organize the final output. Each step is explained in 
detail, along with the reasons for its inclusion. 

Figure 1. Illustration of System Diagram 
Overall System Architecture: 

The system processes a continuous stream of video frames, selecting frames at a 
controlled sampling rate to reduce computational load. Once a frame is extracted, it goes 
through several enhancement steps designed to make text clearer. A text detection module 
then scans the frame to identify areas likely to contain useful text. These selected areas are sent 
to the text recognition stage. In the final step, post-processing refines and organizes the 
recognized text for practical use. Throughout the process, the goal is to minimize unnecessary 
computations, ensuring both efficiency and broad usability. 
Frame Sampling Strategy: 

An important part of the system’s design is deciding how often to extract frames from 
the video. If too many frames are sampled, the system wastes time processing redundant data. 
On the other hand, sampling too few frames risks missing brief but important text. Based on 
initial tests, we chose to extract two frames per second. This strikes a practical balance by 
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capturing changes in text without overloading the system. For example, rapid captions in 
educational videos might require more frequent sampling, while lecture recordings or 
surveillance footage can work well with less frequent sampling. 
Preprocessing Pipeline: 

Preprocessing is a crucial step that improves each frame before it reaches the text 
detection and recognition stages. The goal is to highlight text while reducing distractions from 
the background. As shown in Figure 2, the preprocessing workflow includes four main steps: 
converting the frame to grayscale, enhancing contrast, applying adaptive binarization, and 
removing noise. These steps create a cleaner, text-focused image that helps modern OCR 
models deliver better results. 

 
Figure 2. Preprocessing steps 

Grayscale Conversion: 
The image data is converted to grayscale by reducing it from full color to a single-color 

channel. Since the brightness of text often differs from its background, representing the image 
in grayscale makes it easier to apply binarization and thresholding techniques later. 
Additionally, this reduces computational costs by limiting the input to a single channel. 
Contrast Enhancement: 

After converting the image to grayscale, text may still appear unclear due to low 
contrast, especially when displayed against dark or patterned backgrounds. Methods like 
Contrast Limited Adaptive Histogram Equalization (CLAHE) play a key role in solving this 
issue by improving text visibility. These techniques redistribute pixel intensity values, 
enhancing fine details and making faded characters more distinct. 
Adaptive Binarization: 

Unlike global thresholding, adaptive binarization calculates a local threshold based on 
the intensity values of surrounding pixels. This method is particularly useful for handling 
images with low lighting or complex backgrounds. The local threshold is computed as: 

𝑇(𝑥, 𝑦) = 𝑚ⅇ𝑎𝑛(𝐼(𝑥′, 𝑦′)𝜖 𝑁(𝑥, 𝑦)) − 𝐶 

Where 𝐵(𝑥, 𝑦) is given by: 

𝐵(𝑥, 𝑦) =  {
1 𝑖𝑓 𝐼(𝑥, 𝑦) > 𝑇(𝑥, 𝑦)

0 𝑖𝑓 𝐼(𝑥, 𝑦) ≤ 𝑇(𝑥, 𝑦)
 

The output generated is a binary image, where the text appears as a bright foreground 

against a darker background. This creates a clear distinction between the text and irrelevant 
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details, making it an optimized representation for deep learning detectors to identify textual 

patterns more effectively. 

Noise Reduction:  

Real-world video frames often contain noise, glitches, or textures that can mislead text 

detectors. To address this, a noise reduction filter is applied. Filters such as Gaussian or median 

smoothing reduce pixel-level variations, improving the visibility of essential text edges. By 

enhancing text clarity, these techniques strengthen the detector’s ability to identify text in 

diverse environments. Together, these four preprocessing techniques enhance textual clarity 

in video frames. Empirical studies show that this pipeline improves text detection accuracy 

while minimizing false alarms, particularly in challenging conditions where text blends into the 

background or appears in low light. 

Text Detection: 

After preprocessing, the system must determine which areas are likely to contain text. 

This is achieved using text detection algorithms, as analyzing the entire frame with OCR could 

extract irrelevant details. In this work, we utilize two prominent methods—CRAFT (Character 

Region Awareness for Text Detection) and DBNet (Differentiable Binarization Network)—

both known for their robust performance in localizing scene text. 

Character Region Awareness (CRAFT):  

CRAFT estimates bounding boxes and assigns affinity scores to link them into 

coherent text lines or phrases. By focusing on character-level details, CRAFT handles the 

complexity of video frames and effectively manages text in unusual orientations, including 

angled, curved, and thin segments. The output is a set of precise bounding polygons, which 

reduces the data passed to the recognition phase. 

Differentiable Binarization (DBNet):  

DBNet simplifies the cropping and recognition process by using a binarization layer 

to transform feature maps into sharp text representations. This approach excels in challenging 

scenarios, such as densely packed characters, by isolating text instances and generating 

bounding boxes and contours. Following detection, the pipeline produces bounding boxes for 

each frame, with each box representing a distinct text area. Identifying these areas early helps 

process only text-rich segments, thereby reducing computational complexity and minimizing 

recognition errors. 

Text Recognition Models: 

After isolating text regions, they must be converted into machine-readable text. Non-

standard or complex fonts pose challenges for conventional OCR methods, but deep learning-

based recognizers handle a broader range of text variations. For this task, we adopt two types 

of recognition models: CRNN (Convolutional Recurrent Neural Network) and a transformer-

based recognizer, both of which are well-known for managing linguistic and typographic 

complexities. 

CRNN:  

CRNN combines convolutional layers for feature extraction with bidirectional 

recurrent layers. This design effectively handles naturally curved or rotated text of variable 

lengths. The clipped text area is transformed by CRNN into a sequence of features, which are 

decoded into characters or sub-word units by the recurrent layers. By integrating spatial and 

sequential context, CRNN demonstrates strong performance on standard benchmarks and 

real-world video text scenarios. 
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Transformer-Based Recognizer:  

Unlike CRNN, transformer-based models rely on self-attention mechanisms to 

capture character-level dependencies without using recurrent layers. These models often 

achieve higher accuracy, especially on text samples with complex fonts, unusual orientations, 

or multilingual scripts. The transformer processes feature from each text region, attending to 

different parts of the input sequence to generate a coherent textual output. Though more 

computationally intensive, transformers frequently deliver superior recognition accuracy. Both 

approaches convert visual text segments into fully transcribed strings. Our initial trials indicate 

that CRNN offers an excellent balance between speed and accuracy, while the transformer 

model provides slightly better accuracy at the cost of increased computational demand. The 

choice of recognizer depends on the application’s latency requirements and available 

computational resources. 

Post-Processing and Text Consolidation: 

After text recognition, the system produces raw text segments from each sampled 

frame. This output may include duplicates, partial phrases, or minor OCR errors. To create a 

coherent final output, a post-processing module performs the following key functions: 

Duplicate Removal and Temporal Filtering:  

When text persists on-screen for several seconds, consecutive frames may produce 

overlapping or identical text segments. The system detects and consolidates these duplicates. 

If needed, heuristics align text snippets with their temporal position in the video, creating a 

stable transcript synchronized with the video’s timeline. 

Common Error Correction:  

Some OCR errors, such as confusing the digit ‘0’ with the letter ‘O,’ are common in 

challenging conditions. Rule-based corrections or dictionary filtering can mitigate these errors. 

For further refinement, contextual language models or spell-checkers may be integrated, 

though these methods are not the focus of this study. 

Output Formatting:  

The cleaned text is formatted according to the intended application. For semantic 

indexing or retrieval systems, the output may be stored as timestamped metadata, linking each 

text snippet to the corresponding video segment. In other cases, it may be formatted as 

subtitles or transcriptions for viewing alongside the video. 

Algorithm: getTextFromVideo(video_path, sampling_rate) 

frames = empty_list 

final_texts = empty list 

video = LoadVideo(your_video_path) 

For each frame in video (selecting frame based on 'sampling_rate'): 

Add the current frame to the 'frames' list 

For each frame in frames: 

Convert the frame to grayscale 

Enhance the contrast using CLAHE 

Apply adaptive binarization to emphasize text 

Reduce any noise in the frame 

Detect text regions with the CRAFT or DBNet model 

For each text region in the merged set: 

Use the CRNN or Transformer-based model to recognize text from the region 

Add recognized text to 'recognized_text_in_frames' 
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Remove any duplicate texts from recognized_text 

Correct common OCR mistakes (like confusing 'O' with '0') 

Format the text for clear output 

Return 'final_texts' 

Call get Text from Video with the video file path and frame rate  

 
Figure 3. Pipeline for text extraction from video frames using detection, recognition, 

and post-processing techniques. 

Implementation Details and Integration: 

Efficient execution and seamless integration of each component are essential 

throughout the methodology. The pipeline is implemented in Python, utilizing popular deep 

learning frameworks and libraries for image processing. Pretrained weights for CRAFT and 

DBNet are fine-tuned using a subset of training images that represent typical video frames. 

Similarly, CRNN and the transformer-based model undergo light fine-tuning on domain-

specific data, such as educational videos and broadcast footage, to enhance their performance 

in the target scenarios. 

At each stage, intermediate outputs—such as pre-processed frames, detection 

bounding boxes, and recognized text strings—are stored and passed efficiently between 

modules to reduce latency. To further accelerate processing, parallelization techniques can be 

applied, such as running detection and recognition tasks on separate GPU streams. 

Additionally, the hardware setup, including RTX-series GPUs, ensures that even large video 

collections are processed within a reasonable time frame. 

Experimental Studies and Discussions: 

Datasets and Evaluation Metrics: 

We evaluated the pipeline using three established benchmarks: 

ICDAR 2015 [21]: This dataset contains incidental scene text with distortions and complex 

backgrounds. 

ICDAR 2017 MLT [22]: A multilingual dataset designed to test adaptability across different 

scripts and languages. 

COCO-Text [23]: A large-scale dataset with significant diversity in text appearance and 

background clutter. 

For text detection, we follow standard protocols, counting bounding boxes as correct 

matches if the Intersection over Union (IoU) is ≥ 0.5. Detection performance is evaluated 

using Precision (P), Recall (R), and the F-score (F). For text recognition, we measure Character 

Recognition Accuracy (CRA) and Word Recognition Rate (WRR) to assess how closely the 

transcribed text matches the ground truth. 
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Implementation Details: 

All experiments were conducted on a machine running Ubuntu 20.04, equipped with 

an Intel Xeon W-2255 CPU, 64 GB of RAM, and two NVIDIA RTX 3090 GPUs. We used 

PyTorch for model fine-tuning and inference. Pretrained weights for CRAFT and DBNet 

were fine-tuned using a subset of training samples, while CRNN and the transformer-based 

recognizer were similarly adapted to maximize performance in the target domain. 

Detection Results: 

Table 1 compares the detection performance of EAST [16], CRAFT [11], and DBNet 

[12] across the three benchmark datasets. 

Table 1. Detection Performance 

Dataset Method P (%) R (%) F (%) 

ICDAR 2015 EAST 80.4 75.9 78.1 

CRAFT 87.2 85.7 86.4 

DBNet 88.5 87.3 87.9 

ICDAR 2017 MLT   EAST 73.3 68.5 70.8 

CRAFT 82.0 79.8 80.9 

DBNet 84.6 82.5 83.5 

COCO-Text EAST 68.5 66.1 67.3 

CRAFT 79.4 76.6 78.0 

DBNet 81.7 79.9 80.8 

Table 1 and Figure 4 show that both CRAFT and DBNet outperform EAST, with 

DBNet achieving slightly higher F-scores. The comparison highlights significant 

advancements in video text localization, with DBNet consistently emerging as the most 

accurate model. It achieves the highest F-scores across all datasets. For example, on the 

ICDAR 2015 dataset, DBNet records an impressive F-score of 87.9%, surpassing CRAFT 

(86.4%) and EAST (78.1%). This superior performance can be attributed to DBNet's 

differentiable binarization layer, which enhances its ability to effectively isolate text contours, 

even in densely packed or low-contrast environments.  

 
Figure 4. Text detection performance comparison across datasets using DBNet EAST and, 

CRAFT 
CRAFT also demonstrates strong performance, especially on datasets containing 

multilingual text and irregular orientations. Notably, it achieves an F-score of 80.9% on the 
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ICDAR 2017 MLT dataset, which can be attributed to its character-level awareness 

mechanism that enables precise localization of text regions. In contrast, EAST, while efficient, 

struggles with complex backgrounds and irregular text orientations, as evident from its 

comparatively lower F-score of 67.3% on the COCO-Text dataset. These findings emphasize 

the importance of using advanced text detection methods, particularly when dealing with video 

content featuring challenging text characteristics. 

Recognition Performance (Cropped Patches): 

Table 2 provides a comparison of Tesseract [17], CRNN [13], and a transformer-based 

model [14] on isolated text patches. 

Table 2. Recognition on Cropped Text 

Dataset Recognizer CRA (%) WRR (%) 

ICDAR 2015 Tesseract 90.8 86.1 

CRNN 96.2 92.7 

Transformer 97.5 95.1 

ICDAR 2017 MLT Tesseract 85.4 80.6 

CRNN 92.1 88.9 

Transformer 94.6 92.3 

COCO-Text Tesseract 78.9 72.5 

CRNN 88.4 83.7 

Transformer 91.0 86.9 

The CRNN and transformer models significantly outperform Tesseract, with the 
transformer model achieving slightly better results. Among all datasets, the transformer-based 
recognizer demonstrates the highest performance, achieving a Character Recognition 
Accuracy (CRA) of 97.5% and a Word Recognition Rate (WRR) of 95.1% on the ICDAR 
2015 dataset. This impressive accuracy is due to its self-attention mechanisms, which help it 
efficiently manage long-range dependencies and handle complex scripts, including multilingual 
and stylized text. 

The CRNN model follows closely, with a CRA of 96.2% and a WRR of 92.7% on the 
same dataset. Its hybrid design, which combines convolutional and recurrent layers, enables it 
to handle curved and multi-oriented text lines effectively. In contrast, Tesseract, though a well-
established OCR tool, struggles in these challenging scenarios, delivering lower CRA and WRR 
scores (e.g., 90.8% and 86.1% on ICDAR 2015). This performance gap highlights the 
limitations of traditional OCR engines in handling the complexities of real-world video text. 
End-to-End Results: We evaluate three complete pipelines 

Baseline: EAST + Tesseract 
Proposed: CRAFT + CRNN 
Reference: DBNet + Transformer 

As shown in Table 3 and Figure 5, evaluating the end-to-end pipelines demonstrates 

the clear advantages of integrating advanced detection and recognition models. The proposed 

pipeline (CRAFT+CRNN) significantly outperforms the baseline setup (EAST+Tesseract), 

achieving an F-score of 86.7% and a Word Recognition Rate (WRR) of 92.7% on the ICDAR 

2015 dataset, compared to the baseline’s F-score of 76.3% and WRR of 86.1%. These gains 

emphasize the effectiveness of CRAFT’s character-region awareness in minimizing 

background noise and CRNN’s capability to accurately interpret text regions. The 

DBNet+Transformer pipeline delivers the best overall performance, achieving an F-score of 

88.5% and a WRR of 95.1% on the ICDAR 2015 dataset. However, due to its higher 

computational demands, the proposed pipeline offers a more practical solution for scenarios 
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where computational resources are limited. It outperforms the baseline across all datasets and 

closely matches the performance of the reference system, demonstrating its robustness and 

adaptability. 

 
Figure 5. Performance of End-to-end text extraction using different detection and 
recognition models on (a) ICDAR 2015 dataset (b) COCO-Text dataset (c) ICDAR 

2017 MLT dataset 
Table 3.  End-to-End Extraction 

Dataset Method F (%) WRR (%) 

ICDAR 2015 EAST + Tesseract 76.3 86.1 

CRAFT + CRNN (Ours) 86.7 92.7 

DBNet + Transformer 88.5 95.1 

ICDAR 2017 MLT EAST + Tesseract 70.6 80.6 

CRAFT + CRNN (Ours) 80.2 88.9 

DBNet + Transformer 83.5 92.3 

COCO-Text EAST + Tesseract 65.5 72.5 

CRAFT + CRNN (Ours) 76.8 83.7 

DBNet + Transformer 79.6 86.9 

Computational Efficiency: We measure processing time per frame (PTF) and GPU memory 

(MF) in Table 4. 

Table 4. Efficiency 

Method PTF (ms/frame) MF (GB) 

EAST + Tesseract 72 1.9 

CRAFT + CRNN (Ours) 95 2.5 

DBNet + Transformer 120 3.1 
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The computational efficiency of the proposed pipeline is evident from its balanced 
performance in terms of processing time per frame (PTF) and GPU memory usage. With a 
PTF of 95 ms/frame and a memory footprint of 2.5 GB, it shows a clear improvement over 
the baseline while being more efficient than the reference system (120 ms/frame, 3.1 GB). 
This balance makes the proposed pipeline particularly well-suited for applications that demand 
both accuracy and scalability, such as real-time video analysis and multimedia indexing. 
Although it is slightly more resource-intensive than the baseline, it achieves a better trade-off 
between accuracy and efficiency compared to the top-performing reference pipeline. 
Error Analysis: Table 5 categorizes errors on the COCO-Text dataset, highlighting issues 
such as similar character confusions, case errors, and missed words. 

Table 5. Error Analysis (COCO-Text) 

Method Similar Char (%) Case Errors (%) Missed Words (%) 

EAST + Tesseract 7.2 5.1 15.3 

CRAFT + CRNN (Ours) 3.9 2.7 8.5 

DBNet + Transformer 3.1 2.3 6.9 

The analysis of errors on the COCO-Text dataset offers valuable insights into the 
challenges faced by OCR systems in real-world applications. The proposed pipeline 
(CRAFT+CRNN) effectively reduces error rates compared to the baseline. For example, 
similar character confusions drop from 7.2% to 3.9%, case errors decrease from 5.1% to 2.7%, 
and missed words decline from 15.3% to 8.5%. These improvements demonstrate the 
framework’s ability to handle noisy and complex text environments with greater accuracy. 
Although the DBNet+Transformer pipeline reduces errors even further, it comes with a 
higher computational cost, emphasizing the practical benefits of the proposed approach. 
Overall, our pipeline significantly lowers all error types compared to the baseline. 
Preprocessing Ablation:  

Table 6 highlights how each preprocessing step impacts performance on the ICDAR 
2015 dataset. The ablation study shows that each step plays a key role in improving the 
system’s overall performance. For instance, applying adaptive binarization increases the F-
score from 85.8% (using grayscale only) to 86.7%. This illustrates how preprocessing enhances 
input frame stability and clarifies textual features. Each incremental improvement underscores 
the importance of preprocessing in reducing false positives and boosting text detection and 
recognition accuracy. 

Table 6. Preprocessing Ablation (ICDAR 2015) 

Preprocessing CRA (%) WRR (%) F (%) 

None 91.5 87.0 83.9 

Grayscale Only 93.4 89.1 85.8 

+Contrast Enhancement 94.1 90.2 86.2 

+Adaptive Binarization 96.2 92.7 86.7 

Discussion: 
The findings of this study demonstrate that the proposed region-based video text 

extraction pipeline significantly enhances the accuracy, efficiency, and robustness of text 
detection and recognition compared to conventional methods. By integrating advanced text 
detectors (CRAFT, DBNet), sophisticated recognition models (CRNN, transformer-based), 
and a strategic preprocessing pipeline, the framework effectively reduces noise, eliminates 
redundant computations, and improves the clarity of extracted text. This approach is 
particularly advantageous in complex video environments where text may appear in various 
fonts, orientations, and lighting conditions. Comparative evaluations on benchmark datasets, 
including ICDAR 2015, ICDAR 2017 MLT, and COCO-Text, underscore the pipeline's 
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superiority, achieving higher F-scores, Word Recognition Rates (WRR), and Character 
Recognition Accuracy (CRA) than baseline configurations. 

The choice of detection models plays a crucial role in the system's performance. 
DBNet, with its differentiable binarization layer, excels in isolating text contours, especially in 
densely packed text or low-contrast backgrounds. CRAFT, on the other hand, demonstrates 
strong performance on multilingual datasets due to its character-level awareness, enabling it 
to handle curved, thin, or irregularly oriented text. Both models outperform EAST, 
highlighting the importance of leveraging advanced detection architectures in video text 
extraction. For recognition, CRNN provides an optimal balance between speed and accuracy, 
while the transformer-based model achieves slightly higher accuracy due to its self-attention 
mechanisms, which capture long-range dependencies in challenging text samples. The trade-
off between accuracy and computational overhead is evident in the results, where CRNN 
demonstrates faster processing times, making it more suitable for real-time applications. 

Preprocessing techniques such as grayscale conversion, adaptive binarization, and 
noise reduction further enhance the pipeline’s performance by stabilizing input frames and 
highlighting textual features. The ablation study confirms that each preprocessing step 
contributes to improved detection and recognition, particularly in noisy or low-light scenarios. 
By refining the input frames, these techniques reduce false positives and improve text clarity, 
which is crucial for downstream OCR tasks. Additionally, the post-processing module 
consolidates text from consecutive frames, corrects common OCR errors, and formats the 
final output, ensuring temporal consistency and minimizing redundant information. 

Despite these strengths, the study also highlights certain limitations and areas for 
future improvement. The increased computational demands of the transformer-based model, 
for instance, may pose challenges in resource-constrained environments. Future research 
could explore lightweight models optimized for edge devices or low-power hardware. 
Additionally, integrating contextual language models for dynamic error correction and 
investigating joint end-to-end training of detection and recognition modules may further 
enhance performance. Advanced techniques such as image super-resolution, deblurring, or 
contrastive learning could also be incorporated to handle low-quality video frames more 
effectively. 

Overall, the proposed pipeline represents a significant advancement in video text 
extraction, offering a balanced trade-off between accuracy and computational efficiency. Its 
adaptability to diverse text characteristics and practical utility in applications such as video 
indexing, real-time analytics, and multimedia retrieval highlight its potential for real-world 
deployment. By addressing current challenges and exploring the suggested future directions, 
the framework can be further refined to achieve even greater scalability, robustness, and 
performance. 
Conclusion and Future Work: 

This study presented a region-based pipeline for video text extraction, integrating 
advanced detection and recognition models, supported by strategic preprocessing. The results 
confirm the pipeline’s effectiveness in balancing accuracy, efficiency, and error resilience. By 
leveraging cutting-edge detection (CRAFT) and recognition (CRNN) models, along with a 
well-designed preprocessing pipeline, the framework outperforms traditional methods in 
overall performance. These findings highlight its potential for practical applications, such as 
video indexing, real-time analytics, and semantic retrieval. The scalability of the pipeline is 
evident in its adaptability to different datasets and text variations. Although the reference 
system offers slightly higher accuracy, its high resource demands make it less practical for 
many real-world applications. In contrast, the proposed pipeline provides an optimal balance 
between performance and efficiency, making it more suitable for broader usage. 
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Future research directions include exploring joint end-to-end training of detection and 
recognition models to improve integration, applying language modeling for contextual error 
correction, and optimizing the pipeline for real-time performance in high-resolution videos. 
The framework’s adaptability across multiple benchmarks further supports its potential for 
deployment in real-world video analytics. 
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his research aims to develop a stereo vision-based navigation system for a quadruped 
robot, enabling it to move autonomously through rough, unfamiliar terrain and detect 
blockages in sewer pipelines. The robot uses a stereo camera to capture images, which 

are then processed to create disparity maps and 3D point clouds. These tools help the robot 
identify and avoid obstacles. Image rectification and 3D mapping are performed using OpenCV, 
which generates an occupancy grid to distinguish between free and occupied spaces. Based on 
this grid, the A* algorithm is used to plan the robot's path. To ensure smooth movement, inverse 
kinematics calculates the required motor angles and applies predefined Bezier curves for stable 
locomotion. 
Keywords: Quadruped Robot; Disparity Map; Stereo Vision; Depth Map; 3D Point Cloud; 
Inverse Kinematics; Bezier Curve. 
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Introduction: 
The sewerage pipeline system plays a crucial role in collecting and transporting 

wastewater from residential, commercial, and industrial areas to treatment plants. Since these 
pipelines are usually located underground, regular inspection and maintenance become 
challenging. Traditionally, inspections are carried out manually by human operators who enter 
the pipelines or by using cameras mounted on cables. However, these conventional methods are 
time-consuming and pose serious health risks to workers. In addition to these challenges, human 
operators often encounter various obstacles, navigate bends, and endure the harsh conditions 
inside the pipelines. 

Advancements in robotics over the years have led to the development of autonomous 
robots for pipeline inspection. These robots can collect diverse types of data, including videos, 
images, and sensor readings, providing a comprehensive analysis of the pipeline's condition. 

With the increasing demand for infrastructure maintenance and pipeline inspection, 
robotics has emerged as a promising solution to address the challenges of limited accessibility, 
hazardous environments, and labor-intensive inspection processes. Sewerage pipelines, in 
particular, pose significant challenges due to narrow spaces, bends, and potential blockages that 
make traditional inspection methods inefficient and unsafe for human operators. While wheeled 
robots and sensor-based systems have been developed for pipeline inspection, these methods 
often struggle with navigating uneven terrains, negotiating tight curves, and accurately detecting 
obstructions. This has led to the growing interest in legged robots, which offer enhanced 
mobility, adaptability, and stability in rough and unstructured environments. Legged robots can 
overcome obstacles, traverse dynamic terrains, and access confined spaces that would otherwise 
be inaccessible to wheeled or tracked robots. 

Among various sensing technologies, stereo vision has gained attention due to its ability 
to provide detailed depth perception and 3D mapping, enabling robots to better understand 
their surroundings. Unlike ultrasound sensors or monocular cameras, stereo vision captures 
disparity maps and 3D point clouds, which improve the robot’s ability to detect obstacles, 
calculate distances, and plan optimal paths. Integrating stereo vision with advanced path 
planning algorithms, such as the A* algorithm, allows for real-time obstacle avoidance and 
efficient navigation in dynamic environments. Additionally, the use of inverse kinematics for 
gait control enhances the robot’s movement precision, ensuring smooth locomotion even on 
uneven terrain. This study aims to leverage the strengths of stereo vision, path planning, and 
inverse kinematics to develop a fully autonomous quadruped robot capable of navigating 
unknown terrains and inspecting sewerage pipelines with enhanced efficiency, accuracy, and 
stability. 

The main goal of this study is to develop a fully autonomous quadruped robot capable 
of walking independently, avoiding obstacles, and efficiently reaching its destination. This 
requires creating real-time algorithms for obstacle detection, path planning, and locomotion. 
Unlike traditional methods, such as ultrasound sensors [1], which often produce inconsistent 
results due to weak signal reflection, our approach enhances navigation reliability. While Deep 
Q-Network (DQN)-based navigation [2] is effective, it has limitations, including high sensitivity 
to environmental changes and the need for extensive datasets and hyperparameter tuning. 

To overcome these challenges, we incorporated stereo vision-based navigation, which 
enhances adaptability and enables the robot to navigate in dynamic environments. The key 
objectives of this study include designing an autonomous quadruped robot model, developing a 
stereo vision algorithm for obstacle avoidance and path planning, and improving the robot’s 
locomotion. Additionally, this research represents a significant advancement in autonomous 
robot navigation, as discussed in [2], [1]. 
Objectives of the Study: 
The main objectives of this study are: 
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• To develop a fully autonomous quadruped robot capable of navigating unknown terrains 
and inspecting sewerage pipelines. 

• To implement a stereo vision-based navigation system for real-time obstacle detection, 
depth mapping, and 3D point cloud generation. 

• To design and optimize path planning algorithms, specifically the A* algorithm, for 
efficient and collision-free navigation. 

Related Work: 
Model-based predictive controllers (MBPCs) using Neural Networks and ultrasonic 

sensors create mathematical models that perform effectively in static environments [3]. Dynamic 
Artificial Neural Networks (DANNs) are employed for motion planning and robot pathfinding 
but are primarily suited for flat surfaces with static and dynamic obstacles. The model’s efficiency 
increases in dynamic environments by relying on past behavior and sensor inputs [4]. A Sprint-
bot prototype, capable of smooth movement and turns, was developed for pipeline navigation. 
Initially designed for dry pipes, it requires precise sensor node positioning to detect leakage. A 
novel SLAM algorithm was implemented to create 3D pipeline maps from 2D data, enhancing 
performance with geographical pipeline information. Graph optimization techniques improve 
the robot’s localization [5]. Building on previous work involving reactive controllers with 
balancing control, this research focuses on dynamic locomotion using active impedance and 
IMU feedback [6]. The IMU provides essential data, such as acceleration, deceleration, and 
tilting, helping the robot counter external forces. Using camera images, the robot can walk 
toward targets, with an advanced CAM shift algorithm enabling target tracking through a color 
probability map. This process generates a map and pinpoints the target's location [6]. 

A defect detection system for pressure pipelines uses the Phased Array Ultrasonic 
Technique (PAUT) to identify cracks and corrosion. This wheeled robot features a camera to 
capture pipeline interiors and an ultrasonic phased array system for hidden defect detection [7]. 
A Vibro-impact capsule robot, designed for the oil industry, moves through pipelines using 
rectilinear motion, independently navigating harsh conditions without an external driving 
mechanism [7]. Another robot was developed for navigating vertical, curved, and inclined 
pipelines, incorporating kinematic and dynamic analysis to optimize its trajectory and motion 
[8]. MAKRO, a pipe-inspection robot, can operate inside 30 cm diameter vertical pipelines. It 
captures images, live streams video, detects cracks, and determines their exact location using 
online image processing [9]. A multi-link articulated robot with omni- and hemi-spherical wheels 
was also designed to adapt to winding pipes, operating in both horizontal and vertical pipelines 
and transmitting data via a wireless camera [10]. Research on a self-propelled capsule system 
optimized its design for stability and reliability under extreme conditions [11]. Another semi-
automatic robotic system, equipped with a CCD camera, steering mechanism, and sensors, was 
proposed to monitor pipelines. Real-time pipeline data is gathered through image processing, 
and gyro sensors and encoders generate pipeline maps and localize the robot’s position [12]. 

Simultaneous Localization and Mapping (SLAM) is a key technique for robotic 
navigation and mapping. A modified CAO algorithm was introduced to resolve local minima 
issues, helping the robot escape deadlocks [13]. To improve navigation, IMU-based sensors were 
combined with stereo vision. Since inertial sensors accumulate errors over time, stereo vision 
corrects these inaccuracies, reducing long-term navigation errors. Two coupling methods—MSF 
and MSCKF—were tested, with MSCKF showing higher efficiency [14]. Deep reinforcement 
learning (RL) allows robots to learn tasks independently but faces challenges such as reward-
setting, sensor inaccuracies, and unpredictable behavior. This study proposed guided 
constrained policy optimization (GCPO), which improves RL by enforcing specific rules during 
training. RL models typically require large datasets and are trained using physics simulators. This 
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method was tested on a quadruped robot, leading to faster learning and enhanced performance 
without precise reward adjustments [15]. 

A deep learning model (LSTM-DL) for pipeline defect detection achieved 98.31% 
accuracy in identifying blockages and leaks by analyzing pressure and flow sensor data [16]. 
SQuRo, a compact legged robot, was designed for confined spaces. With a slim body (aspect 
ratio of 3.42), it offers flexibility, superior mobility, and the ability to carry small loads up to 200 
grams [17]. The self-propelled capsule system provides a novel pipeline inspection approach by 
detecting abnormalities using onboard sensors [18]. Another robot with a single tracked drive 
and rotational capability about a perpendicular axis enhances navigation in narrow, winding 
pipelines [19]. Real-time image processing improves defect detection, while offline processing 
supports deeper analysis and maintenance planning, ultimately enhancing pipeline inspection 
and safety [20]. The Tarantula robot, equipped with cameras and sensors, monitors drainage 
systems for blockages and defects, minimizing human exposure to hazardous environments [21]. 
Navigating sewer-bots in harsh conditions remains challenging, requiring precise control to 
handle tight spaces and obstacles [22]. Cameras provide internal views, ultrasonic sensors detect 
cracks and leaks, and magnetic sensors identify metallic objects left behind during construction 
or maintenance [23]. These autonomous robots transmit real-time data via routers acting as 
alternative servers, streamlining pipeline monitoring [24]. 
Methodology: 
 This section discusses the key operations and algorithms involved in the navigation of a 
quadruped robot. The research methodology is outlined in Figure 1, which highlights the 
essential components and methods used in developing autonomous quadruped robot 
operations. 

 
Figure 1. Operational block diagram of autonomous quadruped robot 

A. Image Capturing 
The first step in navigation involves capturing images with a stereo vision camera 

module. This camera, mounted on a Raspberry Pi 4, captures images that are essential for 
detecting obstacles, planning paths, and identifying blockages. 

B. Image Rectification 
 Image rectification is a key step in 3D reconstruction that reduces geometric distortions 
and restores images to their proper alignment. This step is crucial for creating a 3D model used 
in navigation. The process involves comparing two images taken from slightly different angles 
and matching corresponding pixels to align them correctly. This alignment is achieved using pre-
calculated camera calibration parameters. 

C. Disparity Map 
A disparity map is a two-dimensional image that shows the difference in pixel intensity 

between the left and right stereo images. In this map, higher values indicate objects closer to the 
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camera, while lower values indicate objects farther away. The two images are compared pixel by 
pixel in their respective positions to generate the disparity map, which shows the horizontal shift 
of pixels. From these shifts, information about the distance of objects from the camera is 
obtained. To improve accuracy, the Semi-Global Block Matching (SGBM) algorithm is used to 
calculate disparities by analyzing pixel intensity differences in multiple directions, striking a 
balance between accuracy and efficiency. Additionally, the Weighted Least Squares (WLS) filter 
is applied to reduce noise and remove speckles from the disparity map, further refining the 
result. 

D.  3D Point Cloud 
 Once the disparity map is computed, a 3D point cloud is generated using the OpenCV 
library. This point cloud stores image data in x, y, and z coordinates, providing detailed 
information about the surroundings. It allows the system to detect obstacles and understand the 
environment for autonomous navigation. The projection matrix (Q), obtained during image 
rectification, converts disparity values into 3D coordinates. Any points with y-coordinate values 
exceeding a set threshold are identified as obstacles, as they are considered part of the floor. The 
reprojection equation is used to achieve this transformation. 

E. Path Planner 
For path planning, the A* algorithm is employed to determine the shortest path between 

two points while avoiding obstacles. The occupancy grid, generated from stereo vision data, 
helps map out the path from the current position to the destination by identifying clear routes. 

F. Inverse Kinematics 
 Inverse kinematics is used to precisely control the movement of quadruped robots by 
calculating the joint angles needed to achieve a specific end-effector position and orientation. 
To simplify these calculations, the coordinates are transformed, focusing on the z-direction. 

𝑦 =  −√(𝑧 + 𝐿)2 + 𝑦2                                                                    (1) 

 
Figure 2. Robotic Leg (a) Y-Z side view (b) X-Y side view 

Calculated y coordinate is used to calculate the angle theta z for the hip joint: 
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𝜃𝑧 = 𝑡𝑎𝑛−1 (
𝑧 + 𝐿

|𝑦|
) − 𝑡𝑎𝑛−1 (

𝐿

|𝑦|
)                                               (2) 

Segments a, and a2 represent the upper and lower leg, respectively. The angles at the 
shoulder (θ1) and elbow (θ1) are computed using the laws of sines and cosines. To find the cosine 
of an angle, the law of cosines is applied. This formula is derived from the triangle formed by 
the upper leg, lower leg, and the line connecting the shoulder and foot. 

cos(𝜃2) =  
𝑥2 + 𝑦2 −  𝑎1

2 −  𝑎2
2

2𝑎1𝑎2
                                                         (3) 

𝑆𝑖𝑛(𝜃2) =  √1 − 𝑐𝑜𝑠2(𝜃2)                                                             (4) 
Calculating the inverse tangent of sin over cosine to get the elbow angle. 

𝜃2 =  𝑡𝑎𝑛−1 (
sin (𝜃2)

cos (𝜃2)
)                                                              (5) 

Similarly, calculate the sine and cosine of θ1 using the law of cosines. Then, compute 
the angle θ1 as: 

cos(𝜃1) =  
𝑥 (𝑎1 + 𝑎2 cos(𝜃2)) + 𝑦 (𝑎2sin (𝜃2))

𝑥2 + 𝑦2
                                  (6) 

sin(𝜃1) =  
𝑦(𝑎1 +  𝑎2𝐶2) − 𝑥(𝑎2𝑠𝑠)

𝑥2 + 𝑦2
                                             (7) 

𝜃1 =  𝑡𝑎𝑛−1 (
sin (𝜃2)

cos (𝜃2)
)                                                          (8) 

Results:  
Image Rectification: 

The camera calibration parameters are used to rectify the stereo images. These 
parameters include camera metrics, distortion matrices, rotation, and projection metrics, which 
help align the left and right images correctly. The rectified images are then compared, as shown 
in Figure 3. After rectification, OpenCV converts the images to grayscale, a necessary step for 
generating the disparity map.  

 

 
Figure 3. Left and right images before and after rectification 

Disparity Map: 
The grayscale images are then processed using the Semi-Global Block Matching (SGBM) 

algorithm to compute the disparity map. In this map, each pixel represents the disparity between 
corresponding points in the stereo images. The resulting disparity map is shown in Figure 4. 
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Figure 4. Disparity map without WLS filter 

To smooth the disparity map and reduce noise, the Weighted Least Squares (WLS) filter 
is applied to enhance depth information. The filter's parameters are adjusted to control 
regularization and color influence. The disparity map after applying the WLS filter (7) is shown 
in Figure 5. 

 
Figure 5. Disparity map after WLS filter 

Point Cloud: 
The projection matrix (Q), derived from intrinsic and extrinsic parameters, is used to 

convert disparity values into 3D coordinates. The resulting point cloud contains data on width, 
height, and the three spatial coordinates: x, y, and z. The point cloud generated from the disparity 
map is shown in Figure 6 below. 

 
Figure 6. 3D point cloud image of environment 

Occupancy grid: 
The algorithm then iterates through the generated 3D point cloud and updates the 

occupancy grid by marking free space with a value of 0 and occupied space with a value of 1. It 
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subsequently checks the minimum Z-value for each grid cell to identify the nearest and farthest 
obstacles within that cell. The calculated occupancy grid is shown in Figure 7. 

 
Figure 7. Occupancy grid of environment in 2D 

Path Planning: 
The starting point is set at the center of the current location, while the endpoint 

corresponds to the farthest obstacle recorded in the occupancy grid. This setup allows the A* 
algorithm to determine the shortest obstacle-free path to the endpoint. Figure 8 illustrates the 
planned path between the farthest obstacle and the current location. 

 
Figure 8. Planned Path 

Gait Pattern: 
Once the planned path is obtained, the robot performs locomotion using inverse 

kinematics. Cubic Bézier curve control points are defined for both linear and cubic paths to 
ensure smooth leg movement. These points are then used in inverse kinematics calculations to 
determine the motor angles. The defined Bézier curve points are as 

follows:𝑐𝑢𝑏𝑖𝑐 𝐵𝑒𝑥𝑖𝑒𝑟 𝐶𝑢𝑟𝑣𝑒 =  [
−1.0 −1.0 −1.0      −1.0
−1.0 −1.0 −1.0      −1.0
−15 −10 −10       −15

] 

Discussion: 
This study focuses on the development of a fully autonomous quadruped robot designed 

for obstacle avoidance, path planning, and sewerage pipeline inspection. Traditional sewerage 
inspection robots typically use wheeled designs and various sensor-based techniques for 
navigation and environmental perception. While technologies such as ultrasound sensors, 
convolutional neural networks (CNNs), region-based convolutional networks (RCNNs), and 
monocular cameras have shown success in object detection, each has limitations that affect 
robot performance in dynamic environments like pipelines. A key innovation in our approach 
is the use of stereovision cameras to calculate depth maps and generate 3D point clouds. Unlike 
ultrasound sensors, which rely on sound waves and may be influenced by environmental factors, 
stereovision cameras provide a more robust alternative by using disparity mapping to calculate 
depth. This enhances the robot’s ability to interpret complex environments, which is particularly 
beneficial in sewerage systems where visibility and accurate object recognition are critical. 

While CNN and RCNN-based methods achieve high object detection accuracy, they 
require extensive training datasets and significant computational power. In contrast, our 
stereovision-based approach is less computationally intensive and more power-efficient. Deep 
learning models can also face challenges like overfitting to specific environments, whereas our 
stereovision technique, combined with real-time path planning algorithms, improves adaptability 
without relying on pre-trained models. Overall, this study contributes to the field of autonomous 
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robotic navigation by presenting a novel application of stereovision-based obstacle detection 
and path planning. The findings demonstrate the potential of stereovision as an alternative to 
LiDAR and traditional sensor-based systems, offering a balance between computational 
efficiency and reliable environmental perception. This study demonstrates the significant 
advantages of integrating stereo vision-based navigation, path planning, and inverse kinematics 
for enhancing the mobility and adaptability of quadruped robots in challenging environments 
such as sewerage pipelines. Unlike traditional wheeled or tracked robots, which often encounter 
limitations in maneuvering through uneven terrains and navigating sharp bends, the proposed 
quadruped robot leverages real-time depth mapping and 3D point cloud generation to gain a 
comprehensive understanding of its surroundings. This enhanced environmental perception, 
combined with the A* path planning algorithm, enables the robot to efficiently detect obstacles, 
calculate optimal routes, and avoid collisions. Furthermore, the implementation of inverse 
kinematics and Bezier curves for gait control ensures smooth and precise locomotion, improving 
the robot’s stability during traversal. These innovations contribute to a more robust and scalable 
framework for autonomous navigation, with potential applications in industrial pipeline 
inspection, hazardous environment exploration, and disaster response scenarios. Future work 
could focus on optimizing computational efficiency, integrating additional sensors for multi-
modal perception, and enhancing the robot’s performance in real-time dynamic environments. 
Conclusion: 

In this paper, the autonomous navigation algorithm for the robot involved several key 
processes, including stereo image rectification, disparity map calculation, 3D point cloud 
generation, and occupancy grid creation. The A* path planning algorithm was used to plan and 
generate the navigation path. Based on the planned path coordinates, inverse kinematics was 
applied to calculate the joint angles, enabling the robot's legs to respond and follow the predicted 
path. To achieve smooth trajectory control, a cubic Bezier curve was generated for forward and 
backward steps, while a linear Bezier curve was used for sliding (left and right) movements. 
These features enhanced the robot's ability to navigate through rough and unfamiliar terrain. 
The robot demonstrated excellent performance on planned navigation paths and maintained 
smooth trajectories, as shown in the results. 

The proposed stereovision-based navigation approach significantly improved the 
autonomous navigation capabilities of quadruped robots. By integrating stereovision cameras 
for disparity mapping, obstacle avoidance, and path planning with the robot's inverse kinematics 
for gait control, the robot could detect blockages inside sewerage lines and identify objects 
obstructing sewage flow. This integration enhanced the robot's ability to walk efficiently and 
stably, increasing both accuracy and efficiency when navigating rough terrain. 
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he use of deltamethrin is increasing due to its high demand in agriculture. However, it 
is toxic to both surface and groundwater. Agriculture plays a crucial role in the 
economy of any major nation. This study aims to enhance pesticide degradation by 

using specially designed catalysts optimized for visible light exposure. The key innovation lies 
in the customized catalyst design, which improves photocatalytic efficiency while offering a 
cost-effective and environmentally friendly approach. Various factors affecting degradation, 
including adsorbent quantity, pH, contact time, and initial concentration, were analyzed. The 
reactor consists of a 6-watt (380 nm) visible light lamp and a stirrer to ensure uniform mixing 

of the sample. Photocatalysts ZnO and TiO₂, in concentrations ranging from 0.1 to 3.0 g/L, 
were used to generate oxidizing agents. Under visible light, the impact of these factors on the 
degradation of different pesticide solutions was examined. The optimal doses were found to 

be 1.5 g/L for ZnO and 0.1 g/L for TiO₂. ZnO achieved a degradation rate of 96.3%, while 

TiO₂ slightly outperformed it with a rate of 96.34%. The study also investigated the effect of 
pH variations on deltamethrin degradation, revealing stronger degradation in alkaline 

conditions. Additionally, TiO₂ effectively reduced the COD value, demonstrating its superior 
efficiency in pesticide breakdown. 
Keyword: Deltamethrin, Photo catalytic degradation, ZnO, TiO2, Oxidizing agents. 
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Introduction: 
A significant portion of the economy depends on agricultural production. Due to the 

increasing demand for agricultural products, the use of pesticides has risen significantly. 
Agricultural zones are designated areas where occupation, enterprise, and lifestyles are 
interconnected. The agricultural sector is a crucial component of any country's economy, 
contributing approximately 23.4% to the global economy. The primary focus of agricultural 
zones is to ensure food security for the population and enhance crop yield. Pakistan's agricultural 
sector contributes 21% to the country's GDP, with an annual growth rate of 2.7%. According 
to the World Bank (World Development Indicator), the agricultural sector has added 
approximately 22.64% to Pakistan's Gross Domestic Product. Sustainable agriculture is a rapidly 
growing field aimed at producing food and energy in an environmentally friendly manner to 
support both current and future generations. It addresses pressing issues such as climate change, 
rising fuel prices, hunger, poverty, increasing food demand, pest control, soil degradation, 
erosion, biodiversity loss, and water contamination. 

Modern agriculture heavily relies on chemical treatments, including pesticides and 
fertilizers [1]. There is no denying that agricultural production in the 20th century improved and 
stabilized primarily due to the control of harmful weeds, pests, and insects, alongside an adequate 
supply of essential plant nutrients through chemical means. Pesticides are the second leading 
contributor to aquatic pollution, with a significant increase in contamination of drinking water 
sources [2]. Various pesticides, differing in chemical composition and effectiveness, are widely 
used worldwide, raising concerns about their adverse effects on human health and the 
environment. Pesticides consist of both organic and inorganic compounds and are applied to 
crops to eliminate harmful weeds and pests such as moths and insects that feed on crops. These 
chemicals are complex, with some parent compounds being less toxic than their breakdown 
products [3]. However, they pose a threat to both surface and groundwater. Pesticides are 
identified as the second leading cause of water pollution (WHO Class II), particularly 
contaminating drinking water [4]. 

Deltamethrin, a widely used pesticide, has been found to adversely affect fish by 
disrupting their nervous system, blocking sodium channels, and inhibiting key enzymes such as 
acetylcholinesterase and gamma-aminobutyric acid. It also weakens their immune system and 
induces oxidative stress. Individuals with skin wounds should avoid using Deltamethrin in 
traditional forms such as sprays, soaps, spot-on applications, pour-on treatments, and 
shampoos, as excessive absorption through the skin can occur. According to EU standards, 
Deltamethrin concentrations should not exceed 0.1 ng/ml [2]. Pyrethroids, including 
Deltamethrin, are preferred over organophosphates and organochlorines due to their high 
potency, effectiveness in small doses, resistance to light-induced degradation, and minimal harm 
to birds and mammals [5]. Several chemical techniques have been developed for environmental 
remediation, including hybrid procedures, nanocrystalline materials, metal oxides, carbon 
nanotubes, ion exchange, graphene, ultrasound waves, photocatalysis, adsorption, 
bioremediation, and bio-purification [6]. Advances in water and wastewater treatment have 
incorporated various strategies to remove persistent organic contaminants from aqueous 
solutions. Effective methods include adsorption, coagulation/flocculation, membrane 
separation, electrochemical treatments, and reverse osmosis [7][8][9]. Adsorption processes 
utilize diverse materials, including waste substances, to remove pollutants such as dyes [10][11], 
lead (II) [12], chlorophenols [13], pesticides [14], zinc, and absorbed nickel [15]. However, most 
of these methods only transfer pollutants between phases, generating secondary waste without 
actual pollutant degradation. 

Advanced oxidation processes (AOPs) operate by generating hydroxyl radicals (•OH) 
and have proven effective in breaking down various contaminants, including dyes [12], aromatic 
amines [16], and agrochemicals [17]. Pesticide degradation has been successfully achieved using 
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the Fenton reagent and both natural and artificial photo-irradiation methods, such as photo-
Fenton systems [18][19], photocatalytic degradation [20][21], and photo-peroxidation. 

Membrane separation, photocatalysis, and adsorption techniques are being tested using 
various materials. Researchers are striving to develop efficient, cost-effective, and 
environmentally friendly methods that offer rapid and high pollutant removal rates. These 
procedures utilize visible light directed at a semiconductor material, which acts as a catalyst to 
break down pesticides. Photocatalysis is an environmentally friendly alternative for degrading 
organic pollutants. It has been widely studied for the degradation of various materials, with zinc 
oxide (ZnO) and titanium dioxide (TiO2) being the most commonly used photocatalysts. Keiichi 
et al. demonstrated the photocatalytic degradation of azo dyes using TiO2 suspensions, revealing 
that diazo dyes degrade more slowly than mono azo dyes (Photocatalytic Degradation of 
Commercial Azo Dyes). Another study compared the photocatalytic efficiency of ZnO and 
Degussa P25 TiO2 for degrading azo dyes under solar irradiation (Solar Photocatalytic 
Degradation of Azo Dye). Similarly, studies have examined the effects of UV and solar light 
irradiation on diclofenac degradation using ZnO as a photocatalyst, showing higher degradation 
rates under UV light, particularly in acidic conditions (Degradation of Diclofenac Under 
Irradiation of UV Lamp and Solar Light Using ZnO Photocatalyst). Additional research has 
investigated the photocatalytic degradation of phenol (Photocatalytic Degradation of Phenol), 
nitrophenols (Heterogeneous Photocatalytic Degradation of Nitro Phenols), 17-β-estradiol 
(Photocatalytic Degradation of 17-β-Estradiol on Immobilized TiO2), methyl orange 
(Photocatalytic Degradation of Methyl Orange as a Model Compound), and methylene blue 
(Photocatalytic Degradation Pathway of Methylene Blue in Water). 

Despite these advancements, challenges remain in photocatalytic degradation research, 
emphasizing the need for further studies. Current photocatalytic applications are limited by low 
visible light absorption, rapid charge recombination, and the low migration ability of photo-
generated electrons and holes (An Overview of Photocatalytic Degradation: Photocatalysts, 
Mechanisms, and Development of Photocatalytic Membrane). To improve wastewater 
treatment efficiency, more research is needed to optimize conditions for degrading a broader 
range of organic pollutants. 

The objective of this study is to evaluate the effectiveness of different photocatalysts in 
degrading Deltamethrin pesticides while also analyzing parameters such as contact time, initial 
pH concentration, adsorbent dosage, and COD value. 
Material and Methods: 
Objectives of the Study: 

This study aims to optimize process parameters for efficient and eco-friendly pesticide 
removal, contributing to sustainable water purification methods. The specific objectives are: 

• To evaluate the efficiency of ZnO and TiO₂ in degrading Deltamethrin under visible 
light conditions. 

• To determine the optimal photocatalyst dosage, pH, and reaction time for maximum 
pesticide degradation. 

• To compare the degradation efficiency of ZnO and TiO₂ at different pH levels and 
catalyst concentrations. 

• To analyze the kinetics of photocatalytic degradation and validate the reaction 
mechanism using the Langmuir-Hinshelwood model. 

• To assess the impact of photocatalysis on Chemical Oxygen Demand (COD) reduction 
as an indicator of water quality improvement. 

• To investigate the reusability and stability of ZnO and TiO₂ catalysts over multiple 
degradation cycles. 
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Methodology: 
Chemical Analysis and Materials: 

High-purity laboratory-grade materials were selected for the experiment. Deltamethrin 
(97.8% pure) was procured from Jaffar Group of Companies, Lahore. ZnO nanoparticles, with 
a purity of over 93.5% and particle sizes ranging from 10 to 30 nm, were obtained from Global 

Chemical Co. Ltd. TiO₂ nanoparticles, with a purity exceeding 98.4% and particle sizes between 
10 and 25 nm, were purchased from KRONOS (ISO 9001 certified). 

A pH meter (model BASIC-20, UK) was used to measure pH levels. The photocatalytic 
reactor, designed for small-scale experiments, has a single inlet and outlet with an upper-side 
valve to prevent flooding. It is equipped with a 6V DC motor for efficient mixing and a 6W, 9-
inch fluorescent tube emitting violet light (380 nm wavelength) for illumination. The reactor has 
a solution capacity of approximately one liter. 

Acetonitrile (CHROMASOLV, 99.9% pure) was sourced from Honeywell Riedelde 
Haen for HPLC analysis. Gas chromatography vials (2 mL, black caps with hole spots) were 
obtained from Hadi Traders, Antalkali, Lahore. Nylon syringe filters (pore size 0.45 µm, 
diameter 13 mm, item code SFNY01304 5NA) were used. An ultrasonic cleaner (DSA-100-SK1-
2.8 L) was employed for 10-minute sonication to mix water and acetonitrile solutions properly. 

The HPLC system (Model SHIMADZU) was equipped with a UV detector and a C-18 
column (4.6 × 250 mm). The mobile phase consisted of acetonitrile and purified water (25:75 
v/v) with a flow rate of 1 mL/min. Deltamethrin samples were analyzed at a wavelength of 230 
nm. 
Experimental Procedure: 

The photocatalytic activity of the catalysts was evaluated by degrading Deltamethrin in 
a small-scale reactor. A stock solution of Deltamethrin (1000 mg/L) was prepared by dissolving 
Lambda-cyhalothrin in pure water. From this stock, samples with varying concentrations (5, 15, 
30, 40, and 50 mg/L) were placed in the reactor. Absorbent (0.1-3.0 g/L) was added to each 
solution at different pH levels (3 to 9). 

To maintain temperature stability, water circulation was used to counteract the heat 
generated by the lamp. A 500 mL Deltamethrin solution mixed with the appropriate absorbent 
was left in the dark for different time intervals (5 minutes to 1 hour) to establish adsorption-
desorption equilibrium. A tungsten lamp (Philips Lighting Co.) served as the visible light source, 
and each experiment was conducted with a 2-hour irradiation period. To minimize 
environmental effects, the experiment was carried out in a glass-covered, closed-box reactor. A 
hygrometer was used to monitor ambient humidity, and power readings were taken regularly to 
ensure consistent illumination. 

Samples were collected from the reactor at 5, 15, 30, 45, and 60-minute intervals and 
centrifuged at 5000 rpm for 5 minutes. The ultrasonic cleaner (DSA-100-SK1-2.8 L) was used 
for 10-minute sonication to properly mix the water and acetonitrile solution. The HPLC injector 
tube was immersed in the mobile phase, and the system was connected and powered on. GC-
HPLC was used to analyze Deltamethrin degradation. The system’s LC software was pre-
installed on a PC, where parameters such as retention time, temperature, wavelength, and 
injection volume were set. A 5 µL sample extract was injected into the column and eluted with 
the mobile phase (water: acetonitrile, 25:75 v/v) at a flow rate of 1.0 mL/min. An absorption 
wavelength of 230 nm was used to generate degradation curves. The obtained data was then 
used to calculate pesticide degradation percentages. 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐷𝑒𝑔𝑟𝑎𝑑𝑡𝑖𝑜𝑛 =  (
𝐶0 − 𝐶

𝐶0
)  𝑥 100 

Denote "C0" = initial absorbance sample before degradation and "C" = absorbance sample of 

the Lambda-cyhalothrin after degradation solution at time "t." 
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Figure 1. Flow Diagram of Methodology 

Kinetic Study: 
The study on the photodegradation of Deltamethrin included a kinetic analysis. The 

results showed that its degradation followed a pseudo-first-order kinetic pattern under 
photocatalytic conditions, aligning with theLangmuir–Hinshelwood model [22]. The developed 
model for Deltamethrin degradation was documented as follows. 

ln
𝐶𝑡

𝐶0
 =  −𝑘 𝑥 𝑡 

Here, C represents the concentration of Deltamethrin pesticide (measured in 
parts per million, ppm), while k denotes the pseudo-first-order rate constant. 

The coefficient of determination (R²) is used to determine the reaction order and is 
calculated as follows: 

𝑅2 =  1 −  
∑(𝑦𝑖 − ŷ𝑖)2

∑(𝑦𝑖 − ȳ𝑖)2
 

The coefficient of determination (R²) was found to be 0.9955, demonstrating a strong 
correlation between the kinetic model and the photodegradation of Deltamethrin using 

ZnO/TiO₂ as the catalyst [23]. 

Table 1. Rate constant and R2 

Pollutant Catalyst Light Source k (min−1) R2 

Deltamethrin TiO2 Visible light 0.031 0.9955 

Deltamethrin ZnO Visible light 0.026 0.9873 

After that, get the HPLC findings for several samples. A calibration curve is drawn. After that, 
we use the formula to calculate the deterioration efficiency in percentage (percent). 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐷𝑒𝑔𝑟𝑎𝑑𝑡𝑖𝑜𝑛 =  (
𝐶0 − 𝐶

𝐶0
) 

C0 = concentration before Degradation C= concentration after Degradation 
Results: 

TiO₂ Degradation Efficiency at Different PH: 
Figure 2 illustrates the effect of pH variation on the degradation efficiency of 

Deltamethrin insecticides across different samples. The graph highlights that S-1 exhibits the 
highest degradation, particularly in a basic medium, reaching a peak efficiency of 96.1%. When 
synthesized catalysts were used, a steady increase in degradation rates was observed across all 

pH levels. However, TiO₂ demonstrated the best performance in the basic pH range. 
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Figure 2. Efficiency of degradation at various pH of Deltamethrin Samples with TiO2 

TiO₂ Catalyst: Different Dosing and Degradation Efficiency 
Figure 3 shows that the highest degradation, around 96%, is achieved with catalyst 

dosage C-1 of S-1. This occurs because increasing the TiO₂ concentration eventually reduces 
the degradation rate as the catalyst dosage increases. Higher concentrations are more challenging 
to degrade, which is why the graph indicates minimal degradation for the S-5 sample. 

 
Figure 3. The efficiency of degradation of TiO2 of various samples 

Efficiency of ZnO Degradation at Different pH Levels for Deltamethrin Samples: 
The effect of pH variation on the degradation efficiency of different samples was 

analyzed. Figure 4 shows that the highest degradation for S-1 occurred at pH 9, compared to 
other pH levels. This pH test was conducted using C-2 ZnO. 

 
Figure 4. The efficiency degradation at various pH of the Deltamethrin Sample with ZnO 
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ZnO Catalyst Different Dosing Efficiency of Degradation: 
The catalyst dosage C-3 of S-1 achieves the highest degradation rate, approximately 82%. 

As shown in Figure 5, increasing the concentration of ZnO positively impacts degradation 
efficiency. With ZnO C-1, the degradation rate is the slowest, around 62% for S-1. As the ZnO 
dosage increases, both the degradation rate and efficiency improve. However, the highest 
degradation value is observed at C-3 ZnO. 

 

Figure 5. The efficiency of degradation of ZnO with various samples 

Comparability of Efficiency of ZnO and TiO₂ in Degradation 
Figure 6 illustrates the degradation efficiency of Deltamethrin insecticides using two 

different catalysts at various pH levels. When TiO₂ is used, the degradation rate is lower in acidic 
conditions but increases in basic conditions, reaching its highest efficiency at pH 11. In contrast, 
ZnO achieves its fastest degradation rate at pH 9. 

 
Figure 6. The efficiency of degradation at different pH of Deltamethrin Sample with ZnO and 

TiO2 
Comparison of COD Values of ZnO and TiO2 W.R.T Time: 

Figure 7 shows that the COD value decreases over time gradually. Maximum value of 

degradation of COD of Deltamethrin with TiO2. 
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Figure 7. COD degradation concerning time 

Discussion: 

Reusability of ZnO/TiO2 Nano Catalyst: 

The modification of ZnO and TiO₂ photocatalysts has been extensively studied to 

enhance their efficiency, stability, and practical use in wastewater treatment. Pure ZnO and TiO₂ 
have limitations, such as rapid charge recombination, limited absorption of visible light, and 
reduced effectiveness under real environmental conditions. To address these challenges, various 
modification techniques have been employed, including metal doping, non-metal doping, 
heterojunction formation, and surface functionalization. These modifications improve charge 
separation, enhance light absorption, and increase the degradation efficiency of persistent 
organic pollutants like pesticides. 

Given the importance of cost-effectiveness in nanocatalyst usability, an in-depth analysis 

was conducted through multiple iterations. After each cycle, the used ZnO/TiO₂ photocatalyst 
was collected magnetically [24]. Metal doping is one of the most effective strategies to improve 
photocatalytic performance. Transition metals such as silver (Ag), copper (Cu), and iron oxide 

(Fe₃O₄) are incorporated into the ZnO or TiO₂ lattice. Ag-doped TiO₂ and ZnO enhance 
visible light absorption through surface plasmon resonance (SPR), enabling more efficient 

charge carrier generation. Similarly, Cu-doped TiO₂ increases electron transfer rates, reducing 

recombination losses and improving effectiveness under visible light. The addition of Fe₃O₄ to 
ZnO creates a magnetic photocatalyst, allowing easy recovery and reuse, thereby enhancing 
long-term sustainability. These modifications result in higher degradation rates, improved 
catalyst stability, and better selectivity for organic pollutants in water treatment applications. 

Non-metal doping, where oxygen atoms in the ZnO or TiO₂ lattice are replaced with 
elements such as nitrogen (N), sulfur (S), and carbon (C), is another effective method for 

enhancing photocatalytic efficiency. N-doped TiO₂ introduces mid-gap energy states, shifting 
light absorption from UV to the visible spectrum, making it suitable for outdoor applications. 
Similarly, S-doped ZnO creates oxygen vacancies that enhance reactive oxygen species (ROS) 
generation, leading to more effective oxidative degradation of pesticides. Carbon doping forms 

graphitic carbon-TiO₂ hybrids, significantly increasing electron conductivity and photocatalytic 
efficiency. These modifications broaden the light absorption range of photocatalysts, making 
them more energy-efficient and effective under natural sunlight. 

The formation of heterojunction and composite photocatalysts, such as ZnO-TiO₂, 

BiVO₄-TiO₂, and g-C₃N₄/ZnO, further improves charge separation and reaction kinetics. 

ZnO-TiO₂ composites benefit from ZnO’s high charge mobility and TiO₂’s strong oxidation 

ability, creating an efficient heterojunction that minimizes electron-hole recombination. BiVO₄-

TiO₂ hybrids establish a Z-scheme charge transfer system, enhancing the degradation of 

complex organic pollutants. Additionally, coupling graphitic carbon nitride (g-C₃N₄) with ZnO 
stabilizes the catalyst structure, improving photocatalytic activity under sunlight. These 
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heterojunctions offer synergistic benefits, resulting in faster reaction rates, increased catalyst 
longevity, and better efficiency under real-world conditions. 

To cleanse the photocatalyst of any residual compounds adsorbed onto its surface, 
multiple washes with water were performed [25]. Notably, even after seven cycles of 
photocatalytic activity, the degradation efficiency remained at approximately 82%. This result 

highlights the reusability potential of the ZnO/TiO₂ catalyst and its ability to suppress electron-
hole recombination. Ultimately, the ternary magnetic photocatalyst demonstrated strong 
effectiveness in pesticide degradation [26][27]. 

The study focuses on improving pesticide decomposition by adjusting concentration, 
using catalysts, and modifying pH levels [28]. The findings indicate that optimizing these factors 
significantly enhances pesticide degradation efficiency. Additionally, the decrease in Chemical 
Oxygen Demand (COD) confirms the efficient mineralization of pesticide residues, suggesting 
a reduced environmental impact [29]. These results provide a foundation for developing more 
effective and environmentally friendly pesticide remediation techniques, supporting sustainable 
wastewater treatment and agricultural practices [24]. Further research is recommended to refine 
these methods and explore their broader applications [3]. 
Limitations of the Study: 

• Environmental Variability: Factors such as temperature, humidity, and soil 
composition can affect pesticide degradation, making it challenging to generalize the 
data. 

• Limited Pesticide Scope: The study may focus on specific pesticides, limiting their 
applicability to others with different chemical properties. 

• Analytical Restrictions: The accuracy of degradation rate measurements may be 
affected by the sensitivity limits of detection techniques. 

• Time and Resource Constraints: Long-term degradation studies require extended 
monitoring and substantial resources, which may not always be feasible. 

Conclusion: 

Under optimal conditions, TiO₂ and ZnO photocatalysts effectively degrade these 

pollutants. Deltamethrin degradation reached 96.34% for C-1 and 83.2% for C-3 using TiO₂ 

and ZnO, respectively, at varying adsorption concentrations. In terms of contact time, TiO₂’s 
efficiency decreased after 10 minutes, while ZnO remained effective for up to 30 minutes, 

making ZnO more impactful in pollutant removal. The optimal degradation rate for TiO₂ with 
Deltamethrin was observed at pH 11, whereas ZnO exhibited the highest breakdown rate at pH 
9. This technique can be applied in various chemical industries to degrade harmful pollutants. 

Compared to ZnO, TiO₂ nanoparticles under visible light irradiation demonstrated superior 
efficiency in decomposing Deltamethrin. 
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lobal warming and the environmental and health risks linked to animal-based leather 
products have increased the demand for sustainable alternatives. Vegan leather has 
gained attention as a promising solution to these issues, encouraging eco-friendly 

fashion. To reduce its environmental impact, the leather industry is shifting from animal-derived 
to plant-based materials. Traditional leather production involves slaughtering over a billion cattle 
each year, releasing harmful substances like chromium and lead that pollute water sources and 
threaten public health. This study explores the potential of cactus-based vegan leather as an eco-
friendly substitute for conventional leather. The process involved harvesting mature cactus pads, 
drying them in the sun, and transforming them into a sturdy material that mimics the properties 
of real leather. Mechanical tests showed that cactus leather offers similar durability, flexibility, 
and aesthetic appeal to traditional leather. The results emphasize the environmental, economic, 
and functional advantages of cactus leather, positioning it as a scalable alternative to reduce the 
negative ecological effects of animal-based leather production. 
Keywords: Environmental Impact, Animal Welfare, Cactus Leather, Sustainability, Global 
Shift. 
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Introduction: 
Human activities, particularly those driven by socio-economic factors, are playing a 

major role in global environmental degradation [1]. Processing industries are among the key 
contributors to this crisis [2], and the leather industry is a clear example. It relies on animal hides 
from the meat industry and uses resource-heavy tanning processes [3]. Leather production 
consumes a large amount of water—about 40 liters per kilogram of hide—due to stages like 
soaking, tanning, and conditioning [4]. This process generates substantial wastewater, increasing 
biological oxygen demand (BOD), chemical oxygen demand (COD), and depleting dissolved 
oxygen in water bodies [2], [5]. Leather is a globally traded product, mainly derived from the 
meat and dairy industries [6], [7]. The industry depends heavily on these sectors, with 95% of 
raw materials coming from cows, lambs, pigs, and goats [8]–[9]. This reliance contributes to 
environmental issues, including at least 32,000 million tons of CO2 emissions annually [10]. 

In Pakistan, the leather sector ranks as the second-largest industry after textiles, 
providing jobs to over 200,000 people and contributing 5% to manufacturing GDP and 7% to 
exports [11], [12]. The country has around 596 tanneries, with more than 90% of their output 
exported [13]. However, the tanning process uses around 130 harmful chemicals, including 
sodium sulfide, chromium sulfate, and formaldehyde, which damage the environment. These 
chemicals pollute the air, soil, and water, harming agricultural land and reducing crop 
productivity [14], [15]. Industrial activities, especially tannery operations in Pakistan, are a major 
cause of pollution [6]. In Punjab and Khyber Pakhtunkhwa (KPK), tanneries significantly 
pollute rivers, agricultural fields, and residential areas. Chemical waste and untreated wastewater 
are discharged into waterways, harming crops and contaminating food supplies. Since many 
tanneries are located in residential areas, they pose serious health risks to urban populations. 
In Karachi, untreated wastewater is dumped into the sea, while in Lahore and Punjab, it pollutes 
rivers [16]. Chemical waste clogs drainage systems, and sludge is often dumped openly, further 
damaging the environment and endangering public health [17]. Leather dust is both carcinogenic 
and allergenic, increasing health risks, particularly in areas like Korangi and Charsadda. Tanneries 
contribute 10–15% of the pollution along Karachi’s coastline, while in Punjab, pollution from 
toxic river water used for irrigation reduces crop yields and affects food safety. 

In recent years, the demand for sustainable and cruelty-free alternatives to animal leather 
has increased significantly due to growing environmental awareness and ethical concerns. The 
leather industry, while valued for its durability and aesthetic appeal, is associated with high water 
consumption, greenhouse gas emissions, and the use of toxic chemicals in tanning processes, 
contributing to significant environmental pollution. Additionally, synthetic leather alternatives, 
such as polyurethane (PU) and polyvinyl chloride (PVC) leather, pose their own challenges, 
including non-biodegradability and microplastic pollution. In response to these issues, 
researchers and manufacturers have been actively exploring bio-based and eco-friendly leather 
substitutes that can provide comparable mechanical properties while minimizing environmental 
impact. Cactus-based vegan leather has emerged as a promising alternative, offering a 
biodegradable, water-efficient, and carbon-negative solution for industries such as fashion, 
automotive, and upholstery. By utilizing renewable plant-derived materials, cactus leather aims 
to bridge the gap between sustainability and performance, ensuring durability, flexibility, and 
consumer acceptance while reducing dependence on animal-derived and petroleum-based 
materials. 

Given these concerns, finding an alternative to animal-derived leather is essential. 
Although the demand for sustainable materials is rising, limited research has explored cactus-
based vegan leather as a viable substitute. This study introduces vegan leather made from cacti 
as an eco-friendly alternative to conventional leather. It minimizes environmental impact by 
using less water, sequestering carbon, and optimizing glycerin concentration to enhance 
durability and flexibility. Cactus leather offers higher elasticity (95%) and comparable tensile 
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strength (up to 25 MPa) to traditional animal leather, whose tensile strength typically ranges 
from 15 to 30 MPa. However, producing animal leather requires resource-intensive processes 
that consume significant energy and release hazardous chemicals, including sulfides and 
chromium [18]. 

While PU leather is flexible and affordable, it generates 15–20 kg of CO₂ per square 
meter during production and significantly contributes to microplastic pollution. In contrast, 

cactus leather consumes only 200 liters of water per square meter and emits just 5 kg of CO₂, 
compared to animal leather, which uses a staggering 17,000 gallons of water per square meter 
[19]. Additionally, unlike PU and animal leather, cactus farming helps sequester carbon, 

absorbing up to 8 tons of CO₂ per hectare [8], [20]. For these reasons, cactus-based vegan leather 
stands out as a sustainable and environmentally friendly alternative to traditional leather. 
Objectives: 
The primary aims of this study are: 

• Create vegan leather made from cacti as a sustainable substitute for animal and synthetic 
(PU) leather.  

• Assess its mechanical characteristics, such as elasticity, flexibility, and tensile strength. 

• Optimize drying conditions to increase production scalability and energy efficiency. 

• Evaluate its effects on the environment in terms of carbon emissions, water use, and 
potential for CO2 sequestration. 

Material and Methods: 
Production Process: 

The production process of cactus-based vegan leather combines plant-derived materials 
with synthetic polymers to achieve the desired properties, such as durability, flexibility, and 
elasticity. This blend enhances the leather’s functionality while maintaining its eco-friendly 
characteristics. Figure 1 shows the flow diagram of methodology. 

 
Figure 1. Flow diagram of methodology 

Harvesting and Preparing the Cactus:  
Cactus pads are harvested with care to protect the environment and ensure the plant's 

well-being [21]. The fine glochids (tiny thorns) are removed to create a smooth transition from 
raw plant material to leather [22], [23]. Next, the harvested pads are thoroughly washed to 
eliminate dirt and debris. They are then cut into pieces weighing 250-300 grams [24]. These 
pieces are blended with 150-200 milliliters of water to form a thick paste. The mixture is then 
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strained through a fine mesh or cheesecloth to separate the fibers and remove excess water, 
leaving behind a thick cactus pulp for further processing. Table 1 compares the composition, 
biodegradability, and toxic emissions of cactus leather, traditional animal leather, and synthetic 
PU leather. 

Table 1: Technical Comparison with PU Leather and Animal Leather 

Property Animal Leather PU Leather  Cactus Leather  

Tensile Strength 15–30 MPa  10–25 MPa  25 MPa  

Elasticity 50–100%  80–120%  95%  

Water Use (per m²) 17,000 liters 1,000 liters  200 liters  

CO₂ Emissions (per m²) 15–30 kg 15–20 kg 5 kg 

Environmental Impact High (pollutants) Medium (plastics)  Low (biodegradable) 

Preparing the Polyurethane Mix: 
To prepare the polyurethane mixture, 250–300 g of dehydrated cactus biomass is 

combined with 300–400 g of polyurethane, which acts as a binding agent to enhance flexibility, 
durability, and water resistance. Glycerin (20–30 ml) is added to improve flexibility and prevent 
cracking. If desired, plant-based dyes or colorants (2–10 g) can be included to achieve the desired 
color. 
Combining Cactus and Polyurethane: 

The cactus pulp is gradually blended into the polyurethane mixture using a spatula to 
ensure even mixing. Once the mixture reaches the proper consistency, zinc stearate (10–15 g) is 
added to improve heat stability. Glycerin serves as a plasticizer, enhancing flexibility, while UV 
stabilizers (HALS, 5–10 g) protect the material from fading. Antioxidants (5–10 g) prevent long-
term degradation. A crosslinking agent (isocyanates, 10–20 g) strengthens the bond between the 
cactus and polyurethane, and a thickening agent (silica, 10–15 g) helps achieve the desired 
viscosity. Together, these additives enhance the material’s strength, stability, and performance. 
Forming the Leather: 

The mixture is then poured onto a flat mold or a non-stick silicone mat. Using a spatula 
or a similar tool, it is spread evenly to a thickness of 1–3 mm. For a textured finish, a patterned 
mold can be pressed onto the surface before curing, adding both visual and functional details. 
Curing and Drying:  

The material should be left to air-dry in a well-ventilated space for 24–48 hours. The 
drying process can be optimized under different conditions. Air drying at 25°C takes 48 hours 
and uses minimal energy. Chamber drying at higher temperatures—40°C, 50°C, 60°C, and 
70°C—reduces the drying time to 8, 4, 3, and 2 hours, respectively, though energy consumption 
increases with temperature, ranging from 0.8 kWh at 40°C to 2.5 kWh at 70°C. Table 2 evaluates 
the mechanical performance of the three leather types in terms of tensile strength (durability), 
elasticity (flexibility), and abrasion resistance (wear durability over time). 

Table 2. Indicating a trade-off between drying speed and energy use 

Temperature (°C) Drying Time (hours) Energy Consumption (kWh) 

25 (Air Drying) 48 0 

40 8 0.8 

50 4 1.2 

60 3 1.8 

70 2 2.5 
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Figure 2. (a): Harvesting, cleaning, chopping, and preparing pulp (b): Mixing (c): Curing 

and drying (d): Leather sheets 
Final Touches 

After drying, a thin layer of polyurethane or natural sealant is applied to protect the 
surface from moisture and wear. The edges are then trimmed to the desired shape or size using 
scissors or a knife. 
Results: 
Testing of Mechanical Properties: 

The mechanical properties of the cactus-based vegan leather were systematically 
evaluated to assess the impact of different glycerin concentrations on performance. At an 
optimized glycerin content of 15%, the material demonstrated a tensile strength of 25 MPa. It 
also achieved a flexibility score of 9 on a standard scale of 1 to 10. Additionally, with an elasticity 
of 95%, the material exceeded the lower range of animal leather elasticity (50–100%). 
Table 3 highlights the water absorption and moisture retention properties of different leather 
types. Table 3 supports the claim that cactus leather offers an ideal balance between water 
resistance and breathability, making it suitable for fashion, footwear, and upholstery 
applications. 

Table 3. Mechanical properties of cactus leather at different glycerin concentrations 

Sr. # Glycerin (%) Tensile Strength (MPa) Flexibility (1-10) Elasticity (%) 

1 5% 12 6 80% 

2 10% 20 8 90% 

3 15% 25 9 95% 

The results underscore that the addition of glycerin as a plasticizer effectively enhances 
the tensile strength and elasticity of cactus-based leather, making it suitable for demanding 
applications. 
Flexibility and Stretch Tests: 
 The flexibility and resistance to stress-induced cracking were evaluated to assess the 
performance of cactus leather at different glycerin concentrations. At 15% glycerin, the material 
achieved a flexibility score of 9 and successfully passed the crack test, indicating its capacity to 
endure mechanical stress without structural failure. However, at lower glycerin levels, 
particularly 5%, the material failed the crack test, highlighting the critical role of adequate 
plasticizer content in achieving optimal flexibility and durability. Table 4 quantifies the 

environmental impact of different leather types in terms of carbon footprint (CO₂ emissions) 
and water usage per square meter of production. Figure 3 illustrates the direct correlation 
between glycerin concentration and material flexibility, revealing that an increase in glycerin 
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content improves flexibility and significantly reduces the risk of cracking under mechanical 
stress. 

Table 4. Flexibility scores and crack test results at varying glycerin concentrations 

 
Figure 3. Correlation Between Glycerin Concentration and Material Flexibility 

Efficiency of Drying and Curing: 
 The drying and curing process of cactus leather was evaluated to determine energy 
efficiency and production viability. When dried at a controlled temperature of 50°C, the process 
took 4 hours and used 1.2 kWh of energy. Increasing the temperature to 70°C reduced the drying 
time to 2 hours but raised energy consumption to 2.5 kWh. Table 5 compares the economic 
feasibility of cactus leather with animal leather and PU leather, based on production costs, 
processing time, and scalability for mass production. The cost of producing cactus leather ranges 
from $18 to $25 per square meter, making it cheaper than animal leather ($30–50/m²) but 
slightly pricier than PU leather ($10–20/m²). 

Table 5: Drying conditions and energy consumption for cactus leather 

Sr. No Temperature (°C) Drying Time (hours) Energy (kWh) 

1 25°C (Air dry) 48 0 

2 50°C (Chamber) 4 1.2 kWh 

3 70°C (Chamber) 2 2.5 kWh 

 

 
Figure 4. Impact of Drying temperature and drying time on energy consumption. 
The graph in Figure 4 clearly shows that increasing the drying temperature shortens the drying 
time but also increases energy consumption (0–2.5 kWh). 
 

Sr. No Glycerin (%) Flexibility Score Crack Test (Pass/Fail) 

1 5% 6 Fail (Cracked) 

2 10% 8 Pass 

3 15% 9 Pass 
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Cactus Leather for CO₂ Sequestration: 

 Cacti can sequester an average of 8 tons of CO₂ per hectare, which translates to about 

20 kg of CO₂ absorbed for every square meter of cactus leather produced. 
Resource Consumption: 
 Cactus leather production has an impressively low water footprint, requiring just 200 
liters of water per square meter. 
Discussions: 
 The cactus-based vegan leather developed in this study exhibited outstanding 
mechanical, processing, and environmental properties, making it a promising alternative to 
traditional animal and synthetic leathers. Its mechanical performance, especially at a 15% 
glycerin concentration, showed a tensile strength of 25 MPa, elasticity of 95%, and a flexibility 
score of 9 [25]. This tensile strength is comparable to that of high-quality animal leather (15–30 
MPa) and even surpasses the typical tensile strength range of PU leather (10–25 MPa) [26]. The 
high flexibility and fracture resistance observed at higher glycerin concentrations align with 
recent research on plant-based leather alternatives, which highlights the role of plasticizers in 
improving material flexibility and durability [27]. Additionally, the cactus leather showed 
excellent fracture resistance, passing crack tests at 15% glycerin concentration. This 
performance is on par with high-grade animal leather and exceeds PU leather, which tends to 
have lower crack resistance and may peel over time [27]. 

Table 6. Comparison between mechanical properties 

Property Animal Leather PU Leather Cactus Leather  

Tensile Strength 15–30 MPa [24] 10–25 MPa  25 MPa 

Elasticity 50–100% [24] 80–120%  95% 

Flexibility Score High (varies by grade) Medium to High 9 (1–10 scale) 

Crack Resistance High 
Moderate (can peel 
over time) 

High (Passes crack 
test at 15% glycerin) 

This study also assessed the effectiveness of drying and curing. Drying time was 
significantly reduced from 48 hours (air drying at 25°C) to just 2 hours using chamber drying at 
70°C, highlighting the potential for scalable production [28]. In contrast, traditional animal 
leather drying typically takes 6 to 24 hours at temperatures between 40 and 60°C, while PU 
leather often requires high-temperature curing, leading to substantial energy consumption. 
Under optimal conditions, cactus leather dried efficiently within 2 to 4 hours at 50–70°C, 
noticeably reducing processing time [29]. However, as with other bio-material processing 
methods, energy usage increased with higher temperatures. Despite this, cactus leather 
consumed considerably less energy—between 0.8 and 2.5 kWh per batch—compared to PU and 
animal leather production, which require much higher energy input [30]. Additionally, the cactus 
leather drying process proved to be environmentally friendly, producing minimal VOC 
emissions, unlike PU leather, which releases significant solvent-based emissions, or animal 
leather, which poses chromium- and solvent-related environmental risks [24]. 

Table 7. Drying time and energy consumption 

Process Animal Leather PU Leather Cactus Leather  

Drying Time 6–24 hrs at 40–60°C  Requires high-temp curing (varies) 2–4 hrs at 50–70°C 

Energy Use High (varies by process) High (includes VOC emissions) 
0.8–2.5 kWh per 
batch 

VOC 
Emissions 

Chromium & solvent 
risks 

Significant (PU solvents) 
Minimal (no VOCs 
during drying) 

 The environmental analysis of cactus leather production highlights its sustainability. 
Water usage for cactus leather was limited to just 200 liters per square meter—significantly lower 
than the 17,000 liters per square meter needed for animal leather production. Moreover, cactus 
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cultivation contributes to carbon sequestration, absorbing around 8 tons of CO₂ per hectare 

[31]. The life cycle carbon emissions for cactus leather were estimated at 5 kg of CO₂ per square 

meter, which is much lower compared to PU leather (15–20 kg CO₂ per square meter) and 

animal leather (up to 30 kg CO₂ per square meter) [32]. 
Table 8. Water consumption 

Product Animal Leather PU Leather Cactus Leather  

Water Use per m² 17,000 liters  1,000 liters  200 liters 

Water Source 
Intensive (livestock, 
tanning) 

Moderate 
(industrial) 

Low (rain-fed 
cactus crops) 

 In contrast to the high water demands of traditional animal leather, the use of drought-
tolerant cactus species supports sustainable agricultural practices, making it an eco-friendly 
option for regions with limited water resources [33]. 

Table 9. Carbon footprint (CO₂ Emissions) 

Product Animal Leather PU Leather Cactus Leather 

CO₂ Emissions per m² Up to 30 kg CO₂  15–20 kg CO₂  5 kg CO₂ 

Carbon Sequestration None None 
8 tons CO₂ per hectare 
cactus plantation  

 This natural carbon capture ability makes cactus leather an eco-friendly material that not 
only lowers greenhouse gas emissions but also actively supports carbon offsetting [31].  

Table 10: Biodegradability & Environmental Impact 

Aspect Animal Leather PU Leather Cactus Leather 

Biodegradability 
Low (chromium-
tanned leather resists 
decay) 

Very low (non-
biodegradable, 
microplastics) 

Moderate (plant-based, 
PU binder reduces it) 

Chemical Use 
Chromium, sulfides, 
formaldehyde [24] 

Isocyanates, 
plasticizers, solvents 

Minimal (PU binder, 
but lower than PU 
leather) 

End-of-Life 
Impact 

Toxic waste, landfill 
pollution 

Persistent plastic 
waste 

Lower impact, 
potential for 
improvement 

 Despite its numerous benefits, the current formulation of cactus leather has certain 
limitations, primarily due to the use of polyurethane (PU) as a binder, which reduces its overall 
biodegradability. Future research should aim to develop fully biodegradable binders to enhance 
the material’s environmental performance. Additionally, optimizing resource inputs and energy 
consumption will be crucial when scaling production for large-scale industrial applications. 
Long-term durability studies under various environmental conditions, such as UV exposure and 
fluctuating humidity, are also recommended to validate the material’s real-world performance. 
Conclusions: 
 Cactus-based vegan leather demonstrates outstanding mechanical properties, especially 
at a glycerin content of 15%, where it achieves a tensile strength of 25 MPa, a flexibility rating 
of 9, and an elasticity of 95%. Its excellent flexibility and crack resistance make it a viable 
alternative to traditional leather for high-performance applications. The production process is 
highly energy-efficient, requiring just 2 to 4 hours of drying under controlled conditions, and it 

offers considerable carbon sequestration benefits, capturing up to 8 tons of CO₂ per hectare. 
The resource-efficient production process, which minimizes water and energy usage while 
significantly reducing carbon emissions, highlights cactus leather's potential as a sustainable and 
ethical alternative to conventional and synthetic leather. Future efforts should focus on 
optimizing glycerin content and exploring alternative biodegradable plasticizers to further 
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enhance the material’s mechanical properties. Additionally, conducting long-term durability 
assessments and comprehensive lifecycle analyses will be essential to evaluating its performance 
over prolonged use. 
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og computing extends cloud computing services closer to users, improving efficiency and 
reducing latency. Smart contracts play a key role in authentication and resource access 
management within this framework. As the adoption of smart contracts in fog computing 

grows, ensuring their security has become a major challenge. This study enhances smart contract 
attack detection in fog computing using machine learning techniques. A dataset of 818 smart 
contracts was collected from “etherscan.io.” Feature extraction was performed using Word2Vec 
and BERT, while feature selection was done using the information gain method. The Random 
Forest (RF) and Extra Trees Classifier (ETC) achieved the highest accuracy of 0.91 with 
Word2Vec, while the LightGBM (LGBM) classifier attained 0.90 accuracy using BERT. 
These results demonstrate the effectiveness of machine learning models in improving smart 
contract security within fog computing environments. 
Keywords: Fog Computing; Smart Contract; Machine Learning; Security and Feature 
Extraction 
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Introduction: 
Cloud computing allows users to access computing resources such as servers, storage, 

software, databases, and applications over the internet instead of relying on local infrastructure. 
It operates on a pay-as-you-go model, enabling users to scale resources up or down as needed. 
IoT devices frequently use cloud resources, and their numbers are increasing daily [1]. While the 
growth of IoT has created many opportunities for cloud computing, it has also introduced 
challenges, including cost, data management, security, privacy, bandwidth limitations, network 
congestion, and latency issues. To address these challenges, Cisco introduced fog computing in 
2018 as a bridge between cloud computing and edge computing [2]. 

Fog computing is a distributed model that extends cloud computing to the network's 
edge, providing computing, storage, and networking services closer to end users and IoT devices 
[3]. As shown in Figure 1, it creates an intermediate layer between the cloud and edge computing. 
This fog layer offers computing and networking resources to edge devices, reducing latency 
compared to traditional cloud computing. Fog computing is essentially an extension of cloud 
computing [3] and helps mitigate several cloud-related issues. Additionally, blockchain 
technology [4] is integrated into the fog layer to enhance security and privacy. 

 
Figure 1. Architecture of fog computing. 

Blockchain ensures secure data sharing among fog nodes, IoT devices, and cloud 
providers while   requests, and verification. During user registration, the system assigns a pair of 
public and private keys, storing the public key within the blockchain. Resource registration lists 
available fog computing resources and the users who can access them. 

To authenticate, a user sends a request using a nonce (a unique identifier) and their public 
key. The smart contract then follows a challenge-response protocol, sending back the nonce as 
a challenge. The user signs it with their private key and returns it. The smart contract verifies the 
signature using the user's public key. If valid, access to fog computing resources is granted [8][9]. 
Since smart contracts operate independently of external networks, a security breach can affect 
organizations, miners, and even the entire blockchain network [5][10]. Therefore, researchers 
must focus on identifying attacks that could compromise smart contract security. In this study, 
machine learning is applied to detect attacks in smart contracts used for resource access in fog 
computing. 
Framework 
Registration Phase  
Figure 2 illustrates the user registration process required before accessing resources. 
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Figure 2. Registration Phase of User. 

User Registration:  
Users must register through a smart contract to access fog computing resources. Before 

creating an account, the blockchain-based smart contract verifies and confirms the registration 
details. 
Send Key Pair:  

After successful registration, the blockchain generates a cryptographic key pair (public 
and private keys) for secure authentication. The public key is stored on the blockchain, while 
the private key is securely sent to the user [11]. 
Resource Access Granting Phase  

Figure 3 illustrates the resource access granting phase, which enables users to access the 
resources of the fog node. 

 
Figure 3. Resource Access Granting Phase. 

Store Lease Contract:  
In this step, the fog node submits its lease contract to the blockchain, defining the terms 

and conditions for resource access. This ensures secure and transparent resource allocation [11], 
[12]. 
Request Access Resources:  

A registered user requests access to the fog node's resources. The smart contract verifies 
the request by matching the user's public key with the registered keys [12] and ensuring 
compliance with access policies. 
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Contract Execution and Send “Access key”:  
At this stage, after verification, the smart contract retrieves the access contract and 

securely sends the access key to the user [12]. 
Access resource via “Access Key”:  

After receiving the access key, the user can access the fog node's resources. 
User’s Verification:  

The fog node verifies the user's identity by matching it with the blockchain ledger [12]. 
Grants Access to Resources:  

After successful verification, access is granted, and a blockchain-based transaction 
system manages payments for the utilized resources [12]. 
Unlike previous research, which primarily focused on identifying smart contract vulnerabilities 
using conventional feature extraction techniques, this study introduces an improved approach 
by combining Word2Vec and BERT for opcode-based feature extraction. This method 
enhances the accuracy and efficiency of attack detection in fog computing smart contracts used 
for resource access and registration. Additionally, the paper evaluates various machine learning 
classifiers, demonstrating that Random Forest, Extra Trees Classifier, and LightGBM 
significantly improve security. Compared to previous studies, the proposed framework offers a 
more reliable, scalable, and precise attack detection technique. 
The paper is organized as follows: 

• Section II reviews related literature on fog computing, blockchain integration, and 
smart contract security. 

• Section III outlines the research methodology, including data collection, feature 
extraction, and model selection. 

• Section IV presents the experimental results and analysis. 
• Section V concludes the study and discusses future research directions. 

Objectives: 
The objectives of this research are: 

• To analyze attacks on smart contracts used in fog computing for resource access. 
• To identify the most effective machine learning algorithms for detecting and preventing 

these threats. 
• To evaluate the performance of machine learning models using F1 score, accuracy, 

precision, and recall. 
• To improve smart contract attack detection by applying opcode-based feature extraction 

and selection techniques. 
Literature Review: 

Fog computing extends cloud computing but also inherits some of its challenges. Due 
to its proximity to IoT devices, it faces several security and privacy issues. Researchers have 
explored various solutions, including authorization, access control, and authentication, to ensure 
secure data transmission in fog computing. In [10], the author introduced a deep learning-based 
detection method to classify smart contracts as either malicious or safe. Techniques such as 
Long Short-Term Memory (LSTM), Gated Recurrent Units (GRU), and Artificial Neural 
Networks (ANN) were used for classification. The author utilized the BigQuery dataset for 
binary classification, achieving a maximum accuracy of 99.03%. Additionally, the Receiver 
Operating Characteristic (ROC) curve was provided to compare the performance of these 
models. 

In [13], the author proposed a system for user registration and authentication in fog 
computing. This system uses smart contracts for registration and securely stores user 
information in a ledger. Compared to existing systems, it reduces registration and authentication 
costs. Additionally, it supports multiple user accounts and compares their costs, also known as 
gas values. In [6], the author analyzes 49,502 real-time smart contracts for various vulnerabilities, 
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including Callstack, integer overflow, timestamp, Time of Day (TOD), and re-entrancy, 
achieving a high accuracy rate of 99%. The research converts contract code into bytecode and 
opcodes. Then, n-gram features are extracted from the opcodes, and machine learning 
algorithms such as XGBoost, K-Nearest Neighbors (KNN), and Support Vector Machine 
(SVM) are applied. This approach enhances the speed and accuracy of vulnerability detection. 

In [14], the author introduces a framework for identifying and classifying vulnerabilities 
in smart contracts, such as excessive gas consumption, unfixed compiler versions, implicit 
visibility levels, inappropriate use of pure functions, unchecked low-level calls, and frozen ether. 
These vulnerabilities are detected using publicly available datasets, including AutoMESC, which 
reports a 5.2% occurrence of high-severity vulnerabilities and suggests solutions for addressing 
them. In [12], the author explains how blockchain technology is used to manage resource access. 
Smart contracts facilitate this process by eliminating third-party dependencies within the 
network. These contracts are self-executing lines of code created by organizations, institutions, 
or other entities. In resource access scenarios, both buyers and sellers rely on smart contracts to 
define terms and conditions. If any condition is violated, the contract becomes invalid or is 
terminated. 

In [15], the author identifies multiple vulnerabilities in smart contracts, including 
timestamp issues, re-entrancy, Time of Day (TOD) attacks, integer underflow, and overflow. 
Using the Bi-LSTM model, the author achieves an accuracy of 88.12%. A total of 5,450 smart 
contracts were collected from the Etherscan website to detect these vulnerabilities. First, the 
contract code is converted into opcodes, then a feature matrix is generated, and Bi-LSTM is 
applied for analysis. In [16], the author classifies smart contracts as normal or abnormal using 
an ensemble model. A dataset of 1,904 smart contracts was gathered from the Etherscan website. 
Features were extracted from the source code using TF-IDF, while opcode features were derived 
using the n-gram technique. Applying the ensemble model, the author achieved an accuracy of 
89.67%. 

In [17], the author analyzed 5,735 smart contracts, generating semantic trees based on 
their code and utilizing Graph Neural Networks (GNN) and Graph Matching Networks. The 
model achieved a 92.63% accuracy in detecting block info dependency vulnerabilities. Other 
vulnerabilities identified include re-entrancy, block info dependency, timestamp dependency, 
and TX.Origin issues. In [18], the author detects DDoS attacks in smart contracts using an IoT-
based dataset [19]. The BotIoT dataset was used for this purpose. Features extracted from IoT 
sensors were stored in fog nodes before being transferred to the blockchain via smart contracts. 
Different classifiers, including Random Forest, Decision Tree, and Support Vector Machine, 
were applied, achieving an accuracy of 99.9%. 

In [15], the author enhances smart contract security through machine learning. A total 
of 835 smart contracts were analyzed, with 455 classified as safe and 380 as malicious. A binary 
classification approach was used. The contract source code was first converted into opcodes, 
and a feature matrix was created. Various machine learning models, including KNN, Random 
Forest (RF), Decision Tree (DT), Logistic Regression (LR), Support Vector Machine (SVM), 
and Naïve Bayes (NB), were applied. The RF classifier achieved the highest accuracy at 85%. 

In [20], the author presents a comprehensive approach to detecting vulnerabilities in 
smart contracts using machine learning, automated auditing tools, and reduced manual effort 
and execution time. The proposed model outperformed traditional methods, achieving an 
effectiveness rate of 80%. In [15], the author applies a machine-learning approach to detect 
abnormal smart contracts. A total of 835 smart contracts were collected from the Etherscan 
website, with 455 classified as normal and 380 as abnormal. Among the abnormal contracts, 327 
were identified as scams, while 53 were found to be vulnerable. The dataset was preprocessed 
before applying various machine learning models for evaluation. The Random Forest (RF) 
model achieved an accuracy of 0.85, Logistic Regression (LR) reached 0.81, while K-Nearest 
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Neighbors (KNN) and Decision Trees (DT) scored 0.77. The Support Vector Machine (SVM) 
and Naïve Bayes (NB) models obtained accuracy results of 0.75 and 0.71, respectively. In [21], 
the author focuses on identifying Ponzi schemes, a type of fraud that lures new investors with 
false promises of high returns. A dataset of 3,786 smart contracts was sourced from the Kaggle 
website, containing four key features: address, opcode, label, and creator. After preprocessing 
the dataset and extracting relevant features, the author evaluated hybrid classifiers. By combining 
the strengths of XGBoost and GRU models, the study achieved an impressive accuracy of 
96.8%. 

The following are the research questions: 
• How can machine learning be applied to detect attacks on smart contracts used for 

registration and resource access in fog computing environments? 
• What methods can be used to protect smart contracts from attackers in a fog computing 

environment? 
• How can opcode analysis serve as an efficient and effective feature extraction technique 

for detecting attacks in smart contracts? 
• Which algorithms and models are best suited for detecting attacks on smart contracts 

used for registration and resource access in fog computing environments? 
Material and Methods 

This research focuses on attack detection using machine learning with a three-labeled 
dataset. The methodology is illustrated in Figure 4. 

 
Figure 4. Proposed Methodology 

Dataset:  
In this research, 818 smart contracts were collected from Ethereum's official website, 

“etherscan.io,” along with their Solidity code, bytecode, and opcode. The dataset is categorized 
into three labels: Ponzi (using Forta [22]), Phish-hack [9], and Gambling [23]. It includes 300 
smart contracts under the Phish-hack label, 298 under Ponzi, and 220 under Gambling. 

Table 1. Composition of Dataset 

Label Number of Smart Contract Source 

Ponzi 298 Forta [22] 

Phish-hack 300 [9] 
Gambling 220 [23] 
Total 818 Etherscan.io 

Data Preparation:  
The opcode of a smart contract contains various hexadecimal values, starting with '0x'. 

These values are replaced with their corresponding mnemonic representations using [15]. Next, 
null records are verified, and the labels are encoded as follows: Ponzi ('0'), Phish-hack ('1'), and 
Gambling ('2'). 
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Feature Extraction: 
This research utilizes Word2Vec and BERT techniques to extract features from the 

opcode of smart contracts. 
Feature Selection: 

In this research, the information gain technique is used for feature selection, extracting 
features with a threshold above 0.03. 
Classifiers:  

Various machine learning classifiers are used, including Logistic Regression (LR), 
Decision Tree (DT), Random Forest (RF), K-Nearest Neighbors (KNN), Gradient Boost (GB), 
Bagging Classifier (BC), Naïve Bayes (NB), Extra Trees Classifier (ETC), Light Gradient Boost 
Machine (LGBM), and Extreme Gradient Boost (XGB). 
Result and Discussions: 

Various techniques can be used for feature extraction; however, this research employs 
two methods: Word2Vec and BERT. The results of both are discussed below. 
Word2Vec Technique:  

In this research, the Word2Vec technique is applied for feature extraction, with the 
results presented in Table 1. 

Table 2. Results Using the Word2Vec Technique 

Algorithm Accuracy Precision Recall F1-Score CV Accuracy Execution 
Time(s) 

LR 0.84 0.85 0.84 0.84 0.79 1.67 
DT 0.80 0.80 0.80 0.80 0.82 0.09 
RF 0.91 0.92 0.91 0.91 0.88 8.78 
KNN 0.88 0.91 0.88 0.89 0.85 0.02 
GB 0.87 0.88 0.87 0.87 0.87 114.90 
BC 0.86 0.87 0.86 0.86 0.86 0.29 
NB 0.65 0.67 0.65 0.65 0.69 0.01 
ETC 0.91 0.92 0.91 0.91 0.88 2.17 
LGBM 0.87 0.87 0.87 0.87 0.87 3.21 
XGB 0.85 0.85 0.85 0.85 0.87 7.00 

The RF and ETC classifiers delivered the best performance with execution times of 8s 
and 2s, respectively. The NB classifier achieved an accuracy score of 0.88, while the GB and 
LGBM classifiers both attained 0.87 accuracy. The BC classifier followed with an accuracy of 
0.86, and the XGB classifier reached 0.85 accuracy. The DT and NB classifiers produced lower 
results, with accuracy scores of 0.80 and 0.65, respectively. Figure 5 illustrates the comparison 
of all models based on Accuracy, Precision, Recall, and F1-score. According to this figure, the 
RF and ETC classifiers demonstrated the best performance. 
BERT Technique:  

In this research, the BERT technique is also used for feature extraction, and its results 
are presented in Table 2. The LGBM classifier achieved the highest accuracy score of 0.90 with 
an execution time of 24s. The GB, BC, and ETC classifiers followed closely, each attaining an 
accuracy of 0.88. The XGB classifier achieved an accuracy of 0.87, while the DT and RF 
classifiers both reached 0.85. The KNN and LR classifiers obtained accuracy scores of 0.84 and 
0.79, respectively. The NB classifier recorded the lowest accuracy, scoring 0.66. 

Figure 6 presents a comparison of all models based on Accuracy, Precision, Recall, and 
F1-score. According to this figure, the LGBM classifier delivers the best performance. 
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Figure 5. ML algorithms result using the Word2Vec technique. 

Table 3. Results Using the Bert Technique 

Algorithm Accuracy Precision Recall F1-Score CV 
Accuracy 

Execution 
Time(s) 

LR 0.79 0.80 0.79 0.78 0.80 3.41 
DT 0.85 0.86 0.85 0.85 0.83 0.52 
RF 0.85 0.85 0.85 0.85 0.89 17.54 
KNN 0.84 0.88 0.84 0.84 0.86 0.03 
GB 0.88 0.88 0.88 0.88 0.87 744.09 
BC 0.88 0.89 0.88 0.88 0.86 1.33 
NB 0.66 0.68 0.66 0.63 0.70 0.03 
ETC 0.88 0.89 0.88 0.88 0.90 10.47 
LGBM 0.90 0.91 0.90 0.90 0.89 24.08 
XGB 0.87 0.87 0.87 0.87 0.89 46.78 

 
Figure 6. ML algorithms results using the BERT technique. 
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Fog computing faces several challenges in user registration and resource access, 
including resource management, security, and privacy concerns within the fog layer. Although 
smart contracts are used to manage these processes, they remain vulnerable to various attacks. 
This research enhances security by integrating machine learning for attack detection in smart 
contracts. Using the Word2Vec feature extraction technique, the Random Forest (RF) and Extra 
Trees Classifier (ETC) achieved an accuracy of 0.91. Meanwhile, the LightGBM (LGBM) 
classifier delivered the best performance with an accuracy of 0.90 using the BERT technique. 
These results highlight the effectiveness of combining machine learning with smart contracts to 
improve security, scalability, and real-time attack detection. The proposed methodology is highly 
scalable, enabling it to handle larger systems and diverse datasets, making it ideal for expanding 
fog computing networks. 
Discussion: 

The findings of this study demonstrate that machine learning-based security analysis 
using Word2Vec and BERT for opcode feature extraction significantly enhances smart contract 
vulnerability detection in fog computing environments. The results show that Random Forest 
(RF) and Extra Trees Classifier (ETC) achieved the highest accuracy (91%) with Word2Vec, 
while LightGBM (LGBM) performed best with BERT (90%). This highlights the importance of 
feature representation in improving attack detection. Compared to traditional methods using n-
grams or TF-IDF for feature extraction, the proposed model achieves higher classification 
accuracy and fewer false positives, making it more effective for large-scale smart contract 
security monitoring. One key observation is the varying performance of different classifiers in 
detecting Ponzi schemes, phishing attacks, and gambling-related vulnerabilities. While ensemble 
models like RF and ETC demonstrated high accuracy and stability, models such as XGBoost 
and SVM had lower detection rates for specific attack types, indicating that classifier selection 
plays a crucial role in optimizing smart contract security. BERT-based feature extraction 
improved the contextual understanding of opcode sequences, making it easier to identify 
malicious patterns. However, the study did not analyze per-class accuracy, precision, or recall, 
which could provide deeper insights into each classifier’s strengths and weaknesses in detecting 
different attack types. 

Despite promising results, the study focuses solely on opcode-based detection, which, 
while effective, does not analyze code-level vulnerabilities. Issues such as reentrancy, unchecked 
external calls, and integer overflow in Solidity-based smart contracts cannot always be identified 
through opcode analysis alone. Existing research suggests that integrating opcode-based 
classification with static analysis tools (e.g., Slither, Mythril) could enhance security by detecting 
both pattern-based and logic-based vulnerabilities. Future research should explore hybrid 
detection models that combine opcode and code-level analysis to create a more comprehensive 
security framework. 

Another limitation is the model’s robustness against adversarial attacks. Machine 
learning-based security systems are susceptible to adversarial opcode perturbations, where small 
changes in opcode sequences can mislead classifiers into wrongly identifying malicious contracts 
as benign. To address this, future work should consider adversarial training techniques or 
anomaly detection methods to improve resilience against evasion attacks. Additionally, model 
explainability remains a challenge—techniques such as SHAP or LIME could be used to analyze 
feature importance and identify opcode sequences that contribute most to classification 
decisions, increasing trust in the system. 

Lastly, the study does not evaluate computational efficiency in real-world fog computing 
environments. While the proposed model achieves high accuracy, practical deployment requires 
assessing memory usage, processing latency, and scalability for real-time attack detection. Given 
the resource constraints of fog computing nodes, lightweight models or edge-optimized ML 
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architectures should be considered to ensure efficient, low-latency security monitoring in 
decentralized networks. 

Table 4. Comparison with Existing studies 

Reference Vulnerabilities Addressed 
Techniques 
Used 

Key Contributions 

[24] 
Arbitrary memory access, integer 
underflow/overflow, transaction 
dependency 

BERT-ATT-
BiLSTM (pre-
trained language 
model) 

Enhances accuracy across 
multiple datasets, 
outperforming earlier 
methods that struggle with 
diverse contract designs. 

[25] 

Transaction dependency, arbitrary 
memory access, block dependency, 
assertion failure, integer 
underflow, ether block, integer 
overflow 

LSTM, Support 
Vector Machine 
(SVM) 

Effectively detects 
vulnerabilities in smart 
contracts. 

[20] Complex vulnerabilities 
Conventional 
techniques 

Improves blockchain 
application reliability and 
enables rapid vulnerability 
identification. 

[26] Ponzi and non-Ponzi attacks Random Forest 
Uses binary-labeled data for 
detecting smart contract 
attacks. 

[27] Ponzi and non-Ponzi attacks 
AdaBoost 
Classifier 

Detects fraudulent 
contracts to enhance smart 
contract security. 

[28] 

Integer overflow, timestamp, 
integer underflow, reentrancy, call 
stack depth, transaction order 
dependency (TOD) 

Naïve Bayes 

Speeds up weak contract 
identification, addressing 
challenges in analyzing 
large-scale smart contracts. 

 
Our 

 
Ponzi, Phish Hack, Gambling,  

LR, DT, RF, XGB, 
ETC, GB, KNN, 
NB, BC, and 
LGBM. 

Detect the different attacks 
of smart contracts using the 
machine learning classifiers 

Conclusion:  
Integrating machine learning with smart contracts can significantly enhance attack 

detection and prevention in fog computing systems. This integration strengthens security, 
reducing the risk of data breaches and other threats. Machine learning algorithms, trained on 
large datasets, can identify behavioral patterns and detect anomalies. This research utilized a 
binary-labeled dataset to detect attacks in smart contracts. The Word2Vec and BERT techniques 
were applied for opcode feature extraction, followed by the implementation of various machine 
learning classifiers. The results show that Random Forest (RF) and Extra Trees Classifier (ETC) 
achieved the highest accuracy (0.91) using Word2Vec, while LightGBM (LGBM) reached 0.90 
accuracy with BERT. Other classifiers also performed well in attack detection. This approach 
helps mitigate attacks, minimizing data loss and system downtime. Future research could explore 
hybrid techniques to further improve detection accuracy and address emerging security 
challenges in smart contracts within fog computing environments. 
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nergy crises and environmental pollution are the main issues of concern all over the world 
and the disposal of wastes by converting into gaseous products can reduce this to a level. 
Investigating how operating temperature affects the yield and makeup of bio-oil, bio-

char, and bio-gas during the pyrolysis process in the presence of hydrogen is the goal of this 
study.  By offering a novel method for enhancing the quality and yield of gaseous products 
through controlled thermal decomposition in a hydrogen-enriched environment, the findings 
improve sustainable technologies. In this research, the fast pyrolysis of food waste carried out by 
using a lab scale fixed bed reactor in the presence of different composition of Nitrogen and 
Hydrogen to investigate the effect of operating parameters high pyrolysis temperature 600, 650, 700, 
750 and 800 °C and hydrogen gas 0 %, 10 % and 20 % with Nitrogen as a carrier gas. The gaseous 
products maximum yield i.e. 45.68 comes out at 750 °C temperature in the presence of 10 % 
hydrogen. The results indicate that increasing the pyrolysis temperature boosts decomposition 
reactions, encouraging the formation of gaseous products. Hydrogen plays a crucial role by 
facilitating cracking and stabilizing the reaction intermediates, minimizing the formation of 
heavier components. The results demonstrate that the fast pyrolysis of food waste give residue at 
high temperature and in the presence of hydrogen up to 10 % achieved a maximum the bio gas yield. 
Energy crises and environmental pollution are major global concerns. Converting waste into 
gaseous products can help address these issues. This study examines how operating temperature 
influences the yield and composition of bio-oil, bio-char, and bio-gas during pyrolysis in a 
hydrogen-rich environment. By introducing a novel approach to enhance the quality and yield 
of gaseous products through controlled thermal decomposition, the findings contribute to 
sustainable technologies. The research involves fast pyrolysis of food waste using a lab-scale 
fixed-bed reactor, with varying nitrogen and hydrogen compositions. The effects of different 
operating parameters were analyzed, including high pyrolysis temperatures (600, 650, 700, 750, 
and 800 °C) and hydrogen concentrations (0%, 10%, and 20%), with nitrogen as the carrier gas. 
The highest gas yield (45.68%) was achieved at 750 °C in the presence of 10% hydrogen. The 
results show that increasing pyrolysis temperature enhances decomposition reactions, leading to 
higher gas production. Hydrogen plays a key role by promoting cracking reactions and stabilizing 
reaction intermediates, reducing the formation of heavier byproducts. The study demonstrates 
that fast pyrolysis of food waste at high temperatures, with up to 10% hydrogen, results in the 
highest bio-gas yield. 
Keywords: Food Waste, Fast Pyrolysis, Hydrogen, Gaseous Products, Yield. 
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Introduction:  
The major issue of food waste has become a worldwide problem due to its 

environmental concerns, social implications and economic issues. According to the Food 
and Agriculture Organization (FAO) it has been observed that around one by third of all 
produced food from consumption of humans, annually amount of wastage is approximately 
1.3 billion tons. This significant amount of wastage is not only showing a substantial loss of 
resources like energy, food land, and sea water, but it can cause various dangerous environmental 
problems by contributing in it [1]. Food waste is compositionally unique, containing higher 
organic compounds like carbohydrates and proteins to produce gaseous products by fast 
pyrolysis in the presence of hydrogen to prevent waste management and promote renewable 
energy. By addressing all these issues, it has been very developing interest in reconnoitering 
the such management plans for sustainable wastage of all organic things, that it should be 
converted the all waste of food into valuable products, consequently it can promote a 
globular economy and can reduced the environmental issues [2].  

One of the fastest approaches of this fact is the conversion of food waste 
thermochemical through fast pyrolysis, but particularly with main focus on maximizing the 
production of biogas by it. Pyrolysis is a thermochemical process which involves the thermal 
decomposition of organic materials at high temperatures in the absence of oxygen [3]. The 
results of this process is in the production of many products such as bio-oil, bio char, and 
gaseous products. The large dependency of products distributions is on the operating 
conditions. Among the various types of pyrolysis, the fast pyrolysis is distinguished from all 
its various types due to its rapid reaction rates and short time of vapor residence. So 
ultimately it optimized to enhance the yield of liquid bio-oil [4]. However, in recent years, 
the demand of biogas is increase day by day, so it has been interesting in increment the 
production of gaseous products, which is the huge source renewable energy [5]. Therefore, 
to optimize the operating parameters of fast pyrolysis to enhance the production of biogas 
is the basic factor of research, by utilizing food waste as a feedstock. To obtain the efficiency 
of the pyrolysis process and the yield of required products, such as gaseous products, are 
significantly partial by different operating parameters, such as operating temperature, 
composition of feedstock, and the existence of reactive gases [6]. The top rich factor is 
temperature, which is known to play a critical role in the pyrolysis reaction process, so it can 
cause a huge affecting aspect in the distribution of bio-char, bio-oil, and gaseous products 
[7]. It has been studying that higher pyrolysis temperatures generally favor to the formation 
of bio-oil and gaseous products, while lower temperatures cause the higher rate the 
production of bio-char. 

But the bio-oil production yield decreases after increasing the temperature than that 
optimum temperature. For example, at temperatures between 600 °C and 800 °C, the gas 
production rate is increased in higher peak, by enhance the yields of methane and other 
hydrocarbons. For fast pyrolysis of wastage of food, the temperature range is particularly 
relevant with it. It allows the thermal cracking of complex organic compounds, to the release 
of volatile gases such as biogas as compared to other products. During pyrolysis process, the 
temperature rises and the introduction of hydrogen, it has been examined to better the quality 
and yield of the making products. By hydrogen adding during pyrolysis process, hydrogen-
involved or hydro pyrolysis, can improve the making of gaseous products by promotes the 
hydrogenation and cracking reactions [8]. The involvement of hydrogen is introduced to 
provide the large molecular structures, thereby the making of lighter hydrocarbons and 
biogas products. Moreover, by the addition of hydrogen in the elimination of oxygen from 
the organic compounds that involves in food waste, leads to result in rising the calorific value 
of gaseous components.  

Except the potential benefits of hydrogen- assisted pyrolysis, there is a minimum research 
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on food waste application, specifically with biogas making products. The advanced study of this 
system that involves effective combination of temperature and the concentration of hydrogen 
on the food pyrolysis waste, with a main focus on the yield of biogas. The experimental process 
that includes how to conduct pyrolysis reactions at different temperatures and hydrogen 
concentrations. So, this experiment involves the conducting pyrolysis reactions at various 
temperatures (600 °C, 650 °C, 700 °C, 750 °C and 800 °C) and by using different hydrogen 
volume concentrations (0 %, 10 %, and 20 %). By finding these key parameters, the study 
focused on find the impact on pyrolysis products distribution especially with the gaseous 
products formation. The method of incrementally rising the hydrogen concentration gives a 
deep knowledge of how hydrogen affects the reactions of pyrolysis, especially in improving 
the yield of methane and other combustible gases [6]. Studies and research on pyrolysis has 
mainly focused on production of biomass, such as wood and wastage of agricultural residues, 
and significantly different in composition from food waste. Food waste is produced by a 
higher moisture content with using complex ingredients such as carbohydrates, fats, proteins, 
and various inorganic compounds [9].  

The differences between composition results to form in separate behaviors of thermal 
degradation, for enhance the required approach to improve the pyrolysis process for food 
waste. To remove of all diverse compounds, the adding of hydrogen during the process of 
pyrolysis having the influence effect, which can cause potentially prominent to enhance the 
yields of respected gaseous products. For example, it has been observed that the assisted based 
hydrogen pyrolysis could be meaningfully enhance the yield of methane by breaking down the 
bonds of C–O and C–C [10]. Consequently, it established that the presence of hydrogen can 
change the product circulation of hydrocarbons, to enlightening the overall energy of the 
pyrolysis gases by pyrolysis process.  

The motivation for this study is boosted to develop efficient energy from waste by 
using various technologies that can convert food waste into renewable energy sources, and 
improve the environment. To increase biogas production, it is optimizing the fast pyrolysis 
process. This research aims to eliminate the environmental impacts of food waste removal, so 
we can use some solutions including development of sustainable energy and reduce 
dependence on fossil fuels [11]. The results of this study have significant applications for the 
proposal of pyrolysis systems, particularly by adding the hydrogen-based processes, which are 
gaining more attention to upgrade the quality of pyrolysis process. Moreover, by 
understanding the higher effects of temperature and hydrogen concentration on food waste 
pyrolysis which are providing valuable impacts for enhance the technology and mixing it into 
current waste systems [12]. This study not only increase the impact of different temperatures 
and hydrogen concentrations on the pyrolysis of food waste, but it also has main focus on 
production of biogas as the main valuable and interesting product. The experimental results 
having main focus to demonstrate the increment of thermal decomposition of food waste by 
using hydrogen in the process to obtain the higher yield of gaseous product as methane-rich 
product [13]. To increase the circular economy and to promote sustainable waste management, 
some focused practices and efforts are required to fulfil this target by converted the waste 
materials into valuable products. By understanding of these operating parameters that can 
cause the biogas production from food waste, so this research could the main approach for 
the development of optimized pyrolysis process system for producing clean and renewable 
energy from organic waste compounds [14]. 

The issue of food waste has become a global concern due to its environmental, social, 
and economic implications. According to the Food and Agriculture Organization (FAO), 
approximately one-third of all food produced for human consumption is wasted annually, 
amounting to around 1.3 billion tons. This significant wastage not only results in a substantial 
loss of resources such as energy, land, and water but also contributes to various environmental 
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problems [1]. Food waste is compositionally unique, containing high amounts of organic 
compounds like carbohydrates and proteins. These compounds can be converted into gaseous 
products through fast pyrolysis in the presence of hydrogen, providing an effective solution 
for waste management and renewable energy production. Addressing these issues has sparked 
growing interest in sustainable waste management strategies, particularly in converting food 
waste into valuable products. This approach promotes a circular economy and reduces 
environmental impact [2]. 

One of the most efficient methods for converting food waste is thermochemical 
conversion through fast pyrolysis, with a primary focus on maximizing biogas production. 
Pyrolysis is a thermochemical process that decomposes organic materials at high temperatures 
in the absence of oxygen [3]. This process yields bio-oil, biochar, and gaseous products, with 
product distribution largely dependent on operating conditions. Among different pyrolysis 
techniques, fast pyrolysis is particularly notable for its rapid reaction rates and short vapor 
residence times, optimizing the yield of liquid bio-oil [4]. However, in recent years, the demand 
for biogas has increased significantly, leading to a growing interest in enhancing the production 
of gaseous products, a major source of renewable energy [5]. Thus, optimizing the operating 
parameters of fast pyrolysis to enhance biogas production is a key research focus, utilizing 
food waste as feedstock. The efficiency of the pyrolysis process and the yield of gaseous 
products are significantly influenced by parameters such as operating temperature, feedstock 
composition, and the presence of reactive gases [6]. 

Temperature plays a critical role in pyrolysis, significantly affecting the distribution of 
biochar, bio-oil, and gaseous products [7]. Studies have shown that higher pyrolysis 
temperatures generally favor the formation of bio-oil and gaseous products, while lower 
temperatures lead to increased biochar production. However, beyond an optimal temperature, 
bio-oil yields tend to decrease. For instance, at temperatures between 600°C and 800°C, gas 
production peaks, enhancing yields of methane and other hydrocarbons. In food waste 
pyrolysis, this temperature range facilitates the thermal cracking of complex organic 
compounds, leading to the release of volatile gases such as biogas [8]. Introducing hydrogen 
during pyrolysis has been examined as a method to improve product quality and yield. 
Hydrogen-assisted pyrolysis, or hydro-pyrolysis, enhances gaseous product formation by 
promoting hydrogenation and cracking reactions [9]. The addition of hydrogen facilitates the 
breakdown of large molecular structures, increasing the production of lighter hydrocarbons 
and biogas. Furthermore, hydrogen helps remove oxygen from organic compounds in food 
waste, increasing the calorific value of the gaseous components. Despite the potential benefits 
of hydrogen-assisted pyrolysis, limited research has been conducted on its application to food 
waste, particularly in biogas production [10]. 

This study aims to explore the effects of temperature and hydrogen concentration on 
food waste pyrolysis, focusing on biogas yield optimization. The experimental process involves 
conducting pyrolysis reactions at different temperatures (600°C, 650°C, 700°C, 750°C, and 
800°C) using varying hydrogen concentrations (0%, 10%, and 20%). By analyzing these key 
parameters, the study investigates their impact on product distribution, particularly gaseous 
products. Incrementally increasing hydrogen concentration provides insight into how 
hydrogen affects pyrolysis reactions, particularly in enhancing methane and other combustible 
gas yields [11]. Most previous studies on pyrolysis have focused on biomass sources such as 
wood and agricultural residues, which differ significantly in composition from food waste. 
Food waste typically has higher moisture content and complex components, including 
carbohydrates, fats, proteins, and inorganic compounds [12]. These compositional differences 
lead to distinct thermal degradation behaviors, necessitating an optimized approach for food 
waste pyrolysis. The addition of hydrogen during pyrolysis has a notable influence, potentially 
improving the yield of desired gaseous products. For example, hydrogen-assisted pyrolysis has 



                             International Journal of Innovations in Science & Technology 

March 2025|Special Issue UOG                                                                         Page |95 

been shown to enhance methane yield by breaking C–O and C–C bonds [13]. 
The motivation for this study is to develop efficient waste-to-energy technologies, 

converting food waste into renewable energy sources while reducing environmental impact. 
Optimizing the fast pyrolysis process for increased biogas production contributes to 
sustainable waste management, reducing dependence on fossil fuels. The findings of this study 
have significant implications for designing advanced pyrolysis systems, particularly those 
incorporating hydrogen-assisted processes to enhance biogas production. Additionally, 
understanding the effects of temperature and hydrogen concentration on food waste pyrolysis 
provides valuable insights for improving pyrolysis technology and integrating it into existing 
waste management systems [14]. This research not only examines the impact of different 
temperatures and hydrogen concentrations on food waste pyrolysis but also focuses on biogas 
production as the primary valuable output. The experimental results demonstrate the 
enhanced thermal decomposition of food waste through hydrogen addition, leading to higher 
methane yields. To promote a circular economy and sustainable waste management, further 
research and practical applications are required to convert waste materials into valuable 
products. Understanding these operating parameters can help optimize pyrolysis systems for 
producing clean and renewable energy from organic waste [15]. 
Objectives of the Study: 

The study aims to contribute to sustainable waste management by converting food 
waste into valuable energy-dense gaseous products. The specific objectives are as follows: 
This study aims to support sustainable waste management by transforming food waste into 
valuable, energy-rich gaseous products. The specific objectives are as follows 

• To analyze the impact of pyrolysis temperature (600–800°C) on the yield and 
composition of bio-oil, bio-char, and biogas. 

• To evaluate the role of hydrogen in enhancing biogas production and improving gas 

composition, particularly CH₄ and H₂ content. 

• To compare the product distribution of hydrogen-assisted pyrolysis with conventional 
nitrogen-assisted pyrolysis. 

• To study how pyrolysis temperature (600–800 °C) effects the yield % biogas. 

• To assess the role of hydrogen in increasing biogas production and improving its 

composition, especially CH₄ and H₂ levels. 
To provide insights into the reaction mechanisms involved in hydrogen-assisted 

pyrolysis, including hydrocracking and gasification pathways. To explain the reaction 
mechanisms in hydrogen-assisted pyrolysis, including hydrocracking and gasification 
pathways. 
Material and Methods: 
Collection and preparation of feed stock: 

The food waste samples obtained from the cafeteria of University of Gujrat, main 
campus for experimentation. Our food waste samples consist of mainly fruits and vegetables peel 
(potatoes, mango and banana). The food waste was physically sorted after it was collected in 
order to eliminate any non-organic pollutants like paper or plastic. After that, it was carefully 
cleaned with distilled water to get rid of any remaining debris. In order to maximize the surface 
area for effective drying, the bigger pieces were manually broken into tiny fragments using a 
stainless- steel cutter after washing. After being equally distributed on stainless steel trays, these 
pieces were allowed to cure for around 10 days in the open air. 

The natural loss of moisture throughout the drying process decreased the feedstock's 
total water content. The samples were periodically turned over during this time to guarantee 
even drying and stop microbiological development. Once the drying process was complete, 
the samples were further processed to achieve a uniform particle size. They were ground using 
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a mechanical grinder and then sieved to obtain particles of consistent size. The prepared 
feedstock was stored in airtight containers to prevent moisture absorption before further 
experimentation. 

The food waste samples used in this experiment were collected from the cafeteria at 
the University of Gujrat, main campus. These samples mainly consisted of fruit and vegetable 
peels, including potatoes, mangoes, and bananas. After collection, the waste was manually 
sorted to remove any non-organic contaminants such as paper or plastic. It was then 
thoroughly washed with distilled water to eliminate any remaining debris. To increase the 
surface area for efficient drying, larger pieces were manually cut into smaller fragments using 
a stainless-steel cutter. The prepared pieces were evenly spread on stainless steel trays and left 
to air-dry for approximately 10 days. During this period, the natural moisture loss reduced the 
overall water content of the feedstock. The samples were regularly turned over to ensure 
uniform drying and to prevent microbial growth. Once completely dried, the samples were 
further processed to achieve a consistent particle size. They were ground using a mechanical 
grinder and then sieved to obtain uniform particles. The final feedstock was stored in airtight 
containers to prevent moisture absorption before further experimentation. 
Feed Characterization: 

In accordance with ASTM guidelines, a proximate analysis of the feedstock from 
food waste was conducted. Table 1 present the proximate analysis.  The test was conducted 
in a 2 gram. A petri dish containing a feed sample was put in a muffle oven set to 105 oC, 
with air for eight hours. It got dry once the moisture content was eliminated. Moisture 
contents can be computed from the weight difference. The dry feed sample is placed in a 
muffle furnace at 575 oC for 25 minutes at air temperature in order to determine the amount 
of ash present. Five hours later, the weight of the ash was once more measured. The volatile 
matter was calculated by the ASTM standards. Table 2 present the ultimate analysis. 

Following ASTM guidelines, a proximate analysis was conducted on the food waste 
feedstock. The results are shown in Table 1. The test was performed using a 2-gram sample. 
A petri dish containing the sample was placed in a muffle oven set at 105°C with airflow for 
eight hours. The sample was considered dry once all moisture had evaporated. The moisture 
content was determined by measuring the weight difference before and after drying. To 
determine the ash content, the dried sample was placed in a muffle furnace at 575°C for 25 
minutes in the presence of air. After five hours, the remaining ash was weighed again. The 
volatile matter was analyzed according to ASTM standards. The results of the ultimate analysis 
are presented in Table 2. 

Table 1. Comparison of proximate Analysis of Food waste with waste residue 

Element Food waste 
(wt.%) 

Corn Cob 
[15] 

Sugarcane 
Bagasse [8] 

Rice Husk 
[16] 

Moisture 3.5 12.77 10.4 10.89 
Volatile matter 64 2.30 16.4 15.14 
Ash Content 6.0 91.16 74.0 73.41 
Fixed Carbon 26.5 6.54 13.0 11.44 

Table 2. Comparison of Ultimate Analysis of Food waste with waste residue 

Element Food Waste 
(wt. %) 

Corn Cob [24] Sugarcane 
Bagasse [23] 

Rice Husk [25] 

Carbon 46 42.10 43.2 41.92 
Hydrogen 6.5 5.90 6.70 6.34 
Nitrogen 0.48 0.50 0.30 1.85 

Sulfur 0.15 0.48 0.20 0.47 

The carbon, hydrogen, nitrogen, sulfur, and oxygen contents of the food waste 
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samples were finally determined using an elemental analyzer. First, a precision balance was 
used to precisely weigh the samples of dried and crushed food waste. After that, a tiny portion 
of the material was put into the combustion chamber of the analyzer. The material was 
broken down into gases inside the chamber by burning it at high temperatures while oxygen 

was present. Carbon dioxide (CO₂), water vapor (H₂O), nitrogen oxides (NOₓ), and sulfur 

oxides (SOₓ) emitted during burning were all measured by the analyzer. The discovered gases were 
used to compute the concentrations of carbon, hydrogen, nitrogen, and sulfur. By deducting 
the total proportion of these elements from 100%, the oxygen content was calculated. The 
findings gave important details about the food waste's elemental makeup, which made it easier 
to determine if it was suitable for pyrolysis. Here the food waste analysis is compared with the 
other residues such as corn, sugarcane and rice. The food waste contains more volatile stuff 
than rice husk, it promotes improved pyrolysis efficiency and speeds up decomposition. It is 
advantageous for energy applications because of its high hydrogen content, which improves gas 
production. Its balanced composition guarantees strong conversion potential even if it 
contains more ash and moisture than some biomass sources. Food waste provides a 
competitive yield in pyrolysis products when compared to maize cob and sugarcane bagasse, 
making it a feasible feedstock for the production of sustainable energy. 

The carbon, hydrogen, nitrogen, sulfur, and oxygen content of the food waste samples 
was determined using an elemental analyzer. First, the dried and crushed food waste samples 
were accurately weighed using a precision balance. A small portion of the sample was then 
placed into the analyzer’s combustion chamber. Inside the chamber, the material was burned 
at high temperatures in the presence of oxygen, breaking it down into gases. The analyzer 

measured the emitted gases, including carbon dioxide (CO₂), water vapor (H₂O), nitrogen 

oxides (NOₓ), and sulfur oxides (SOₓ). Based on these measurements, the concentrations of 
carbon, hydrogen, nitrogen, and sulfur were calculated. The oxygen content was determined 
by subtracting the total percentage of these elements from 100%. 

The results provided valuable insights into the elemental composition of food waste, 
helping assess its suitability for pyrolysis. A comparison was made with other residues such as 
corn, sugarcane, and rice. Food waste contains more volatile compounds than rice husk, which 
enhances pyrolysis efficiency and accelerates decomposition. Its high hydrogen content 
improves gas production, making it beneficial for energy applications. Although food waste 
has higher ash and moisture content than some biomass sources, its balanced composition 
ensures strong conversion potential. Compared to maize cobs and sugarcane bagasse, food 
waste offers a competitive yield in pyrolysis products, making it a viable feedstock for 
sustainable energy production. 
Experimental Methodology: 

A lab scale experimental setup is designed to carry out the fast pyrolysis of food waste 
in the hydrogen atmosphere. The schematic diagram of experimental setup that is shown in 
Figure 1 consists upon Hydrogen and nitrogen gas cylinders, feeding system, control panel, 
thermocouples (K type), Pyrolysis reactor and bio-gas collection jar. A lab-scale experimental 
setup was designed to conduct the fast pyrolysis of food waste in a hydrogen atmosphere. The 
schematic diagram of the setup, shown in Figure 1, includes hydrogen and nitrogen gas 
cylinders, a feeding system, a control panel, K-type thermocouples, a pyrolysis reactor, and a 
biogas collection jar. 

The reactor tank's wall is made of stainless steel and can withstand temperatures up to 
850 oC, a thickness of 0.2 inches. The tank's head has an inlet for gases and exit for venting 
gases produced by the pyrolysis reaction, and a 12.5-inch stainless steel capsule where a K 
type thermocouple can be attached for accurate temperature readings. The thermocouple 
sensor was positioned so that it would make contact with the reaction zone and provide a 
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reliable reading. Silicon binder and high temperature rubber rings were used to create a 
completely airtight seal around the entire reactor. The reactor has two condensers, and 
instead of using a spiral condenser was chosen because it allows for longer contact time 
between the fumes or vapors and the condensing air, leading to a higher product yield. The 
experimental work's methodology procedure is illustrated in Figure 2. 

 
Figure 1. Schematic Diagram of Experimental Setup. 

The reactor tank is made of stainless steel with a 0.2-inch thickness and can withstand 
temperatures up to 850 °C. The tank's head includes an inlet for gas entry, an outlet for venting 
gases produced during pyrolysis, and a 12.5-inch stainless steel capsule where a K-type 
thermocouple is attached for precise temperature measurement. The thermocouple sensor is 
positioned to ensure direct contact with the reaction zone for accurate readings. To maintain 
an airtight seal, the reactor is secured with a silicon binder and high-temperature rubber rings. 
It is equipped with two condensers, and a spiral condenser was chosen instead of a standard 
one, as it increases the contact time between vapors and the cooling air, improving product 
yield. The methodology for the experimental procedure is illustrated in Figure 2. 

 
Figure. 2 Flow Diagram of Methodology 

At first,15 gram. sample was taken and placed in the reactor's sample cup then the 
reactor's body was sealed with a silicon ring to prevent the fumes from escaping. The reactor's 
second outlet is piped to the condenser portion, where vapors are removed by spiral condensers 
and the inlet is connected to a gases cylinders. The residence time for all the experiments is 
kept 2 sec. As the process starts, char produced remains on the mesh inside the reactor, the 
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condensable vapors of bio-oil are collected in the collection system after condensation and 
the non-condensable gases are collected in the gas balloons. 

First, a15gram sample was placed in the reactor’s sample cup, and the reactor was 
sealed with a silicon ring to prevent fumes from escaping. The second outlet of the reactor 
was connected to the condenser section, where vapors were condensed using spiral 
condensers, while the inlet was linked to gas cylinders. The residence time for all experiments 
was maintained at 2 seconds. During the process, the produced char remained on the mesh 
inside the reactor. The condensable vapors of bio-oil were collected in the collection system 
after condensation, while the non-condensable gases were stored in gas balloons. 
Results: 
Experimental Run: 

The pyrolysis experiments were conducted using a fixed-bed reactor to investigate the 
influence of operating temperature and gas composition on product distribution. In order to 
guarantee consistent thermal decomposition of the food waste residue, the reactor was 
externally heated to target temperatures between 600 °C and 800 °C. The heating rates were 
precisely controlled. Before every experiment, the system was nitrogen-purged to remove any 
remaining gases. A range of gas compositions, including a pure nitrogen atmosphere and 
nitrogen-hydrogen mixes with hydrogen levels of 10% and 20% by volume, were used to 
pyrolysis the feedstock. The total gas flow rate was adjusted to either 100, 90, or 80 ml/min, 
ensuring a consistent residence time for the volatiles within the reactor. The bio-char was 
gathered and weighed at the end of each run, and the bio-oil portion was condensed and 
measured. Mass balance was used to determine the remaining bio-gas fraction. A thorough 
analysis of the impact of temperature on the yield distribution of bio-oil, bio-char, and bio-gas 
showed notable differences in product composition across experimental settings. The effects 
of adding hydrogen to the pyrolysis environment on secondary processes, thermal cracking, 
and total product selectivity were also evaluated. 

The pyrolysis experiments were carried out using a fixed-bed reactor to study how 
temperature and gas composition affect product distribution. To ensure uniform thermal 
decomposition of the food waste residue, the reactor was externally heated to temperatures 
between 600 °C and 800 °C, with precise control over heating rates. Before each experiment, 
the system was purged with nitrogen to remove any residual gases. 
The feedstock was pyrolyzed under different gas compositions, including a pure nitrogen 
atmosphere and nitrogen-hydrogen mixtures with hydrogen concentrations of 10% and 20% 
by volume. The total gas flow rate was set at 100, 90, or 80 ml/min to maintain a consistent 
residence time for volatile compounds in the reactor. At the end of each experiment, the bio-
char was collected and weighed, while the bio-oil fraction was condensed and measured. The 
remaining bio-gas fraction was determined using mass balance calculations. A detailed analysis 
of temperature effects on the yields of bio-oil, bio-char, and bio-gas revealed significant 
variations in product composition under different conditions. Additionally, the impact of 
hydrogen on secondary reactions, thermal cracking, and overall product selectivity was 
evaluated. 

Table 3 shows the effect of operating parameter (temperature) on the products yield 
in the presence of only nitrogen. The maximum yield of bio-oil comes on 600 oC after that its 
yield decreases. As the temperature increases from 600 oC to 800 oC, the gaseous product 
yield increases from 17.65 wt. % to 45.68 wt. %. Due to increase in temperature, more 
thermal degradation takes places and gaseous product yield increases. Table 3 shows the 
results of product yields in the presence of hydrogen gas (10 % and 20 %). The gas product 
yield increases till 45.68 wt. % under the effect of 10 % hydrogen but decreases to 40.58 wt. % 
when 20 % hydrogen is supplied.  
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Table 3. Product Yield of Pyrolysis of food waste residue under composition of Nitrogen and Hydrogen flow, at different Temperature 

Test Run Reactor 
Temperature (oC) 

N2 Flow Rate 
(mL/min) 

Hydrogen Content  
(Vol %) 

Bio oil (wt. %) Bio-Char (wt. 
%) 

Bio-Gas (wt. 
%) 

Run # 01 600 100 0% 57.1± 14.04 25.25± 6.91 17.65± 8.97 

Run # 02 650 100 0% 52.78± 14.04 22.95± 6.91 24.27± 8.97 

Run # 03 700 100 0 % 47.9± 14.04 20.3± 6.91 31.8± 8.97 

Run # 04 750 100 0 % 45.6± 14.04 17.5± 6.91 38.9± 8.97 

Run # 05 800 100 0 % 40.8± 14.04 15± 6.91 36.5± 8.97 

Run # 06 600 90 10 % 49.88± 14.04 29.45± 6.91 20.67± 8.97 

Run # 07 650 90 10 % 38.65± 14.04 33.68± 6.91 27.60± 8.97 

Run # 08 700 90 10 % 30.15± 14.04 31.87± 6.91 37.98± 8.97 

Run # 09 750 90 10 % 22.89± 14.04 31.42± 6.91 45.68± 8.97 

Run # 10 800 90 10 % 14.7± 14.04 30.88± 6.91 41.43± 8.97 

Run # 11 600 80 20 % 47.95± 14.04 32.7± 6.91 19.35± 8.97 

Run # 12 650 80 20 % 36.89± 14.04 37.3± 6.91 25.81± 8.97 

Run # 13 700 80 20 % 29.1± 14.04 34.65± 6.91 36.25± 8.97 

Run # 14 750 80 20 % 21.65± 14.04 34.56± 6.91 40.58± 8.97 

Run # 15 800 80 20 % 13.1± 14.04 34.38± 6.91 38.72± 8.97 
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Table 3 presents the effect of operating temperature on product yield in a nitrogen-
only environment. The highest bio-oil yield is achieved at 600 °C, after which it starts to 
decline. As the temperature increases from 600 °C to 800 °C, the gaseous product yield rises 
from 17.65 wt.% to 45.68 wt.% due to enhanced thermal degradation. Table 3 also shows the 
product yields in the presence of hydrogen gas (10% and 20%). With 10% hydrogen, the 
gaseous product yield reaches a maximum of 45.68 wt.%. However, when the hydrogen 
concentration increases to 20%, the yield decreases to 40.58 wt.%. 
Pyrolysis product yield: 

Based on the mass distribution of the solid, liquid, and gaseous fractions produced by 
the rapid pyrolysis of food waste in the presence of hydrogen, the yield of pyrolysis products 
was calculated. The findings showed that the operating temperature had a major impact on 
the product dispersion. At an ideal temperature of 750°C, the pyrolysis process produced 
22.89% biochar, 31.42% bio-oil, and 45.68% gaseous products. The yield of pyrolysis 
products was determined based on the mass distribution of solid, liquid, and gaseous 
fractions generated during the rapid pyrolysis of food waste in a hydrogen environment. The 
results indicated that operating temperature significantly influenced product distribution. At 
an optimal temperature of 750°C, the process yielded 22.89% biochar, 31.42% bio-oil, and 
45.68% gaseous products. 
Effect of Operating Parameters on Bio-gas yield %: 

Operating parameters such as temperature, feedstock composition, and gas 
environment (H2, N2) all had a substantial impact on the production and composition of biogas 

generated by fast pyrolysis of food waste in the presence of hydrogen [20]. A larger gas yield, 

especially methane (CH₄) and hydrogen (H₂), was obtained by increasing the temperature, 
which boosted thermal cracking reactions. The ideal range was found at 750 °C. Beyond this 
range, excessive cracking decreased the gas's calorific value by increasing the formation of 

carbon monoxide (CO) and carbon dioxide (CO₂). Operating factors such as temperature, 

feedstock composition, and gas environment (H₂, N₂) significantly influenced biogas 
production and composition during the fast pyrolysis of food waste in a hydrogen 
atmosphere [20]. Higher temperatures enhanced thermal cracking reactions, leading to 

increased gas yield, particularly methane (CH₄) and hydrogen (H₂). The optimal temperature 
was found to be 750°C. Beyond this point, excessive cracking reduced the gas's calorific 

value by increasing the formation of carbon monoxide (CO) and carbon dioxide (CO₂). 
Effect of Composition: 

Figure 3 illustrates how the yield percentage changes with varying composition ratios 
(100:00, 90:10, and 80:20) under five different temperatures: 600 °C, 650 °C, 700 °C, 750 °C, 
and 800 °C. A clear upward trend is observed with increasing temperatures, indicating that 
higher temperatures result in higher yields across all composition ratios. In conclusion, the 
results demonstrate that both temperature and composition ratio are crucial factors in 
maximizing yield. A composition ratio of Nitrogen and Hydrogen of 90:10 combined with a 
temperature of 750 °C offers the most efficient outcome. This harmonious interplay between 
temperature and composition highlights the potential for refining industrial processes to 
enhance yield performance. 

Figure 3 shows how yield percentage varies with different composition ratios (100:00, 
90:10, and 80:20) at five temperatures: 600 °C, 650 °C, 700 °C, 750 °C, and 800 °C. The results 
indicate a clear upward trend, where higher temperatures lead to increased yields across all 
composition ratios. Overall, the findings highlight that both temperature and composition 
ratio play a crucial role in maximizing yield. The most efficient outcome is achieved with a 
nitrogen-to-hydrogen ratio of 90:10 at 750 °C. This balance between temperature and 
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composition underscores the potential for optimizing industrial processes to improve yield 
performance. 

 
Figure 3. Effect of different composition of H2 and N2 in the Yield 

Effect of Temperature: 
Figure 4 presents the relationship between temperature and yield (wt. %) for three 

different flow rates: 100 ml/min, 90 ml/min, and 80 ml/min. The trend reveals that as the 
temperature increases from 600 °C to 700 °C, the yield significantly improves across all flow 
rates, indicating that higher temperatures enhance the reaction efficiency. However, beyond 
700 °C, a decrease in yield is observed, which may suggest thermal degradation or the onset 
of unfavorable side reactions. The highest yield is achieved at 700 °C for all flow rates, with 
the 90 ml/min condition (red line) exhibiting the maximum performance. 

Figure 4 illustrates the relationship between temperature and yield (wt.%) for three 
different flow rates: 100 ml/min, 90 ml/min, and 80 ml/min. The results show that increasing 
the temperature from 600 °C to 700 °C significantly enhances yield across all flow rates, 
indicating improved reaction efficiency. However, beyond 700 °C, the yield starts to decline, 
likely due to thermal degradation or unwanted side reactions. The highest yield is observed at 
700 °C for all flow rates, with the 90 ml/min condition (red line) showing the best 
performance. 

 
Figure 4. Effect of pyrolysis temperature in the Yield 

Effect of Hydrogen Percentage: 
Figure 5 illustrates the relationship between hydrogen flow rate (%) and yield (%) at 

varying temperatures: 600 °C, 650 °C, 700 °C, 750 °C, and 800 °C. The results reveal distinct 
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trends at each temperature, with yield increasing as the hydrogen flow rate rises from 0 % to 
10 %, followed by a decline at 20 %. The observed peak at 10 % indicates an optimal 
hydrogen flow rate for maximizing yield. At lower temperatures, such as 600 °C and 650 °C, 
the yield remains relatively low compared to higher temperatures, suggesting that the 
reaction is less efficient under these conditions. However, as temperature increases to 700 
°C, 750 °C, and 800 °C, the yield significantly improves. The highest yield is observed at 750 
°C, particularly at the optimal hydrogen flow of 10 %, as indicated by the magenta curve. 
Beyond 750 °C, the yield slightly decreases, possibly due to competing reactions or thermal 
instability. 

Figure 5 shows the relationship between hydrogen flow rate (%) and yield (%) at 
different temperatures: 600 °C, 650 °C, 700 °C, 750 °C, and 800 °C. The results indicate a 
clear trend—yield increases as the hydrogen flow rate rises from 0 % to 10 %, then declines 
at 20 %. This peak at 10 % suggests an optimal hydrogen flow rate for maximizing yield. At 
lower temperatures (600 °C and 650 °C), the yield remains relatively low, indicating lower 
reaction efficiency. However, as the temperature increases to 700 °C, 750 °C, and 800 °C, the 
yield improves significantly. The highest yield is recorded at 750 °C, particularly at the 10% 
hydrogen flow rate, as shown by the magenta curve. Beyond 750 °C, the yield slightly 
decreases, likely due to competing reactions or thermal instability. 

 
Figure 5. Effect of hydrogen composition in the Yield 

Discussion: 
The results of the study demonstrate that pyrolyzing food waste with hydrogen 

results in a significantly greater output of gaseous products, specifically methane (CH₄) and 

hydrogen (H₂). At 90:10 nitrogen-to-hydrogen ratio at 750 °C, the maximum gas output of 
45.68 wt.% was attained. The increase of temperature during fast pyrolysis process not only 
increase the gaseous product yield but also increases the composition of hydrogen, methane, 
carbon mono oxide and ethane. The presence of hydrogen facilitates the breaking down the 
bonding of different heavy molecules. The free radical mechanism reaction rate increases at 
high temperatures and the composition of CO, H2 and CH4 increases but at the same stage 
the percentage of carbon dioxide, ethane and propene decrease [10]. 

While the creation of bio-oil and gaseous products was promoted by an increase in 
temperature, the production of biochar was comparatively higher at lower temperatures. 

Methane (CH₄), hydrogen (H₂), carbon monoxide (CO), and carbon dioxide (CO₂) made 
up the majority of the gaseous component, which showed a rising trend at higher 
temperatures, indicating enhanced thermal cracking and secondary reactions [17]. 

By raising the concentration of hydrocarbons like methane, the presence of hydrogen 
in the reaction environment enhanced the gas yield and quality [19]. According to the 
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findings, hydrogen-assisted pyrolysis is a viable method for environmentally friendly waste-
to-energy applications since it improves the conversion of food waste into useful energy 
products [14]. 

Food waste's composition also mattered; fractions high in protein and cellulose 
contributed more to the generation of gas, whilst components rich in lipids and 
carbohydrates promoted the development of bio-oil. By encouraging hydrocracking 
reactions, raising methane yield, and decreasing tar formation, the addition of hydrogen 
greatly enhanced the quality of biogas. In contrast, nitrogen, as an inert carrier gas, changed 
heat transfer and volatile residence time but did not actively participate in reactions [21] [22]. 

A lower methane yield and a larger production of CO₂ were noted when nitrogen was 
substituted for hydrogen, underscoring the crucial role that hydrogen plays in improving gas 
quality [23]. In hydrogen- assisted pyrolysis, our results highlight the significance of 
controlling operating conditions to maximize biogas yield and energy efficiency [24].  

The composition of food waste plays a crucial role in determining the distribution 
of pyrolysis products, including bio-oil, bio-char, and biogas. The three major organic 
components—cellulose, lipids, and proteins—undergo different thermal decomposition 
pathways, influencing the yield and composition of the final products. Cellulose, a major 
structural component of plant-based food waste, primarily decomposes into volatile gases, 
tars, and some residual char. Its thermal degradation occurs between 280–400 °C, favoring 
bio-oil production at lower temperatures, but at higher temperatures (>700°C), secondary 

cracking enhances gas yield, particularly CO, CO₂, and H₂. The presence of hydrogen 
facilitates further gasification of cellulose-derived compounds, improving the yield of 
hydrogen and methane-rich gases. In food waste rich in cellulose (e.g., vegetable peels, rice 
husk), the thermal degradation trends indicate that higher pyrolysis temperatures combined 
with hydrogen enhance gaseous product formation, aligning with the observed peak gas yield 
at 750 °C in this study. 

In contrast, lipids (fats and oils) decompose at lower temperatures (300–500 °C) and 
contribute significantly to bio-oil production. However, as the temperature increases, 

thermal cracking of lipids leads to higher gas yields, producing alkanes, alkenes, CH₄, and 

CO₂. The presence of hydrogen promotes hydrocracking, which breaks down heavier 
hydrocarbons into lighter gaseous products like methane and ethane. This explains why 
hydrogen-assisted pyrolysis enhances methane production at 750 °C, particularly in food 
waste with high lipid content such as dairy products, cooking oils, and meat fats. However, 
when hydrogen concentration is increased to 20 %, excessive hydrogenation can lead to 
lower gas yield, as seen in the experimental results, due to the inhibition of further volatile 
formation. 

The study results show that pyrolyzing food waste in a hydrogen atmosphere 

significantly increases the yield of gaseous products, particularly methane (CH₄) and hydrogen 

(H₂). The highest gas yield of 45.68 wt.% was achieved at a nitrogen-to-hydrogen ratio of 
90:10 at 750 °C. Higher temperatures in fast pyrolysis not only boost gas production but also 
enhance the composition of hydrogen, methane, carbon monoxide, and ethane. Hydrogen 
helps break down heavy molecular bonds, accelerating free radical reactions at high 

temperatures. This leads to increased CO, H₂, and CH₄ formation while reducing CO₂, 
ethane, and propene content. 

While higher temperatures promoted bio-oil and gas production, biochar yield 

remained higher at lower temperatures. The main gaseous products—methane (CH₄), 
hydrogen (H₂), carbon monoxide (CO), and carbon dioxide (CO₂)—showed a rising trend at 
elevated temperatures, indicating increased thermal cracking and secondary reactions. The 
presence of hydrogen improved gas yield and quality by raising hydrocarbon concentrations, 
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especially methane. These findings highlight hydrogen-assisted pyrolysis as a promising waste-
to-energy method for efficiently converting food waste into valuable energy products. 

The composition of food waste also played a key role. Protein- and cellulose-rich 
fractions contributed more to gas production, while lipid- and carbohydrate-rich components 
favored bio-oil formation. Hydrogen enhanced hydrocracking, increased methane yield, and 
reduced tar formation. In contrast, nitrogen, acting as an inert carrier gas, influenced heat 
transfer and volatile residence time without actively participating in reactions. Replacing 

hydrogen with nitrogen led to lower methane yields and higher CO₂ production, emphasizing 
hydrogen’s crucial role in improving gas quality. Controlling operating conditions in hydrogen-
assisted pyrolysis is essential for optimizing biogas yield and energy efficiency. 

Food waste composition directly affects the distribution of pyrolysis products, 
including bio-oil, biochar, and biogas. The three primary organic components—cellulose, 
lipids, and proteins—follow different thermal decomposition pathways, influencing the final 
product yield and composition. Cellulose, a key structural component of plant-based food 
waste, primarily degrades into volatile gases, tars, and residual char. It decomposes between 
280–400°C, favoring bio-oil production at lower temperatures. However, at temperatures 

above 700 °C, secondary cracking increases gas yield, particularly CO, CO₂, and H₂. The 
presence of hydrogen enhances the gasification of cellulose-derived compounds, improving 
hydrogen- and methane-rich gas production. In cellulose-rich food waste (e.g., vegetable peels, 
rice husks), higher pyrolysis temperatures combined with hydrogen favor gas formation, 
aligning with the peak gas yield observed at 750 °C. 

Lipids (fats and oils) break down at lower temperatures (300–500 °C), mainly 
contributing to bio-oil formation. However, as the temperature rises, lipid thermal cracking 

increases gas production, generating alkanes, alkenes, CH₄, and CO₂. Hydrogen promotes 
hydrocracking, breaking down heavier hydrocarbons into lighter gases like methane and 
ethane. This explains why hydrogen-assisted pyrolysis enhances methane production at 750 
°C, especially in food waste with high lipid content, such as dairy products, cooking oils, and 
meat fats. However, at 20% hydrogen concentration, excessive hydrogenation can reduce gas 
yield by inhibiting further volatile formation, as observed in the experimental results. 

Proteins, found in significant amounts in food waste sources like meat, legumes, and 

eggs, decompose at 250–600 °C, forming char, ammonia (NH₃), hydrogen cyanide (HCN), 
and nitrogen-containing bio-oil compounds. Unlike cellulose and lipids, proteins contribute 
more to char formation, especially at lower temperatures, due to their complex nitrogenous 
structures. However, at high temperatures (>700 °C), proteins undergo secondary 

decomposition, releasing H₂ and CO₂. The introduction of hydrogen in the reaction 

environment further enhances H₂ production while reducing nitrogenous impurities like NH₃ 
and HCN, which would otherwise degrade gas quality. This suggests that the increase in 
hydrogen concentration (10%) optimizes biogas composition, but an excessive hydrogen 
supply (20%) may limit the thermal degradation of protein-rich feedstocks, reducing the 
overall gas yield. 

Proteins, abundant in food waste sources such as meat, legumes, and eggs, break down 

at temperatures between 250–600°C, producing char, ammonia (NH₃), hydrogen cyanide 
(HCN), and nitrogen-containing bio-oil compounds. Unlike cellulose and lipids, proteins 
generate more char, especially at lower temperatures, due to their complex nitrogenous 
structures. However, at temperatures above 700 °C, proteins undergo secondary 

decomposition, releasing H₂ and CO₂. Introducing hydrogen into the reaction environment 

further boosts H₂ production while reducing nitrogenous impurities like NH₃ and HCN, 
which can lower gas quality. This indicates that a 10% hydrogen concentration optimizes 
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biogas composition, but an excessive supply (20%) may hinder the thermal breakdown of 
protein-rich feedstocks, reducing overall gas yield. 
Conclusion: 

A fast pyrolysis on Food waste residue was carried out using a fixed bed reactor 
operating at atmospheric pressure. The Investigation showed that the optimum pyrolysis 
temperature for obtaining the maximum bio-gas yield at 750 °C. The findings of this 
investigation indicate that 750 °C. Is the optimum temperature. With a nitrogen to hydrogen 
ratio of 90:10, a maximum biogas output of 45.68 weight percent is achieved. Bio-gas yields 
were increased by raising the pyrolysis temperature while keeping the ratio constant. When 90 % 
nitrogen and 10 % hydrogen were used at 750 °C, the maximum gaseous product yield is 
obtained. Hydrogen aided in hydrocracking reactions, which decreased the synthesis of tar 
and heavy hydrocarbons while increasing the production of valuable gases including hydrogen 

(H₂) and methane (CH₄). The technique became more appropriate for clean energy 
applications as a result of the enhanced hydrogen-to-carbon ratio and the more energy-
dense syngas composition. Temperature differences also had a noticeable impact on the 
distribution of the product; higher temperatures encouraged the conversion of solid and 
liquid fractions into non-condensable gases, while lower temperatures favored the creation of 
biochar because of incomplete thermal decomposition. Hydrogen-assisted pyrolysis is a 
potential method for managing food waste sustainably and producing renewable energy as 
these studies offer important insights into how to optimize it for increased syngas production. 
Process efficiency can be greatly increased, resulting in larger energy yields and a smaller 
environmental effect, by carefully regulating the temperature and gas composition. 
Furthermore, the potential for industrial-scale applications particularly in waste-to-energy 
conversion technologies is highlighted by the ability to precisely control product distribution 
through exact operating conditions. Future research will involve the development and 
optimization of bio-based catalysts for the production of high-quality and cost-efficient bio-
gas. 

A fast pyrolysis process was conducted on food waste residue using a fixed-bed reactor 
at atmospheric pressure. The investigation revealed that 750 °C is the optimal pyrolysis 
temperature for achieving the highest biogas yield. With a nitrogen-to-hydrogen ratio of 90:10, 
a maximum biogas output of 45.68 wt.% was obtained. Increasing the pyrolysis temperature 
while maintaining this ratio further enhanced biogas yields. At 750 °C, with 90% nitrogen and 
10% hydrogen, the highest gaseous product yield was achieved. Hydrogen played a key role in 
hydrocracking reactions, reducing tar and heavy hydrocarbon formation while boosting the 

production of valuable gases such as hydrogen (H₂) and methane (CH₄). This improved the 
hydrogen-to-carbon ratio, resulting in a more energy-dense syngas composition, making the 
process more suitable for clean energy applications. 

Temperature variations also significantly influenced product distribution. Higher 
temperatures promoted the conversion of solid and liquid fractions into non-condensable 
gases, whereas lower temperatures favored biochar formation due to incomplete thermal 
decomposition. These findings highlight hydrogen-assisted pyrolysis as a promising method 
for sustainable food waste management and renewable energy production. By carefully 
controlling temperature and gas composition, process efficiency can be significantly improved, 
leading to higher energy yields and a reduced environmental footprint. Moreover, the ability 
to fine-tune operating conditions for precise product distribution enhances the potential for 
industrial-scale applications, particularly in waste-to-energy technologies. Future research will 
focus on developing and optimizing bio-based catalysts to produce high-quality, cost-effective 
biogas. 
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iometric authentication is becoming more popular due to its secure and reliable way of 
identifying individuals, offering clear advantages over traditional methods. Since 
physiological signals are unique and non-invasive, they have been widely researched 

for use in biometric systems. This study introduces a biometric identification system that 
combines machine learning with physiological signal fusion, using data from 
electromyography (EMG), phonocardiogram (PCG), and electrocardiogram (ECG). The data 
were collected from 32 participants using the BIOPAC MP-36 system. To remove power line 
interference and extract important frequency bands, Butterworth notch, and bandpass filters 
were applied to the raw signals. After pre-processing, two types of cepstral features were 
extracted: gamma tone cepstral coefficients (GTCCs) and Mel-frequency cepstral coefficients 
(MFCCs), which were analysed for their spectral properties. System performance was first 
tested by evaluating features from each signal individually. Then, the study examined the 
impact of combining pairs of signals— (ECG, PCG), (PCG, EMG), and (ECG, EMG)—
using GTCC and MFCC features with different machine learning classifiers. Lastly, the GTCC 
and MFCC features from all three signals were combined to evaluate overall system 
performance. The results showed that MFCC-based features performed better than GTCC-
based features for biometric authentication. The highest accuracy, 98.4%, was achieved using 
GTCC features with both the Fine K-nearest neighbour (KNN) and linear discriminant 
classifiers, while MFCC features reached 100% accuracy with the linear discriminant classifier. 
These findings highlight how effective cepstral features and signal fusion can be in enhancing 
biometric authentication performance. 
Keywords: Person Identification; Biometric Authentication; Machine Learning; Physiological 
Signals; MEL Frequency Cepstral Coefficient. 
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Introduction: 
In today’s world, protecting personal identity and information is essential due to the risk 

of misuse from technological advancements. Biometric identification has become a trusted 
method and is widely used in healthcare, law enforcement, banking, and the military. This 
technology identifies individuals using unique traits such as voice patterns, facial features, and 
fingerprints. In the past, people recognized each other based on characteristics like speech, smell, 
behavior, facial appearance, and height, but most of these traits are unsuitable for automated 
systems. However, recent developments in biometric technology have expanded the possibilities 
for more secure identification processes [1]. 

Biometrics identifies people based on their distinct physical characteristics. Various 
biometric techniques have been developed, including face recognition, fingerprint scanning, iris 
detection, voice analysis, typing patterns, and gait recognition. However, these traditional 
methods can sometimes be vulnerable to duplication and fraud [2]. 

Recently, biometric authentication systems using electrocardiogram (ECG), 
phonocardiogram (PCG), and electromyography (EMG) signals have gained significant 
attention [3]. ECG signals are particularly popular for biometric recognition because of their 
unique features, which make them difficult to replicate. ECG signals are present in all living 
beings and consist of several key components: the T wave (representing ventricular 
repolarization), the P wave (atrial depolarization), the QRS complex (ventricular depolarization), 
and the U wave (linked to the repolarization of the heart’s conduction fibers). These distinct 
patterns and timing allow people to be identified through ECG signals [4]. 

Similarly, PCG is the recording of heart sounds produced during the cardiac cycle. This 
physiological property captures heartbeats using a digital stethoscope and reflects sounds caused 
by the opening and closing of heart valves. The two primary heart sounds, S1 and S2 (also called 
systolic and diastolic murmurs) form the cardiac cycle. These heart sounds are complex, non-
stationary, and quasi-periodic signals [5]. 

ECG and PCG signals remain stable over time, making them reliable for long-term 
biometric authentication. Unlike face and fingerprint biometrics, which can change due to aging 
or external factors, physiological signals provide consistent features. Preprocessing these signals 
improves their quality, enhancing feature extraction and making the biometric system more 
stable. 

Similarly, EMG records electrical signals generated by muscle contractions during 
neuromuscular activity. These signals are useful for various applications, including motion 
detection, disease diagnosis, and personal identification [6]. A visual representation of ECG, 
PCG, and EMG signals is shown in Figure 1. 

 
Figure 1. Visual representation of ECG, PCG, and EMG physiological signals 
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Objectives of the Study: 
The primary objective of this study is to develop and evaluate a multimodal biometric 

authentication system that integrates physiological signals (ECG, PCG, and EMG) to enhance 
security and accuracy in biometric identification. By leveraging cepstral feature extraction 
techniques (MFCC, GTCC) and machine learning classifiers, the study aims to improve 
authentication reliability while addressing challenges related to spoofing, inter-class variability, 
and real-time usability. The specific objectives are: 

• To design a multimodal biometric authentication framework that fuses ECG, PCG, 
and EMG signals for improved recognition accuracy. 

• To extract robust cepstral features (MFCC and GTCC) from physiological signals 
for enhanced classification performance. 

• To compare the performance of various machine learning classifiers (Fine KNN, 
LDA, SVM, Ensemble Bagged Trees, etc.) to determine the most effective model 
for biometric authentication. 

• To evaluate the system’s robustness against noise and real-world variations in 
physiological signals. 

• To explore the feasibility of implementing the proposed biometric system in real-
time authentication scenarios, such as wearable security applications. 

Novelty Statement: 
This study presents a novel multimodal biometric authentication approach by integrating 

ECG, PCG, and EMG signals, a combination rarely explored in existing biometric systems. 
Unlike conventional authentication methods that rely on single-modal features (e.g., fingerprint, 
face recognition, ECG alone), this research introduces a fusion-based framework that enhances 
security, resilience against spoofing attacks, and user-specific authentication accuracy. 
Additionally, the application of cepstral feature extraction techniques (MFCC, GTCC) to 
physiological signals is an innovative contribution, as it enables better spectral representation of 
biometric patterns, outperforming traditional time-domain features. The study also conducts an 
extensive classifier comparison to identify the most effective model for biometric verification, 
paving the way for robust, real-time physiological biometric authentication in high-security 
applications. 
Literature Review: 

Recently, there has been growing interest in machine learning-based biometric 
identification using physiological signals. An innovative driver authentication system using 
electrocardiogram (ECG) signals from dry electrodes on a steering wheel is presented in [7]. By 
leveraging the unique, tamper-proof properties of ECG signals, this system addresses the 
limitations of conventional biometric methods. It uses a convolutional neural network (CNN) 
optimized for real-time processing along with autocorrelation profiles (ACPs). The system 
achieved high accuracy in automobile and security applications, with F1 scores of 96.8% and 
96.02% on public and real-world datasets, respectively. 

In [8], ECG signals from 35 participants were analyzed using empirical mode 
decomposition (EMD) to extract intrinsic mode functions (IMFs), with IMF 1 and 2 combined 
and classified using a cubic support vector machine (SVM), achieving an accuracy of 98.4%. 
Similarly, ECG signals from 36 participants was denoised with an infinite impulse response (IIR) 
filter, and 18 characteristic features were extracted. SVM outperformed K-nearest neighbor 
(KNN) and Naive Bayes (NB) classifiers, with an accuracy of 99.2% [9]. Another study involving 
30 subjects (13 healthy, 17 non-healthy) from the PTB database reported an average frame 
identification rate of 97.31% by analyzing QRS beat data from ECG signals using a combination 
of autocorrelation, discrete cosine transform (DCT), and Mel frequency cepstral coefficients 
(MFCC) features [10]. 
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Similarly, PCG signals from 30 individuals were denoised using EMD, and 11 features 
were extracted and classified. The SVM classifier achieved the highest accuracy of 95.4% [11]. 
PCG signals were also used for automatic person identification and verification using a back-
propagation multilayer perceptron artificial neural network (BP-MLP-ANN) combined with 
wavelet-based features [12]. Another study applied wavelet packet decomposition to heart 
sounds, extracting key features using linear and non-linear filter banks at various decomposition 
levels. Automatic wavelet denoising was used for preprocessing, and a linear discriminant 
classifier achieved 91.05% accuracy on a dataset of heart sounds from 206 individuals [13]. 

A speech-based biometric system using EMG signals is presented in [14]. It recorded 
muscle activity in the neck during speech and used EMD for denoising, followed by time- and 
frequency-based feature extraction. Among different classifiers, the quadratic SVM reported the 
highest accuracy of 95.3% across 10 classes. EMG-based personal identification and verification 
were also explored in [15], where surface EMG signals from 21 participants were recorded while 
making a hand-open gesture using the Myo wristband. Two methods—discrete wavelet 
transform (DWT) with an extra trees classifier and continuous wavelet transform (CWT) with 
convolutional neural networks (CNN)—achieved a maximum accuracy of 99.285%. 

Recent research focuses on fusing multiple physiological signals for biomedical 
applications. For example, [16] proposed a biometric identification system that combines 
cepstral features from ECG and PCG signals. Several classifiers were tested, with ensemble 
subspace discriminant and linear discriminant achieving 100% accuracy on a dataset of 32 
individuals. Another study combined ECG and EMG signals using a Bayesian network, with the 
fused data used to control physiological devices during activities like cycling and rehabilitation 
exercises, improving accuracy in the rehabilitation process [17][18]. 

Although studies have explored ECG-PCG and ECG-EMG combinations, the fusion 
of ECG, PCG, and EMG for biometric identification remains underexplored. This study 
addresses that gap by collecting physiological signals from 36 subjects using the BIOPAC MP-
36 system. The signals were preprocessed to remove power line interference while preserving 
key frequency components. GTCC and MFCC features were extracted and used as inputs for 
machine learning classifiers to evaluate accuracy, precision, robustness, and reliability. 

This research introduces a novel biometric authentication system that integrates ECG, 
PCG, and EMG signals—a combination rarely explored in past studies. By fusing MFCC-based 
features from these signals, the system achieves 100% classification accuracy, outperforming 
traditional GTCC-based methods. Unlike single-modal biometric systems, this multimodal 
fusion enhances identity verification accuracy and improves resistance to spoofing. By analyzing 
the distinct features of ECG, PCG, and EMG signals, the study strengthens biometric security. 

Because these signals originate from internal body processes, they are difficult to 
replicate. ECG measures heart rhythms, PCG records heart sounds influenced by valve 
movements, and EMG captures neuromuscular activity, which varies between individuals due 
to differences in muscle structure and movement patterns. It is almost impossible to mimic all 
three signals simultaneously, making this system highly secure. Additionally, requiring live 
physiological signals prevents replay attacks, and the fusion technique ensures consistency across 
modalities while distinguishing genuine from spoofed data. Advanced feature extraction using 
MFCCs and GTCCs further enhances the system’s ability to detect fraudulent attempts. 

Overall, by providing strong protection against identity theft and spoofing, this system could 
pave the way for future advancements in biometric authentication. 
Materials and Methods: 

This study presents a machine learning-based biometric authentication technique that 
leverages the fusion of ECG, PCG, and EMG signals. The full block diagram of the proposed 
approach is illustrated in Figure 2. 
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Figure 2. A block diagram of a biometric identification technique that combines ECG, PCG, 

and EMG signals. 
Data Acquisition: 

The BIOPAC MP-36 system was used to record ECG, PCG, and EMG signals. To 
capture ECG signals, electrodes (SS2L lead set) were placed on the left leg (positive), right leg 
(negative), and right forearm (neutral). For PCG recordings, the SS3L stethoscope was used, 
with heart sounds collected from one of the four auscultatory areas: Aortic, Pulmonic, Tricuspid, 
or Mitral. During the recordings, individuals remained seated upright on a chair and refrained 
from movement to maintain signal quality. 

For EMG signal acquisition, the SS2L lead was also employed. The white wire was 
connected to the left wrist, while the red and black wires were placed near the elbow, with the 
red lead on the left side and the black lead on the right side. Volunteers were instructed to draw 
a specific pattern on a mobile phone, as shown in Figure 3, to facilitate EMG data collection. 

 
Figure 3. EMG signal pattern representing muscle movement. 

Data was collected from 32 participants (29 men and 3 women) for 10 seconds at a 
sampling rate of 2000 Hz, resulting in a total of 192 signals [16]. 
Preprocessing: 

Preprocessing is a critical step in machine learning-based approaches. Common 
techniques include resampling, normalization, noise reduction, and filtering. This stage improves 
signal quality by effectively minimizing power line interference and reducing motion artifacts. In 
this study, IIR Butterworth bandpass and Butterworth notch filters were applied to extract key 
frequencies and eliminate unwanted noise. 



                                 International Journal of Innovations in Science & Technology 

March 2025|Special Issue |UOG                                                                 Page |114 

Butterworth Notch Filter for Power Line Interference Removal: 
A notch filter was employed to eliminate 50 Hz power line interference from ECG, 

PCG, and EMG signals. This 4th-order Butterworth bandstop filter, designed with a stopband 
attenuation of 80 dB and a passband ripple of 1 dB, targeted the frequency range from 48.5 Hz 
to 51.5 Hz. This filtering step removed unwanted interference while preserving the signal quality 
crucial for biometric identification. 
Butterworth Bandpass Filter for Target Frequencies: 

To enhance the signals further, a Butterworth bandpass filter with a smooth, oscillation-
free frequency response was applied to ECG, PCG, and EMG signals: 
1. ECG Signal Processing: A bandpass filter with a passband of 0.5 Hz to 250 Hz [19] 
was used to capture relevant cardiac activity while filtering out extraneous noise. 
2. PCG Signal Processing: A bandpass filter with a frequency range of 20 Hz to 500 
Hz [16] was applied. This range effectively captured essential heart sounds, typically between 20 
Hz and 200 Hz, while preserving high-frequency elements like clicks and irregular heartbeats 
(up to 500 Hz) and low-frequency murmurs (above 20 Hz). 
3. EMG Signal Processing: EMG signals were filtered using a bandpass filter with a 
range of 50 Hz to 150 Hz. This frequency range preserved key signal components while reducing 
irrelevant noise, ensuring more accurate signal processing. The filter was designed with a 
stopband attenuation of 80 dB and a passband ripple of 1 dB, enhancing biological signal clarity. 

By improving the signal-to-noise ratio, these filtering steps facilitated the precise 
extraction of ECG, PCG, and EMG features needed for accurate classification and biometric 
authentication. 

After preprocessing, GTCC and MFCC features were extracted separately from each 
signal. This feature extraction aimed to reduce dimensionality and enhance algorithm efficiency, 
improving the overall performance of biometric identification. 
Feature Extraction: 

To reduce dimensionality and enhance algorithm performance, GTCC features were 
extracted separately from each ECG, PCG, and EMG signal after preprocessing. Three distinct 
GTCC features were taken from each signal to improve biometric identification and increase 
the accuracy and robustness of authentication. Figure 4 shows the process of extracting GTCC 
features from these signals. First, the preprocessed signals were passed through a gamma tone 
filter bank, which simulates human auditory perception by breaking the signals into different 
frequency bands. Next, logarithmic compression was applied to the filtered signals to reduce 
variations in dynamic range and highlight key perceptual features. After that, a Discrete Cosine 
Transform (DCT) was used on the compressed output to reduce feature correlation and create 
a compact representation. Finally, the extracted GTCC coefficients serve as critical features for 
classification. The entire process is computed as shown in equation 1 [20].  

𝐺𝑇𝐶𝐶𝑎 =
√2

𝑏
 ∑ log(𝑍𝑐) 𝑐𝑜𝑠 [

𝜋𝑐

𝐵
 (𝑎 −

1

2
)]

𝑏

𝑐=1

                (1) 

1 ≤ a ≤ M, where Zc is the signal energy in the city spectral band, b represents the number of 
Gammatone filters, and M is the number of GTCC. 

 
Figure 4. Flowchart depicting the steps involved in computing GTCCs. 
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After extracting GTCC features from each physiological signal, we further analyzed 
feature combinations in pairs to explore potential improvements in biometric authentication. 
Finally, we performed feature fusion by combining data from all three signals—ECG, PCG, and 
EMG—to assess overall performance. 

Using the same approach, MFCC features were also extracted individually from each 
filtered ECG, PCG, and EMG signal, as shown in Equation 2 [21]. Figure 5 illustrates the MFCC 
extraction process from preprocessed signals. This process begins with windowing, where 
signals are divided into short frames to analyze short-term frequency patterns. Next, the discrete 
Fourier transform (DFT) is applied to convert the signals into the frequency domain. The 
resulting frequency spectrum is then passed through a Mel-scale filter bank, which enhances 
frequency components relevant to human auditory perception. 

To further refine the features, a logarithmic transformation compresses the dynamic 
range, emphasizing key characteristics. The final step involves applying the discrete cosine 
transform (DCT) to achieve compact feature representation and decorrelation, resulting in 
MFCC coefficients commonly used in classification tasks. While MFCCs are well established in 
speech and audio processing, their application to biometric signals like ECG, PCG, and EMG 
is relatively recent. For each signal type, we extracted three unique MFCC features to ensure 
robust spectral characterization. The Mel-scale filter bank’s nonlinear frequency resolution helps 
capture critical signal variations effectively. 

𝑀𝐹𝐶𝐶𝑎[𝐾] =  ∑ 𝑆[i]  × 𝑐𝑜𝑠 [
𝜋𝑘

𝑛𝐹𝐵
 × (𝑖 −

1

2
)]

𝑁−1

𝑖=1

                (2) 

where k = 0,1,2…, nFB, where nFB represents the total number of filter banks. 
Similar to the GTCC analysis, we first evaluated the MFCC features for each signal 

individually. Next, we assessed their effectiveness in pairs and, finally, fused features from all 
three signals—ECG, PCG, and EMG—to measure their combined impact on biometric 
authentication accuracy. This step-by-step approach allowed us to systematically examine the 
performance of both GTCC and MFCC features at various fusion levels, ensuring a 
comprehensive evaluation of their effectiveness.  

 
Figure 5. Flowchart depicting the steps involved in computing MFCCs. 

Classification: 
Classification involves training models to assign input data to predefined categories. 

After feature extraction, we applied 10-fold cross-validation using various machine-learning 
classifiers. This technique splits the dataset into 10 parts, where 9 parts are used for training and 
1 for testing, to reduce overfitting and enhance model reliability. The classifiers used in this study 
included a wide neural network, SVM, SVM kernel, medium Gaussian SVM, fine tree, linear 
discriminant, ensemble bagged trees, fine KNN, and logistic regression kernel. The dataset was 
divided into 80% training and 20% testing to evaluate model performance. Among these 
classifiers, Fine KNN achieved the highest classification accuracy for GTCC-based feature 
classification. 
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KNN (K-Nearest Neighbors) assigns labels to data points based on their closest 
neighbors, making it a simple yet effective classification method. Its reliability and ease of use 
make it well-suited for biometric analysis, as it identifies patterns by analyzing the proximity of 
data points. Fine KNN, an improved version of traditional KNN, enhances classification 
accuracy by refining neighbor selection and distance measurements. 

The same classification techniques were applied to analyze MFCC-based features, again 
using 10-fold cross-validation. The classifiers evaluated included a wide neural network, SVM, 
SVM kernel, medium Gaussian SVM, fine decision tree, linear discriminant, ensemble bagged 
trees, fine KNN, and logistic regression kernel. In this case, the linear discriminant classifier 
achieved the highest classification accuracy, demonstrating its strong ability to differentiate 
biometric features. 

Linear discriminant analysis (LDA) is a machine learning technique that creates a linear 
combination of features to distinguish between two or more classes of objects or events. It can 
be used either as a standalone linear classifier or as a dimensionality reduction method before 
classification. LDA excels at separating data classes, particularly in high-dimensional datasets, 
making it highly effective for applications like image recognition and biometrics. It focuses on 
modeling variations between classes under the assumption that each class has a similar 
covariance structure. 

By systematically evaluating the GTCC and MFCC feature sets with the same 
classification techniques, we provided a comprehensive performance analysis. The results 
revealed that Fine KNN was the best classifier for GTCC-based features, while linear 
discriminant analysis performed best for MFCC-based features in this study. 
Results: 

This section evaluates the efficacy of biometric authentication using the GTCC and 
MFCC feature extraction algorithms. The effectiveness of cepstral features in biometric 
identification was tested through experiments on ECG, PCG, and EMG signals. 
GTCC-Based Approach: 

In this study, we developed a machine learning-based biometric identification system 
using ECG, PCG, and EMG signals. The proposed method first removes noise from the raw 
physiological signals and isolates relevant frequencies to extract key GTCC features and complex 
spectral information. Various classifiers were then applied to perform biometric identification. 

Initially, the system’s performance was evaluated using GTCC features from each 
signal—ECG, PCG, and EMG—individually. Next, we combined GTCC features in pairs, such 
as (ECG, PCG), (PCG, EMG), and (ECG, EMG), for further analysis. Finally, we fused all three 
GTCC feature sets (ECG, PCG, and EMG) and assessed the performance of each classifier. 
This multi-level fusion approach significantly enhanced the model’s accuracy and robustness, 
improving the overall effectiveness of the biometric authentication system. 

Table 1 presents the classification accuracy achieved by each classifier when using GTCC 
features from ECG, PCG, and EMG signals individually. The results highlight the unique 
strengths and capabilities of each classifier. Before applying fusion, this comparison 
demonstrates the classifiers’ potential for biometric verification. 

Among the classifiers, the ensemble bagged tree achieved the highest accuracy of 82.3% 
for ECG-based GTCC features. In contrast, the medium Gaussian SVM recorded the lowest 
accuracy, at 50.0%, for EMG signals. Additionally, the wide neural network classifier achieved 
an accuracy of 53.1% for PCG signals. These findings reflect the varying classification 
performances and provide insights into the strengths and limitations of different classifiers when 
applied to individual physiological signals. 
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Table 1. Accuracy of ECG, PCG, and EMG features using GTCC concerning various 
classifiers 

Classifier ECG PCG EMG 

Fine KNN 76.0% 49.5% 45.3% 

Linear Discriminant 79.2% 43.2% 46.9% 

Medium Gaussian SVM 80.7% 51.6% 50.0% 

Ensemble Bagged Trees 82.3% 50.0% 47.4% 

Wide Neural Network 72.4% 53.1% 40.1% 

SVM Kernel 24.5% 5.7% 13.0% 

Fine Tree 76.0% 40.1% 49.0% 

Logistic Regression 18.8% 5.2% 6.2% 

The classification accuracies obtained from GTCC features for individual ECG, PCG, 
and EMG signals were lower compared to previously reported results. To address the limitations 
of individual signals and enhance classification accuracy, we fused two feature sets to combine 
complementary information, as shown in Table 2. 

When ECG-based features were fused with PCG-based features, the linear discriminant 
classifier's accuracy improved to 92.2%. Similarly, fusing ECG and EMG features boosted 
system performance, achieving the highest accuracy of 94.8% with the linear discriminant 
classifier. For the PCG and EMG feature fusion, the lowest accuracy recorded was 85.4%, which 
still outperformed the highest accuracy (82.3%) from individual signal classification, as shown 
in Table 1. 

These findings demonstrate that signal fusion enhances classification performance and 
provides a more reliable feature set for biometric authentication. 

Table 2. Accuracy of combination pairs of ECG, PCG, and EMG features using GTCC 
concerning different classifiers 

Classifier ECG & PCG ECG & EMG PCG & EMG 
Fine KNN 88.5% 90.1% 85.4% 

Linear Discriminant 92.2% 94.8% 79.2% 
Medium Gaussian SVM 91.1% 92.2% 78.6% 
Ensemble Bagged Trees 89.1% 89.6% 78.6% 

Wide Neural Network 83.3% 85.9% 79.2% 
SVM Kernel 83.9% 76.6% 64.6% 
Fine Tree 84.4% 83.9% 62.0% 

Logistic Regression 69.8% 63.5% 43.8% 
Table 3. Performance metrics of various classifiers on the multi-modal fused feature set of 

ECG, PCG, and EMG signals using GTCC. 
Classifier Accuracy Precision Recall F1-Score 

Fine KNN 98.4% 98.7% 98.4% 98.37% 

Linear Discriminant 98.4% 98.51% 98.43% 98.43% 

Medium Gaussian SVM 96.9% 97.4% 93.7% 96.9% 

Ensemble Bagged Trees 94.8% 98.34% 94.78% 94.7% 

Wide Neural Network 92.7% 93.56% 92.7% 92.68% 

SVM Kernel 87.0% 88.6% 86.98% 87.01% 

Fine Tree 84.9% 82.4% 85.41% 85.14% 

Logistic Regression Kernel 68.2% 72.68% 68.21% 67.7% 

Building on the increased classification accuracy observed from combining two 
physiological signal features, we expanded this strategy by fusing all three signals—ECG, PCG, 
and EMG—into a multi-modal approach to assess the system’s performance. This 
comprehensive fusion further enhanced overall system accuracy. Both Fine KNN and linear 
discriminant classifiers achieved the highest classification accuracy of 98.4%, while the lowest 
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accuracy, 68.2%, was recorded by the logistic regression kernel. Notably, most classifiers 
surpassed 84% accuracy, with medium Gaussian SVM, ensemble bagged trees, and wide neural 
networks achieving accuracies of over 92%. 

In addition to accuracy, other performance metrics, such as precision, recall, and F1-
score, were computed to further evaluate the effectiveness of the proposed approach. The 
results, summarized in Table 3, demonstrate the substantial benefits of multi-signal fusion for 
biometric authentication, with clear improvements in classification performance. 

A bar graph in Figure 6 illustrates the classification accuracy of different classifiers for 
the multi-modal fusion of ECG, PCG, and EMG signals. Fine KNN and linear discriminant 
achieved the top accuracy of 98.4%, followed by medium Gaussian SVM at 96.9% and ensemble 
bagged trees at 94.8%. These findings emphasize the efficacy of fusing physiological signals to 
improve biometric authentication accuracy. 

 
Figure 6. Performance of different Classifiers Logistic Regression Kernel (LDK), Wide Neural 
Network (WNN), SVM Kernal (SVM-K), Fine KNN (F-KNN), Linear discriminant (LD), Fine-
Tree (F-Tree), Ensemble Bagged Tree (EBG), Medium Gaussian SVM (MG-SVM) using 
GTCC. 

The confusion matrix for cross-validation using the Fine KNN classifier is presented in 
Figure 7. Similarly, the confusion matrix for hold-out validation, based on a 70-30 data split, is 
shown in Figure 8. In both cases, the accuracy remained consistent at approximately 98.4%, 
demonstrating the model’s robustness and reliability. Validating the system’s performance across 
different data splits further reinforces the effectiveness and stability of the proposed biometric 
authentication system. 
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Figure 7. Confusion matrix through Cross-Validation using GTCC-based features 

 
Figure 8. Confusion matrix through Holdout Validation using GTCC-based features 

MFCC-Based Approach: 
In this approach, MFCC features were extracted from ECG, PCG, and EMG signals to 

assess their effectiveness in biometric authentication. The MFCC technique captures spectral 
envelope characteristics by applying Mel-scaling and the discrete cosine transform (DCT), 
ensuring robust feature extraction from physiological signals. 

Similar to the GTCC-based method, classification performance was first evaluated by 
independently extracting MFCC features from ECG, PCG, and EMG signals. Next, feature 
fusion was applied in pairs—(ECG, PCG), (PCG, EMG), and (ECG, EMG)—to explore the 
impact of multimodal integration. Finally, MFCC features from all three signals (ECG, PCG, 
and EMG) were fully combined, and different classifiers were tested to assess their effectiveness. 



                                 International Journal of Innovations in Science & Technology 

March 2025|Special Issue |UOG                                                                 Page |120 

The results showed that feature fusion significantly enhanced the accuracy of biometric 
authentication, highlighting the benefits of integrating diverse physiological signals for improved 
individual identification. Among the classifiers used, the linear discriminant classifier achieved 
the highest accuracy with MFCC features, demonstrating its superior ability to distinguish 
distinct biometric patterns. 

Table 4 presents the classification accuracies achieved by various classifiers when MFCC 
features were extracted separately from ECG, PCG, and EMG signals. The results emphasize 
the varying effectiveness of each classifier in biometric authentication and provide insights into 
their performance before feature fusion. The linear discriminant classifier achieved the highest 
accuracies, with 94.3% for ECG, 67.7% for PCG, and 85.9% for EMG signals, underscoring its 
strength in differentiating biometric patterns across different physiological signals. Additionally, 
these accuracies surpassed those obtained with GTCC features, as shown in Table 1. 
Table 4. Accuracy of individual ECG, PCG, and EMG features concerning various classifiers 

using MFCC features. 

Classifier ECG PCG EMG 

Fine KNN 87.5% 64.6% 84.6% 

Linear Discriminant 94.3% 67.7% 85.9% 

Medium Gaussian SVM 88.0% 64.6% 83.3% 

Ensemble Bagged Trees 87.0% 62.0% 97.6% 

Wide Neural Network 85.9% 61.5% 82.3% 

SVM Kernel 91.7% 63.0% 80.2% 

Fine Tree 64.1% 46.4% 57.3% 

Logistic Regression 78.1% 51.6% 67.2% 

The classification accuracies derived from MFCC features for individual ECG, PCG, 
and EMG signals were lower compared to previously reported studies. To address this 
limitation, feature sets were fused to evaluate the impact of combining complementary 
information, as outlined in Table 5. 

The fusion of ECG and PCG features significantly enhanced performance, with the 
linear discriminant classifier achieving an accuracy of 99.0%. Similarly, when ECG and EMG 
features were combined, the system’s performance further improved, attaining a maximum 
accuracy of 96.4% with the same classifier. In the case of PCG and EMG feature fusion, the 
recorded accuracy was 95.3%, which exceeded the highest accuracy obtained from any individual 
signal (as indicated in Table 4). 

These findings demonstrate that signal fusion enhances classification performance, 
resulting in a more robust and reliable feature set for biometric authentication. This 
improvement emphasizes the value of integrating diverse physiological signals to strengthen the 
overall accuracy and reliability of the proposed biometric system. 
Table 5 Accuracy of combination pairs of ECG, PCG, and EMG features concerning different 

classifiers using MFCC features 

Classifier ECG & PCG ECG & EMG PCG & EMG 

Fine KNN 92.2% 92.7% 91.7% 

Linear Discriminant 99.0% 96.4% 95.3% 

Medium Gaussian SVM 92.2% 92.2% 91.7% 

Ensemble Bagged Trees 91.7% 87.5% 83.9% 

Wide Neural Network 82.5% 88.5% 90.6% 

SVM Kernel 91.7% 81.2% 81.8% 

Fine Tree 62.5% 58.3% 57.7% 

Logistic Regression 83.9% 70.8% 69.3% 
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Table 6. Performance metrics of various classifiers on the multi-modal fused feature set of 
ECG, PCG, and EMG signals using MFCC features. 

Classifier Accuracy Precision Recall F1-Score 

Fine KNN 98.4% 98.4% 97.9% 97.9% 

Linear Discriminant 100% 100% 100% 100% 

Medium Gaussian SVM 98.4% 99.2% 98.9% 98.95% 

Ensemble Bagged Trees 97.9% 98.7% 98.8% 98.86% 

Wide Neural Network 97.4% 938.7% 98.91% 98.90% 

SVM Kernel 95.8% 98.6% 98.7% 98.72% 

Fine Tree 67.7% 96.30% 96.45% 96.35% 

Logistic Regression 
Kernel 

89.1% 98.50% 98.6% 98.55% 

Building upon the improved classification accuracy observed with the fusion of two 
physiological signals using MFCC features, this strategy was extended to integrate all three 
signals—ECG, PCG, and EMG—resulting in a multi-modal biometric authentication system. 
This comprehensive fusion approach significantly enhanced overall system performance, 
surpassing the accuracy achieved with the GTCC-based method. 

The linear discriminant classifier achieved the highest classification accuracy of 100.0%, 
underscoring the effectiveness of feature integration from multiple modalities. Additionally, Fine 
KNN and medium Gaussian SVM delivered strong performances, each reporting a promising 
accuracy of 98.4%, further validating the robustness of the fused feature set. Although most 
classifiers demonstrated high accuracy, the fine tree classifier recorded the lowest accuracy of 
67.7%, suggesting that certain models may be less suited for multi-modal biometric 
authentication. 

These results emphasize the potential of this multi-modal approach in achieving highly 
reliable identity verification. To further evaluate the system’s effectiveness, additional 
performance metrics, including precision, recall, and F1-score, were computed, offering a more 
detailed assessment of the proposed method’s efficacy. 

The bar graph in Figure 9 illustrates the classification accuracy of various classifiers for 
the suggested multi-modal system integrating ECG, PCG, and EMG signals. The linear 
discriminant classifier attained the peak accuracy of 100%, followed by Fine KNN and medium 
Gaussian SVM, both exhibiting exceptional results. These findings reaffirm the significant 
impact of signal fusion on biometric authentication, demonstrating a substantial enhancement 
in classification performance and overall system reliability. 

 
Figure 9. Performance of different Classifiers using MFCC features. 
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Figure 10 displays the confusion matrix obtained using the linear discriminant classifier 
with cross-validation, while Figure 11 presents the confusion matrix for hold-out validation with 
a 70-30 data split. In both cases, the accuracy remained consistently high, achieving a perfect 
score of 100%. 

This exceptional result highlights the model’s robustness and reliability. The stable 
performance across different validation techniques further reinforces the effectiveness of the 
proposed biometric authentication system, demonstrating its strong generalization capability 
and potential for real-world applications. 

 
Figure 10. Confusion matrix of Cross-Validation using MFCC based features 

 
Figure 11. Confusion matrix of Holdout Validation using MFCC’s features 
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Performance Comparison of GTCC and MFCC-Based Biometric Authentication: 
The performance evaluation of both GTCC and MFCC-based approaches underscores 

the effectiveness of spectral features in biometric authentication using ECG, PCG, and EMG 
signals. Initially, when individual signals were analyzed using GTCC features, the highest 
accuracy of 82.3% was achieved for ECG with the ensemble bagged tree classifier, while PCG 
and EMG showed lower accuracies of 53.1% and 50.0%, respectively, using wide neural network 
and medium Gaussian SVM. In contrast, the MFCC-based approach outperformed GTCC, with 
accuracies of 94.3% for ECG, 67.7% for PCG, and 85.9% for EMG, all using the linear 
discriminant classifier. These results indicate that MFCC features offer a more effective spectral 
representation for biometric classification. 

A similar trend was observed with pairwise feature fusion. In the GTCC-based system, 
fusion enhanced accuracy, with ECG and PCG reaching 92.2%, ECG and EMG achieving 
94.8%, and PCG and EMG yielding 85.4%, using fine KNN and linear discriminant classifiers. 
However, the MFCC-based approach demonstrated even better performance: fusion of ECG 
and PCG resulted in 99.0% accuracy, ECG and EMG reached 96.4%, and PCG and EMG 
achieved 95.3%, all with linear discriminant analysis. This highlights the superior ability of 
MFCC features to integrate complementary information from multiple signals. 

The most notable improvement occurred when all three signals—ECG, PCG, and 
EMG—were combined. In the GTCC-based method, Fine KNN and linear discriminant 
achieved a maximum accuracy of 98.4%, while the logistic regression classifier recorded the 
lowest accuracy at 68.2%. In contrast, the MFCC-based system achieved a perfect 100% 
accuracy using the linear discriminant classifier, demonstrating its superior ability to extract 
unique biometric features. 

Overall, the MFCC-based approach consistently outperformed the GTCC-based 
method at every stage—whether for individual signals, pairwise fusion, or full feature fusion of 
ECG, PCG, and EMG signals. The MFCC features' ability to capture detailed spectral variations 
and signal characteristics contributed to higher accuracy, making them a more reliable choice for 
biometric authentication. This evaluation demonstrates that MFCC features provide a more 
robust, accurate, and effective solution for biometric identification compared to GTCC features. 
Discussion: 

The findings of this study demonstrate that the fusion of ECG, PCG, and EMG signals 
significantly enhances biometric authentication accuracy, with MFCC-based feature extraction 
achieving 100% classification accuracy. The comparative evaluation of machine learning 
classifiers reveals that Fine KNN and Ensemble Bagged Trees outperform other traditional 
models, highlighting the effectiveness of fusion-based physiological biometrics. The superior 
performance of cepstral features (MFCC, GTCC) over traditional statistical features aligns with 
previous research that emphasizes the importance of frequency-domain representations for 
physiological signal classification (Abo-Zahhad et al., 2015). Additionally, the use of a real-world 
dataset collected from 32 participants provides a practical evaluation of the system’s capabilities, 
making it more applicable to biometric authentication scenarios than studies relying on publicly 
available datasets. 

While the study achieves high accuracy with traditional machine learning models, it does 
not benchmark performance against deep learning-based biometric authentication techniques, 
such as CNNs, LSTMs, or transformer-based models. Recent research indicates that CNNs 
excel in feature extraction by automatically learning hierarchical patterns in physiological signals, 
outperforming handcrafted feature approaches in biometric authentication (Ku et al., 2024). 
Similarly, LSTMs and Bi-LSTMs are highly effective in time-series processing, making them 
well-suited for physiological signal modeling.  

The performance of the proposed biometric authentication system was compared with 
existing research, as shown in Table 7. The results indicate that our system achieved competitive 
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or even better classification accuracy than previously reported methods. Earlier studies have 
used different techniques for biometric authentication. For instance, the study in [8] applied 
EMD and achieved an accuracy of 98.4%. The study in [12] used a wavelet transform method, 
reaching 90.52% accuracy, while [22] employed wavelet-based classification and reported 86.7% 
accuracy. Similarly, [23] adopted an advanced composite multiscale dispersion entropy 
(RCMDE) approach, achieving 96.08% accuracy. 

In [16], researchers reached 100% accuracy by extracting four MFCCs and four GTCCs 
features from combined ECG and PCG signals. Notably, our method achieved the same 100% 
accuracy using just three MFCC features from EMG signals, demonstrating its efficiency and 
effectiveness. This difference highlights that our approach is a practical option for biometric 
authentication, as it simplifies feature extraction while maintaining excellent performance. 

Additionally, [16] used both PCG and ECG signals in a multimodal setup, whereas our 
system reached the same accuracy by extracting MFCC features from a combination of ECG, 
PCG, and EMG signals. This underscores the reliability and effectiveness of our method, as it 
delivers high classification accuracy with reduced computational complexity. Moreover, our 
system outperformed the accuracy reported in [12], [22], and [23], further confirming the 
importance of MFCC features in biometric validation. These findings emphasize the variety of 
feature sets and classification models explored, each with varying accuracy levels in different 
biometric data classification contexts. 

The study also found that MFCC features outperformed GTCC features in terms of 
classification accuracy. Using the Linear Discriminant classifier, the system achieved 100% 
accuracy with MFCC features, while GTCC features yielded slightly lower accuracy. This 
suggests that MFCC features capture more distinctive biometric traits, leading to improved 
authentication performance. 

Despite these promising results, the proposed approach has some limitations. The 
dataset includes only 32 participants, which may reduce its generalizability to larger populations. 
Expanding the dataset would improve reliability. Additionally, physiological signals can be 
affected by environmental noise, sensor placement, and participant movement, making noise 
reduction techniques necessary for real-time applications. Another challenge is computational 
complexity, as feature extraction and classification involve multiple processing steps that require 
efficient hardware and optimization for real-time use. Finally, acquiring physiological signals 
through electrodes (e.g., ECG) may cause discomfort for some users. Future research should 
explore non-invasive signal acquisition techniques to enhance user comfort. 

Table 7 Comparison of proposed work with previously reported results 

Study Method Classification Accuracy 

[8] ED SVM-C 98.4% 

[12] Wavelet Transform BP-MLP- ANN 90.52% 

[22] Wavelet EB-Trees 86.7% 

[16] PCG and ECG fusion, IIR filter Ensembled 100% 

[23] RCMDE ED 96.08% 

This work GTCC, Fine KNN, 98.4%, 100% 

This work MFCC Linear Discriminant 98.4% 

An important aspect of biometric authentication is security against adversarial attacks. 
Although the proposed system demonstrates high accuracy in controlled conditions, it is 
essential to assess its robustness against spoofing attacks, synthetic signal injections, and 
adversarial perturbations. Prior research (Jain & Nandakumar, 2016) indicates that biometric 
authentication models can be vulnerable to signal replay attacks, where recorded physiological 
data is used to bypass security systems. Future work should incorporate adversarial testing, noise 
injection, and spoofing resilience analysis to ensure system integrity in high-security 
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environments. Additionally, integrating secure biometric storage solutions, such as blockchain-
based identity management, could enhance data security and user privacy. 

Finally, the dataset size and participant diversity present limitations that may impact 
model generalizability. The dataset used in this study consists of 32 participants (29 men, 3 
women), raising concerns regarding demographic bias in classification performance. Prior 
research (Cheng et al., 2020) suggests that biometric models trained on unbalanced datasets may 
exhibit lower accuracy across diverse population groups. Expanding the dataset to include a 
balanced representation of gender, age groups, and medical conditions will improve model 
robustness and enhance fairness in biometric authentication systems. Additionally, evaluating 
model performance on external datasets will help assess its applicability across different 
biometric acquisition conditions. 
Conclusion: 

This study presents a machine learning-based biometric authentication system that uses 
the fusion of physiological signals. Raw signals were collected using the BIOPAC MP-36 device 
and preprocessed with Butterworth bandpass and notch filters to eliminate noise and extract 
relevant frequencies. Next, GTCC and MFCC cepstral features were extracted to capture the 
spectral characteristics of the signals. 

The system’s performance was evaluated separately using two feature extraction 
approaches (GTCC and MFCC) applied to ECG, PCG, and EMG signals. Various machine 
learning classifiers were then used to assess the effectiveness of these features. After analyzing 
the performance of each physiological signal individually, pairwise feature fusion was performed 
for both GTCC and MFCC approaches to enhance classification accuracy. Finally, features from 
all three signals were combined to further improve system performance. 

The results showed that MFCC-based features outperformed GTCC-based features in 
biometric authentication. The highest accuracy achieved with GTCC features was 98.4% using 
the Fine KNN and Linear Discriminant classifiers, whereas MFCC-based fusion achieved a 
perfect 100% accuracy with the Linear Discriminant classifier. This highlights the superior 
robustness and discriminative power of MFCC features for biometric authentication. 

To further evaluate the proposed method, we plan to expand the dataset by including more 
participants and recordings, which will allow for a more comprehensive assessment of the 
system’s reliability and generalization. Additionally, we aim to explore advanced feature 
extraction techniques and deep learning frameworks to enhance the accuracy and reliability of 
biometric authentication on larger datasets. 
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recision livestock management is transforming traditional agricultural practices by 
boosting productivity, increasing yield, and automating tasks, all while reducing labor 
requirements and minimizing errors. Conventional methods for animal recognition are 

often unreliable, which has led to a growing preference for using cameras to identify animals, 
monitor their health, manage data, and maintain cattle records. However, small-scale farms 
with limited livestock, such as cows and goats, frequently face overfitting problems in 
traditional machine learning models due to insufficient training data. Identifying individual 
cows based on facial features becomes more effective after detecting the cow’s face. This study 
addresses these challenges by fine-tuning YOLOv8, a pretrained model, using a mix of self-
captured images and publicly available datasets to detect cow faces in complex environments. 
Integrating publicly available data and leveraging a pretrained COCO model has significantly 
improved the model’s ability to generalize and accurately detect cow faces. YOLOv8, equipped 
with the COCO pretrained model, successfully detects nearly all types of cow faces, which can 
then be used for individual cow classification. This approach enhances cow recognition 
accuracy, contributing to more efficient farm management applications. 
Keywords: Livestock management, Facial Recognition, Cow face detection, Transfer learning, 
Yolov8 
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Introduction: 
The agriculture industry is evolving rapidly by integrating advanced technologies into 

traditional methods, resulting in higher efficiency and productivity. One such advancement is 
the emergence of data-driven approaches in farming, which has given rise to a new field known 
as Precision Agriculture. These innovative techniques play a key role in livestock management, 
helping to meet the growing global demand for food [1]. However, countries that rely heavily 
on livestock face challenges in food storage and agricultural resources, which are vital for 
human benefit. Additionally, significant issues related to animal health, labor shortages, and 
overall management persist [2]. As the need for increased animal production grows, it is equally 
essential to implement smart, efficient systems that can enhance productivity while ensuring 
long-term sustainability [3]. Traditional livestock management methods fall short in today’s 
world due to their time-consuming nature, high risk of errors, and dependence on manual 
labor. Research shows that poor labor practices can negatively impact livestock health, 
increasing the likelihood of disease outbreaks due to insufficient care and ineffective 
management [4]. Another common issue is disputes among farmers, which often arise from 
the mixing of animals and the inability to track individual cows accurately [5]. To tackle these 
problems, various identification and tracking methods have been developed. Broadly, there 
are three types of cow identification techniques: permanent, semi-permanent, and temporary 
methods. 

Permanent identification methods involve physically marking animals. Although these 
methods are widely used [6], they are often unreliable, especially when managing large herds. 
Semi-permanent methods, such as attaching tags or collars, are commonly adopted for 
tracking cows. However, these methods are prone to issues such as tag loss, wear and tear, 
and inaccuracies due to the involvement of manual labor [7]. Temporary methods, like RFID 
(Radio-Frequency Identification) tags, have gained popularity because they enable automated 
tracking. Despite their advantages, RFID systems often require frequent maintenance, and 
farmers report concerns about their durability. Moreover, the noise, overhead machinery, and 
handling stress during installation may disturb the animals. There is an increasing need for 
advanced solutions that can accurately record the history of cows. Camera-based systems have 
proven to be effective for this purpose. Unlike traditional methods, computer vision-based 
systems offer accurate and widely adopted solutions for cow recognition [8]. Since cows 
naturally recognize each other by their facial features, facial recognition technology can be a 
practical and efficient way to identify individual cows without the need for physical tags. This 
approach enhances sustainability and scalability, particularly for large herds [9]. 

One common challenge in object detection is dataset bias, which arises from limited 
and non-diverse datasets. When a model is trained on a small, specific dataset, it performs well 
with similar input but struggles with generalization. The scarcity of images captured under 
varying conditions—such as different weather, lighting, and camera angles—reduces the 
model’s robustness. For instance, cow recognition can fail due to pose variations, including 
shifts in camera angles and cow movements, especially involving facial features. Convolutional 
Neural Networks (CNNs) are commonly used for facial recognition because of their ability to 
extract complex features. However, CNN models may suffer from overfitting when trained 
on small datasets [10]. Addressing these challenges is critical for effective livestock 
management, where variations in lighting, angles, and animal movement are inevitable [11]. 
Data preprocessing and augmentation can improve the performance of cow recognition 
models, but achieving generalization still requires diverse and extensive datasets. For higher 
accuracy, it is essential to first detect cow faces and then classify them based on their facial 
features. A supervised learning approach, with manual annotations to localize cow faces before 
classification, can enhance accuracy [12]. In the current study, a transfer learning-based 
approach is proposed, utilizing YOLOv8, a pre-trained model on the COCO dataset, to 
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accurately detect cow faces. This pre-trained model can be fine-tuned with a smaller, 
specialized dataset to improve cow face localization. YOLO (You Only Look Once) is a 
cutting-edge object detection model known for its speed and real-time accuracy, making it 
well-suited for this task [13]. 
Objectives: 

The objective of this research is to enhance cow face detection under varying 

background conditions, angles, and lighting by leveraging a pre-trained model. Specifically, the 

study aims to fine-tune YOLOv8, a state-of-the-art object detection model, using a dataset of 

annotated frames derived from self-collected videos and publicly available sources. By 

combining the precision of YOLOv8 with a diverse dataset, the study seeks to improve 

detection accuracy and ensure reliable cow face recognition in complex environments. 

Materials and Methods: 

Investigation Site: 

The dataset for cow facial recognition was created by recording videos of 37 different 

cows. To generate diverse, environment-based images, every 10th frame from the videos was 

extracted, and cow faces were manually annotated using the Roboflow tool. Additionally, 

annotated images from publicly available web-based datasets were incorporated to enhance 

generalization and achieve higher detection accuracy. The fine-tuning of the pre-trained 

YOLOv8 model was performed in a simulation environment using this combined dataset. 

Methodology: 

The proposed methodology consists of several key steps, as outlined in Figure 1. 

 
Figure 1. Workflow for Cow Face Detection using YOLOv8: Input videos are 

processed through frame extraction and annotated for training. The Yolov8 model is 
fine-tuned and optimized for model evaluation. Model is loaded and tested with web-

based images. 
Dataset: 

Videos of 37 cows were recorded from multiple angles under different lighting and 
movement conditions. From these videos, 1,078 frames were extracted at regular intervals, 
with every 10th frame selected to form the initial dataset. To increase the dataset's size and 
diversity, 1,410 annotated images were added from a publicly available dataset on Roboflow. 
This brought the total number of images to 2,488 before preprocessing, with three distinct 
classes. To maintain uniformity, the external dataset classes were consolidated into a single 
class, labeled CowFace, ensuring consistency across all images. The dataset was then 
preprocessed to prepare it for training. All images were resized to 640×640 pixels to 
standardize their dimensions while preserving key features. After resizing, the dataset was split 
into three subsets: 1,800 images for training, 560 for validation, and 86 for testing. To enhance 
the training set's variability, data augmentation techniques were applied, including horizontal 
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flips, zoom cropping (0–20%), rotations (-15° to +15°), and shear transformations (±10° both 
horizontally and vertically). These augmentations generated three additional versions of each 
image, resulting in a total of 5,096 images after preprocessing and augmentation. This process 
ensured a diverse dataset, optimized for effective model training. 
YOLOv8 Architecture: 

The basic architecture of the original YOLO version is illustrated in Figure 2. 

 
Figure 2. The YOLOv1 architecture [13] processes an input image through sequential 
convolutional layers for feature extraction, reduces dimensions with max-pooling, and 

outputs object detection predictions through fully connected layers. 
YOLOv1 Architecture: 

The original YOLOv1 architecture [13], proposed by Joseph Redmon et al., starts with 
a 7×7 convolutional layer (stride 2) for large-scale feature extraction, followed by a 2×2 max-
pooling layer (stride 2). Next, the network uses alternating 1×1 and 3×3 convolutional layers 
to balance feature extraction and dimensionality reduction, incorporating a total of 24 
convolutional layers. Finally, two fully connected layers are added, with the last layer producing 
a 7×7×30 output. This output includes bounding boxes, confidence scores, and class 
probabilities. The design integrates object detection into a single neural network to improve 
efficiency. Over time, several enhancements led to the development of YOLOv8, a more 
advanced and stable version that integrates community-driven ideas and modern techniques 
for better performance and flexibility. While no official paper on YOLOv8 has been published 
yet, the available architecture can be found in [14] and is illustrated in Figure 3. 

 
Figure 3. YOLOv8 predicts object centers directly (anchor-free), making it faster and 

simpler. It uses a new C2f module for better feature extraction and reduces model size with 
efficient design tweaks. Mosaic data mixing is used early in training but stopped later for 

accuracy. 
YOLOv8: 

YOLOv8 brings several key improvements that enhance both its performance and 
efficiency. It predicts object centers directly, eliminating the need for anchor boxes. This 
simplifies the model, making it faster and more efficient. Additionally, YOLOv8 includes a 
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C2f module, which is optimized to extract features more effectively from frames, even in 
complex environments. The model is scalable and works well on both high-performance 
GPUs and edge devices. 
Implementation of YOLOv8: 

YOLOv8 has shown outstanding performance in detecting cow faces across different 
test datasets and real-world web images. Its high precision is achieved by using transfer 
learning with COCO weights, followed by fine-tuning on a custom dataset. This dataset, 
created from video frames and augmented Roboflow images, captures variations in lighting, 
angles, and environmental conditions, ensuring reliable generalization. Trained over 50 epochs 
at a 640×640 resolution with a batch size of 16, the model focuses on single-class detection to 
streamline its accuracy on cow faces. It has already outperformed SSD, Faster R-CNN, and 
earlier YOLO versions in both speed and accuracy. Thanks to its real-time detection 
capabilities and efficient computational design, YOLOv8 is an ideal solution for livestock 
monitoring systems. By balancing data diversity with optimized architecture, it provides 
scalable and high-performance results. The implementation of YOLOv8 for cow face 
detection is based on three key mathematical principles: loss optimization, weight updates, and 
bounding box prediction. The YOLO loss function combines bounding box regression, object 
confidence, and classification loss to improve detection accuracy. 
YOLO Trainer Framework: 

The YOLO Trainer Framework fine-tunes YOLOv8 models to detect cow faces, 
ensuring a streamlined workflow for training, verification, and accurate area estimation of the 
detected cow face. This framework also automates dataset management, model training, and 
evaluation while saving the best-performing models for improved accuracy. Additionally, 
during system training, it records matrices to estimate test images, making it a reliable and 
effective solution for cow face detection. Table 1 below provides details on the 
hyperparameters used in the code. 
Table 1. The YOLOTrainer fine-tunes YOLOv8 for cow face detection using epochs=50, 

batch=16, imgsz=640, workers=8, optimizer="SGD", patience=10, and pretrained=True. It 
organizes the project structure, trains on data.yaml, and saves the best model. Table 1 is 

showing details of hyperparameters 

Hyperparameter Value Description 

pretrained_model "yolov8n.pt" Pretrained YOLO model used for training 

data self.data_path Path to the dataset configuration file (data.yaml) 

epochs 50 Number of training epochs 

batch 16 Batch size during training 

imgsz 640 Input image size (in pixels) 

workers 8 Number of worker threads for data loading 

optimizer "SGD" Optimization algorithm used for training 

patience 10 Number of epochs with no improvement before 
early stopping 

pretrained True Whether to use a pretrained model 

project self.results_dir Directory to store training results 

name "fine_tune_coco" Experiment name for saving results 

pretrained_model "yolov8n.pt" Pretrained YOLO model used for training 

data self.data_path Path to the dataset configuration file (data.yaml) 

Results: 
YOLOv8-based facial recognition has successfully detected cow faces from test 

datasets and real-world web images. The model was fine-tuned using a custom dataset that 
included video frame captures and additional images from a publicly available Roboflow 
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dataset. This dataset was selected for its diversity, featuring variations in angles, lighting 
conditions, and cow face characteristics. The fine-tuning process involved 50 training epochs, 
a batch size of 16, and image resizing to 640×640 pixels, aligning with the preprocessing steps. 
YOLOv8’s flexibility in handling single-class detection and its compatibility with augmented 
datasets made it a perfect fit for this research. Compared to earlier YOLO versions and other 
object detection frameworks like SSD and Faster R-CNN, YOLOv8 demonstrated superior 
inference speed and overall performance. 

 
Figure 4. Left: Manually labelled image of cow faces; Right: YOLOv8 prediction of the 

same image. The model, fine-tuned on a diverse custom dataset, accurately detects cow faces 
under varying conditions, as shown in the comparison. 

The trained model was also tested with various online images. Figure 5 below 
illustrates the model's functionality, demonstrating its ability to generalize and detect any cow 
face effectively. 

 
Figure 5 shows a raw image sourced from the web on the left side, representing the 

original picture. After processing, the fine-tuned model accurately detects and labels the cow 
face, with the processed image displayed on the right side. The model's ability to generalize on 
smaller datasets without overfitting enhances its practical utility. Additionally, its streamlined 
deployment and real-time prediction capabilities make it a powerful tool for livestock 
monitoring. The combination of a robust architecture, transfer learning using COCO weights, 
and a fine-tuned dataset ensured YOLOv8's high performance in detecting cow faces, proving 
its superiority over conventional methods. 

Figure 6 illustrates the progression of key performance metrics during training. 
Precision stabilizes at around 0.976, reflecting a low false-positive rate. Recall converges near 
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0.955, indicating the model’s effectiveness in detecting relevant objects. The mAP50 metric 
reaches an average of 0.981, highlighting the model’s strong detection accuracy at an IoU 
threshold of 0.5. Together, these metrics demonstrate the YOLOv8 model's high reliability in 
object detection tasks. 

 
Figure 6. Precision, recall, and mAP50 metrics stabilize at high values, demonstrating 

consistent, reliable, and well-balanced object detection performance. 
Figure 7 illustrates the trends of box loss, classification loss, and distributional focal 

loss for both training and validation datasets. The gradual decrease in training losses indicates 
the model's ability to effectively learn and adapt to the dataset. Although validation losses are 
slightly higher, suggesting minor generalization challenges, the close alignment of the training 
and validation curves indicates minimal overfitting. This demonstrates that the model 
successfully captures essential features while maintaining generalization. 

 
Figure 7 Training and validation losses show a steady decline, indicating effective learning 

with minimal overfitting, despite slightly higher validation losses 

 
Figure 8. A clear linear relationship between mAP50 and mAP50-95 indicates consistent 

detection accuracy across different IoU thresholds. 
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The scatterplot in Figure 8 shows a strong linear correlation (≈ 0.98) between mAP50 and 
mAP50-95. This indicates that improving detection accuracy at a 0.5 IoU threshold also 
enhances performance across stricter thresholds. The near-linear pattern highlights the YOLO 
model’s robustness in handling varying levels of localization strictness. Performance metrics 
are calculated after each training epoch to assess the model’s detection ability. Key metrics 
include: 

• Precision: The proportion of true positives out of all predicted positives, 
• Recall: The proportion of true positives out of all actual positives, and 
• mAP50: Mean average precision at a 0.5 IoU threshold. 

 The mAP50-95 metric provides a broader evaluation by measuring performance 
across a range of IoU thresholds (from 0.5 to 0.95). Additionally, validation losses, computed 
using unseen data, help assess how well the trained model can generalize to new data. 

 
Figure 9. The correlation heatmap highlights key metric interdependencies, showing how 

reduced losses improve detection accuracy and reflecting the optimization behavior of 
learning rates. 

The heatmap in Figure 9 reveals relationships between key metrics, losses, and learning 
rates. It shows strong negative correlations between box loss and mAP50/mAP50-95, 
meaning that lower localization errors lead to higher detection accuracy. Positive correlations 
between precision and recall demonstrate their interdependence, where enhancing one tends 
to improve the other. Learning rate parameters (e.g., lr/pg0, lr/pg1, and lr/pg2) exhibit weak 
direct correlations with precision and recall, indicating that they primarily optimize model 
weights rather than directly affecting evaluation metrics. Overall, the heatmap provides 
valuable insights into the optimization dynamics and performance interdependencies of the 
model. The results confirm the YOLO model’s high precision and robustness. The strong 
correlation between mAP50 and mAP50-95 highlights the model’s ability to maintain 
consistent performance across various IoU thresholds, making it well-suited for applications 
requiring high detection accuracy. Deviations in validation losses suggest potential areas for 
further improvement, such as applying advanced augmentation techniques or fine-tuning 
hyperparameters. These findings emphasize the model’s applicability to real-world scenarios 
where accurate and reliable object detection is critical. 

Table 2 presents an analysis of training and validation losses alongside performance 
metrics, demonstrating the model’s effectiveness in object detection. Training box loss steadily 
decreased across epochs, with validation box loss following a similar downward trend. Slightly 
higher validation loss values indicate good generalization with minimal overfitting. 
Classification losses for both training and validation also decreased consistently, reflecting the 
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model’s growing accuracy in object classification. Performance metrics further underscore the 
model’s robustness, with precision averaging 0.976, recall at 0.955, and mAP50 reaching an 
impressive 0.981, which reflects excellent detection accuracy at an IoU threshold of 0.5. 
Additionally, the mAP50-95 average of 0.812 demonstrates reliable performance across 
varying IoU thresholds. Gradual reductions in learning rates across parameter groups (lr/pg0, 
lr/pg1, lr/pg2) contributed to smooth convergence, preventing loss oscillations and ensuring 
stable training progress. 
Discussion: 

The findings of this study highlight significant advancements in improving model 
generalization and real-world applicability through strategic data augmentation and dataset 
diversity. By fine-tuning YOLOv8 using a combination of self-captured images and publicly 
available datasets, the model demonstrated enhanced robustness in detecting cow faces under 
varied lighting, angles, and background conditions. This is a notable improvement compared 
to earlier object detection frameworks, such as SSD, Faster R-CNN, and YOLOv4, which 
have been reported to struggle with overfitting when trained on limited datasets. The 
integration of COCO-pretrained weights further improved YOLOv8's ability to generalize to 
complex environments, making it more effective and scalable for large-scale livestock 
monitoring applications. YOLOv8 was chosen over conventional methods like R-CNN and 
older YOLO versions due to its superior speed and efficiency. Its enhanced backbone 
structure and anchor-free detection improve object localization, especially in complex 
environments. Compared to earlier YOLO versions, YOLOv8 offers higher precision, better 
recall, and faster real-time performance. 

Self-captured images alone are insufficient for generalization due to the similarity in 
environmental conditions. To reduce overfitting and enhance generalization, publicly available 
data was incorporated into the dataset. Fine-tuning further improved performance by enabling 
the model to learn dataset-specific features, thereby reducing false positives and improving the 
accurate detection of cow faces amid complex background elements. YOLOv8 is also more 
robust than older versions, effectively handling variations in lighting, occlusion, and pose. 
Fine-tuned models generally perform better in real-world applications compared to generic 
pretrained models, making YOLOv8 a suitable choice for practical deployment. 

In addition to generalization, YOLOv8's comparative performance offers practical 
implications for precision livestock management. The model’s anchor-free detection 
mechanism and advanced C2f module significantly enhance object localization, resulting in 
reduced computational overhead, faster inference speed, and improved accuracy. These 
advantages not only make YOLOv8 suitable for deployment on high-performance GPUs but 
also adaptable for edge devices, which are increasingly used in smart farms. By achieving high 
precision, recall, and mAP scores, the proposed approach enhances the accuracy of cow face 
detection, which can help farmers manage animal health, monitor feeding patterns, and resolve 
disputes in mixed-herd environments. While the model shows promise, future refinements 
could further enhance its practical utility and societal impact. Exploring multi-class detection 
to differentiate between various cattle breeds or integrating temporal analysis to track 
individual cows over time could offer additional functionalities. Furthermore, incorporating 
this model into broader Internet of Things (IoT)-based farm management systems could 
enable real-time livestock monitoring and automated decision-making. Ethical considerations, 
including animal stress from continuous surveillance and privacy concerns regarding farm data 
collection, should also be addressed in future implementations. These enhancements would 
pave the way for a fully autonomous, scalable livestock monitoring system, contributing to 
increased productivity, reduced labor requirements, and improved animal welfare. 
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Table 2. shows a detailed breakdown of training and validation losses, highlighting steady improvements in object localization and classification accuracy. 
Key metrics—precision (0.976), recall (0.955), and mAP50 (0.981)—demonstrate the model’s strong detection capability. The gradual learning rate 

reductions further facilitated smooth convergence and stable training progress. 

epoch train/box
_loss 

train/cls
_loss 

metrics/precision
(B) 

metrics/recall
(B) 

metrics/
mAP50(B) 

metrics/mAP
50-95(B) 

val/box
_loss 

lr/pg0 lr/pg1 lr/pg2 

1 1.237 1.519 0.956 0.89581 0.95719 0.64492 1.1744 0.0700 0.003324 0.003324 

2 1.106 0.911 0.907 0.86255 0.93337 0.69425 0.9560 0.0399 0.006525 0.006525 

3 1.118 0.888 0.707 0.74189 0.77968 0.4997 1.3886 0.0096 0.009595 0.009595 

4 1.153 0.885 0.951 0.89676 0.96222 0.70639 1.0297 0.0094 0.009406 0.009406 

48 0.497 0.242 0.989 0.97536 0.99387 0.86499 0.6339 0.0006 0.000694 0.000694 

49 0.493 0.238 0.991 0.98266 0.99399 0.86363 0.6274 0.0004 0.000496 0.000496 

50 0.483 0.235 0.986 0.98136 0.9935 0.86628 0.6191 0.0002 0.000298 0.000298 
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Conclusion.  

The implementation of YOLOv8 for face detection marks a key step toward accurate 

cow recognition using facial features. Similar to human face recognition, cow face detection 

holds significant potential for identifying individual animals. By fine-tuning the model, raw 

background information is filtered out, allowing the system to focus solely on the face, which 

enhances classification accuracy. This study represents the initial step toward developing a 

precise cow identification system aimed at tracking and monitoring individual animal 

performance. A transfer learning-based approach was successfully implemented using YOLOv8 

to detect cow faces in diverse farm environments. The model was fine-tuned with a carefully 

curated dataset that combined frames from video footage with publicly available annotated 

images. The system demonstrated outstanding performance, achieving a precision of 0.976, a 

recall of 0.955, and an mAP50 of 0.981, indicating its high accuracy in detecting cow faces. The 

model's consistent performance improvement across epochs, along with reduced box losses, 

underscores its robustness. Data augmentation and fine-tuning on a diverse dataset significantly 

enhanced generalization, while the use of early stopping minimized the risk of overfitting. 

Additionally, the strong correlation between mAP50 and mAP50-95 highlighted the 

model's reliability across varying object localization thresholds. These findings confirm 

YOLOv8 as an effective tool for real-time face detection in livestock localization and monitoring 

applications. This approach not only establishes a foundation for accurate cow face detection 

but also paves the way for future advancements in classification tasks. Future work may focus 

on refining the model further and integrating it with additional technologies to enhance cow 

face recognition and improve individual cow identification in practical settings. 
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 robot designed to identify and remove weeds from crops is known as a weed control 
robot. Weeds compete with primary crops for moisture, hinder their growth, and may 
harm both human and animal health, leading to reduced crop yields. Traditionally, 

herbicides and other chemicals have been used to eliminate weeds, but these methods can 
damage crops and pollute the environment. In this work, we propose a new semantic weed 
detection method based on the PC/BC-DIM network, which demonstrates superior 
performance and classification accuracy compared to existing approaches. We developed an 
autonomous weed control robot incorporating Ackermann Architecture and a delta robot. 
The delta robot is equipped with a camera at its base to detect weeds in real-time. First, the 
robot captures images using the camera, and through image processing techniques, it 
differentiates weeds from crops. Detected weeds are then eliminated using an electrical 
discharge method, where electrodes attached to the robot’s end effector burn the targeted 
weeds. Additionally, we developed a path-planning and obstacle-avoidance system to help the 
mobile robot navigate the field. This system uses stereo vision to capture stereo images of the 
environment and calculate their disparity. By extracting depth information, the robot can 
detect obstacles, avoid them, and follow the shortest path using the A* algorithm. The results 
from this work are simulation-based, demonstrating effective weed detection in field images 
and efficient robot navigation using stereo images. The system achieved an overall accuracy 
of 81.25%. Although the system performs moderately well, the relatively high False Positive 
Rate and Root Mean Square (RMS) Error indicate the need for further improvements to 
reduce errors and false positives. 
Future work will focus on enhancing weed removal and implementing the simulated results 
on hardware. 
Keywords: Ackermann Steering, Weed Detection, Mobile Robots, Path Planning, Stereo 
Vision, Image Processing. 
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Introduction: 
A robot designed to identify and eliminate weeds from crops is known as a weed 

control robot. Weeds are unwanted plants that compete with crops for nutrients, moisture, 
and space, which hinders crop growth and reduces yields. They can also harm human and 
animal health, contributing to significant crop losses [1]. Due to these negative impacts, 
farmers must remove weeds, a task that is both time-consuming and labor-intensive. For many 
years, herbicides and chemicals have been used to eliminate weeds, but these substances can 
harm crops and pollute the environment. To speed up farming operations and reduce manual 
labor, farmers often use equipment such as tractors, weeders, and harvesters. While some 
farmers can afford such machinery, others cannot, especially since these machines require 
expensive fuel and contribute to environmental pollution. For these reasons, relying solely on 
heavy equipment may not be the best solution [2]. Farmers also use fertilizer sprayers to boost 
crop growth and yield, but this process requires time and effort. To address these challenges, 
robotic weed control offers a promising solution by preventing weeds from disrupting crops 
and improving farming efficiency. 

Many weed control robots can perform tasks like electrical discharge, mechanical 
weeding (using hoe tools), and targeted chemical spraying [3]. This project will focus on the 
electrical discharge method, which can eliminate weeds in two ways: continuous contact and 
spark discharge. The first method uses short bursts of high-voltage electricity to kill weeds, 
speed up fruit ripening, and thin plant growth. The second method delivers energy in brief 
pulses (e.g., one microsecond) using two electrodes positioned on opposite sides of the plant. 
This pulse thins plant rows, kills weeds, cuts plant sections, and dries out the leaves of root 
crops. The plant tissue is damaged either by the sudden electrical surge or the heat generated 
by the electricity. 

This project will also implement Ackermann architecture, which is based on a four-
wheel independent steering system. It includes several steering modes: 
• Ackermann steering: Allows the inner and outer wheels to rotate at different radii. 
• Active front and rear steering: Turns the front wheels in the opposite direction of 
the rear wheels. 
• Crab steering: Moves all wheels in the same direction to allow diagonal movement. 
• Spinning: Rotates the vehicle around a central point. 

This system allows the robot to switch between steering modes depending on the 
situation, making movement more efficient. The Ackermann steering structure solves the issue 
of different steering angles caused by varying radii of the left and right wheels. According to 
Ackermann’s steering geometry [4], by adjusting the crank of the four-link structure, the robot 
can increase the inner wheel’s steering angle by 2-4° more than the outer wheel when turning 
along a curve. This adjustment helps position the robot’s steering center, allowing smooth 
turns by aligning the four-wheel paths with the rear axle’s extension line. 

Ackermann steering is known for supporting high payloads and improving movement 
efficiency. It is commonly used in cars, although the structure tends to be too large for narrow 
spaces. This project will enhance the robot’s functionality using image processing and machine 
vision techniques. Cameras installed on the robot will capture images of the farmland. These 
images will be processed using algorithms that identify weeds based on their unique 
characteristics. Additionally, a stereo camera will capture images from two angles to analyze 
the environment, detect free spaces, plan the robot’s path, and guide its movement. 
Once weeds are detected, the robot’s control system will instruct its mechanical arm or tool 
to remove them from the ground. A previous group worked on an autonomous weed control 
robot but left several limitations: 
1. The robot detected weeds in a virtual environment rather than a real one. 
2. A weed removal mechanism was not developed. 
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3. There was no navigation system for the mobile robot. 
The main aims of this research are: 
• To develop a system that can distinguish between weeds and crops in cotton fields 
using image processing techniques. 
• To build a system for weed removal in cotton fields using electrical discharge. 
• To create a navigation mechanism for the weed control mobile robot. 
Literature Review: 

The development of autonomous agricultural robots for weed management has gained 
significant attention in recent years, particularly as a means to reduce chemical herbicide 
dependence and enhance precision farming efficiency. Traditional weed control methods rely 
heavily on manual labor or herbicide spraying, both of which present economic and 
environmental drawbacks [1]. Autonomous robotic systems equipped with computer vision, 
deep learning, and mechanical weed removal mechanisms offer a sustainable alternative, 
allowing for precise identification and targeted elimination of weeds without harming crops. 
This literature review explores previous advancements in weed detection, robotic navigation, 
and path planning to establish the significance of the proposed study.  

With precision farming, autonomous robotic weeding systems have proven to be 
effective in reducing the use of agrochemicals like pesticides and herbicides. A study [5] 
proposes a multi-camera, non-overlapping approach to enhance the weed control system's 
flexibility in managing unknown classification delays. Consequently, an advanced weed-
control technique [6]becomes necessary. In this approach, images of plantation rows are 
captured at regular intervals using image processing methods. 

In [7], the author developed a low-cost delta robot arm equipped with a vision system, 
capable of gripping objects of various sizes. This economical design uses stepper motors 
instead of AC servo motors. In [1], an autonomous agricultural mobile robot for outdoor 
mechanical weed control is introduced. This robot operates with two vision systems: a color-
based system to distinguish between weeds and crops, and a gray-level system to detect the 
row structure created by crops, guiding the robot along the rows. In [8], Kulkarni et al. 
designed a robotic vehicle with four wheels, steered by a DC motor and equipped with an IR 
sensor system to manage weed growth in fields. In [9], the authors developed a new technology 
for weed control called "crop signaling." This method enables plants and weeds to be machine-
readable, allowing them to be automatically distinguished based on their unique features. 

The effectiveness of robotic weed management heavily relies on accurate weed 
classification using image processing and machine learning techniques. Early studies employed 
handcrafted feature extraction methods, such as color thresholding and edge detection, to 
differentiate between crops and weeds. However, these methods were often limited by 
variations in lighting, soil conditions, and plant morphology. Recent advancements in deep 
learning, particularly Convolutional Neural Networks (CNNs) and Transformer-based 
architectures, have significantly improved weed detection accuracy. Most modern approaches 
rely on pre-trained deep learning models (e.g., ResNet, YOLO, EfficientNet) trained on large-
scale agricultural datasets for real-time weed identification (Lin et al., 2023) [4] . However, 
deep learning models require high computational power and extensive datasets, which may 
limit their usability in field-deployable robots with constrained hardware. This study explores 
Predictive Coding-Biased Competitive Divisive Input Modulation (PC/BC-DIM) neural 
networks for weed classification, a less common approach in precision agriculture. While 
previous studies have demonstrated the effectiveness of CNNs in weed classification, the 
proposed study seeks to evaluate whether PC/BC-DIM can offer a computationally efficient 
alternative while maintaining high classification accuracy. 

In this study, we present an autonomous weed control mobile robot that integrates 
Ackermann steering architecture with Delta robot-based weed removal. Unlike previous 
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approaches, our system uses real-time stereo vision-based disparity mapping, followed by A* 
algorithm-based path planning for effective obstacle avoidance. Additionally, a PC/BC-DIM 
neural network is employed to enhance the accuracy of weed detection. The proposed system 
achieves an accuracy rate of 81.25%, making it a promising solution for precision agriculture. 
This work bridges the gap between simulation-based weed classification and real-world 
navigation, paving the way for autonomous and efficient weed management. 
Material and Methods: 

Weed detection using an autonomous mobile robot is a complex challenge. This study 
focuses on designing a system for weed detection and removal in agricultural fields. The 
project leverages computer vision techniques, including image processing, to achieve this goal. 
The mobile robot is equipped with two cameras: one dedicated to weed detection through 
specialized image processing, and a stereo camera that facilitates efficient path planning. 
The Delta robot, mounted on the Ackermann architecture of the mobile robot, navigates 
through the field and removes weeds after detection using an electrical discharge technique 
via electrodes attached to its end-effector. The system's overall functionality is illustrated in 
the block diagram shown in Figure 1. 

 
Figure 1. Block diagram of weed control robot 

Path Planning: 
Path planning for robot navigation follows several key steps. The process starts by 

capturing stereo images of the environment using a stereo camera. After capturing, the images 
are rectified to align both on a common plane. A disparity map is then created, showing the 
difference in the object's position between the two images. This is followed by calculating the 
depth map using the SGBM algorithm. Based on the depth map, the robot detects and avoids 
obstacles and plans a clear path using the A* algorithm. Finally, motion control based on an 
Ackermann steering architecture helps the robot follow the planned path accurately. 

A stereo camera setup is placed at the front to capture images for navigation. It takes 
two images of the same scene from slightly different angles, mimicking human binocular 
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vision. These images are processed further. Image rectification simplifies the matching process 
by aligning corresponding points along the same row. First, camera calibration parameters 
(intrinsic and extrinsic) are calculated. Using these parameters, geometric transformations 
adjust the images so that corresponding points in both images align horizontally. For example, 
if a tree appears slightly to the right in the left image and slightly to the left in the right image, 
rectification aligns the tree in both images on the same horizontal axis. 

The disparity map shows the difference in the object's location between the left and 
right images. Each color in the disparity map represents how near or far an object is—the 
brighter areas indicate closer objects, while darker areas show objects farther away. The depth 
map is calculated using the Semi-Global Block Matching (SGBM) algorithm. This algorithm 
compares small pixel blocks in one image with corresponding blocks in the other image to 
find the best match by trying different disparities. Small disparities indicate close matches, 
while large disparities show mismatches. 

Path planning and obstacle avoidance are done using the A* algorithm and an 
occupancy grid based on the depth map. The grid represents obstacles as occupied cells and 
open space as unoccupied cells. A path from the starting point to the target position is 
generated using the A* algorithm, which finds the best route by minimizing both the current 
travel cost and the estimated remaining cost. Additionally, points from the depth map are 
transformed into a 3D point cloud and projected back onto the 2D image to visualize and 
detect obstacles. Motion control ensures the robot moves along the designated path. This 
robot uses the Ackermann steering design, which controls vehicles with differential steering, 
such as wheeled robots. It calculates precise steering angles and velocities, helping the robot 
remain stable and maneuverable. The steering angles are determined using depth map data to 
guide how much the robot should turn to follow the planned path, considering the vehicle’s 
geometry and point coordinates. 
Weed Detection: 

The semantic weed detection method used in this project is based on our earlier work 
[10]. The process starts with capturing an image using a secondary camera mounted on the 
base of a delta robot, above its end effector. This image is then used for further processing to 
detect weeds. The input image is first converted to grayscale to simplify processing. Next, the 
grayscale image is converted into a binary image by applying an optimal threshold value, which 
minimizes the variance between background and foreground (crop-weed areas). Pixels are 
classified as either background or crop-weed regions. To reduce noise, small objects are 
removed from the binary image, and a mean filter is applied to smooth the image by averaging 
pixel values in a specific window size. This filtering highlights the regions of interest and 
enhances image clarity. 
Image segmentation is the next step, dividing the digital image into segments or pixel sets to 
make the image easier to analyze. Segmentation helps identify objects and boundaries (e.g., 
lines and curves) within the image. In this case, segmentation labels each pixel to group those 
with similar attributes. 

The segmentation process starts by generating a saliency map using different 
algorithms. The saliency map highlights key areas that stand out from the background, such 
as weed regions. An error map is also computed to assess segmentation accuracy. Several 
saliency maps are generated, combined, and refined to create a comprehensive map that 
highlights the most important areas (i.e., weeds). A PC/BC-DIM neural network (Predictive 
Coding-Biased Competitive Divisive Input Modulation) and Gabor filters are used to calculate 
the saliency map. The PC/BC-DIM network mimics how the human brain processes visual 
images and consists of three types of neurons: 
1. Reconstruction Neurons (R): These neurons use prior information to reconstruct 
the input image, acting as filters by calculating their activity using synaptic weights. 



                              International Journal of Innovations in Science & Technology 

March 2025|Special Issue UOG                                                                         Page |138 

2. Error Neurons (E): These neurons compute the difference between the original input 
image and the reconstructed image. A large error suggests that the reconstruction is inaccurate. 
Element-wise division is used to calculate the error and improve accuracy. 
3. Prediction Neurons (Y): These neurons adjust their predictions based on the error 
data, updating their activity to improve the image reconstruction. 

The network generates feature maps by applying Gabor filters at different phases and 
orientations to capture distinct image features. Through iterative reconstruction and 
prediction, the network produces a refined saliency map that emphasizes key image areas. The 
saliency values from the final map help distinguish crops from the background, and a predicted 
crop region is extracted from the binary image. This predicted crop region is then subtracted 
from the extracted region of interest (ROI) to isolate the weed region. Finally, the detected 
weed region is compared with ground truth images to evaluate detection accuracy. 

𝑔(𝜎, 𝜆, 𝜙, 𝜃) =exp⁡ {−
𝑥̂2 + 2𝑦̂2

2𝜎2
} [cos {
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𝜆
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𝜆
)
2
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The predicted crop region is labeled in green to make it easily identifiable. The primary 
objective of feature extraction is to detect and analyze the key areas of the image. This involves 
isolating the region of interest (ROI), which includes the parts of the image containing crops 
and weeds while eliminating the background. In the next step, the predicted crop region is 
subtracted from the ROI image (containing both crops and weeds) to isolate the predicted 
weed region. The extracted weed region is then labeled for easy visualization, with the weed 
region highlighted in red. Finally, the labeled predicted crop and weed regions are combined 
to display the detected weed region, as shown in the results section. 

To evaluate the accuracy of weed detection, statistical measures and error calculations 
are performed by comparing the predicted images with the ground truth images. The term 
"ground truth" refers to data collected directly from the field, which is essential for verifying 
image data against actual ground-based characteristics and conditions. 
Results and Discussion: 
Path Planning Results: 

The input image was captured using stereo cameras, as shown in Figure 2. This image 
includes the left and right stereo views of the garden and ground. 

 
Figure 2. Stereo input images 
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Figure 3. Rectified stereo input images 

Secondly, the rectification of the image mentioned above is performed, as shown in 
Figure 3. Disparity, which measures the difference in the object's position between the left 
and right images, is calculated and displayed in Figure 4. 

 
Figure 4. Disparity map 

In Figure 5, the robot detects the tree as an obstacle in its path. The colorful line 
represents the path planned by the robot to avoid the obstacle and navigate through the garden 
using the A* algorithm. 

 
Figure 5. Planned path 
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Weed Detection Results: 
The image captured by the secondary camera is used as the input image, which is then 

converted to grayscale, as shown in Figure 6. 

 
Figure 6. Input and grayscale image 

 
Figure 7. Binary image and saliency map 

The grayscale image is then converted into a binary image. In the next step, the saliency 
map and error map are calculated to highlight the weed region, as shown in Figure 7. Using 
the saliency maps, the predicted crop region is extracted from the binary image. Once the crop 
region is detected, it is labeled in green, as shown in Figure 8. 

 
Figure 8. Predicted crop and labelled 
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In the next step, the ROI (Region of Interest) is extracted from the input RGB image. 
The predicted crop region is then subtracted from the crop-weed image to separate the weeds 
from the crops, as shown in Figure 9. 

 
Figure 9. Predicted crop and labelled 

After detecting the weed region, it is labeled in red to highlight the extracted area. Both 
the crop and weed regions are then combined to clearly differentiate between them. The results 
are shown in Figure 10. The errors are calculated by comparing the predicted image with the 
ground truth (GT) image, as shown in Figure 11. 
The calculations of the false positive rate (FPR) and true negative rate (TNR) help to 
understand the trade-off between sensitivity (the ability to detect weeds accurately) and 
specificity (the ability to correctly identify non-weeds). 
Three types of errors are computed: 
1. Type 1 (False Positives): Non-weeds are incorrectly detected as weeds. 
2. Type 2 (False Negatives): Weeds are overlooked or not detected. 
3. Type 3 (Total Error): The combined error, accounting for both false positives and 
false negatives.  
The efficacy of the weed detection model is demonstrated in Figure 12. 

 
Figure 10. Predicted weed region and labelled 
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Figure 11. Ground truth weed image 

 
Figure 12. ROC curve 

The accuracy analysis of the weed detection model is presented in Table 1.  
Table 1. Accuracy analysis 

Error % 
Type 1 22.22 

Type 2 14.2857 

Mean error overall 18.75 

Mean accuracy overall 81.25 

RMS error 43.30 

Mean square error overall 18.75 

False positive rate 0.22 

True negative rate 0.77 

The results show the percentage accuracy and classification errors for weed detection. 
In cases of dense vegetation, misclassifications are more likely to occur because weeds and 
crops may overlap, making it harder to distinguish between them and leading to higher error 
rates. 
Discussion: 

The primary objective of this research was to design a weed detection mechanism in 
real-world environments and enable the robot to navigate fields while avoiding obstacles. 
Various techniques exist for robot navigation, including machine learning methods like 
Convolutional Neural Networks (CNN), Deep Neural Networks (DNN), Artificial Neural 
Networks (ANN), and Region-based Convolutional Neural Networks (RCNN). Although 
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these approaches are effective in detecting objects in a given environment, we opted for the 
A* algorithm due to its robustness and efficiency in path planning. 

Additionally, there are recent advancements in navigation based on LIDAR data, 
Monocular Vision, and Stereo Vision. Each of these methods has its advantages and 
limitations. For example, LIDAR offers accurate detection but is costly and has a limited 
perception range, while Monocular Vision may not guarantee reliable accuracy. For weed 
detection, we employed an image-processing technique that effectively works in natural 
environments. This method involves several steps: image pre-processing, image segmentation, 
and feature extraction. By integrating the information obtained from these steps, we 
successfully enhanced the detection and classification of weeds. 

One of the key advantages of this study is the integration of stereo vision with the A 
path planning algorithm*, enabling the mobile robot to navigate agricultural fields with higher 
accuracy and adaptability. Unlike conventional GPS-based navigation, which may struggle 
with occlusions caused by dense vegetation, stereo vision allows for real-time depth perception 
and object avoidance. Previous research (Lin et al., 2023) has demonstrated that vision-based 
navigation improves localization accuracy in unstructured environments, making it a suitable 
approach for row-crop farming applications. However, the computational demands of real-
time stereo vision processing remain a challenge. Future work should explore edge AI 
processing techniques to reduce latency and optimize real-time decision-making in embedded 
robotic systems. 

Furthermore, while this study successfully employs PC/BC-DIM neural networks for 
weed classification, additional comparisons with CNNs and Transformer-based models would 
provide a more comprehensive analysis of model efficiency and accuracy. Prior research 
(Naveed et al., 2023) [10] indicates that pre-trained deep learning models such as YOLOv5 
and EfficientNet achieve state-of-the-art weed detection performance, suggesting that a hybrid 
approach combining PC/BC-DIM with CNN-based feature extraction could enhance 
classification robustness. Additionally, incorporating data augmentation techniques could help 
address dataset limitations and improve model generalization across diverse agricultural 
conditions. 

Finally, the electrical discharge-based weed removal mechanism presents a promising 
alternative to conventional mechanical or chemical-based weeding methods, but its long-term 
energy efficiency, operational safety, and impact on soil health require further evaluation. 
While previous studies (Diprose et al., 1984) [3] suggest that high-voltage weed removal is 
effective in disrupting plant cellular structure, excessive energy consumption may limit 
scalability in large farming applications. Future research should investigate energy-efficient 
discharge optimization techniques and evaluate potential side effects on surrounding crops, 
soil microorganisms, and long-term field productivity. Additionally, exploring hybrid weed 
removal methods, such as combining electrical discharge with robotic precision cutting or 
thermal weeding, could further improve the system’s effectiveness and sustainability in 
precision agriculture. 
Conclusion: 

We discussed the primary objective of our project, which is to design the steering 
control for an Ackermann architecture-based weed-managing mobile robot. To achieve this, 
we developed a system capable of detecting weeds in real-world environments and navigating 
the robot while avoiding obstacles. We also outlined the methodology used to implement the 
project. In the first stage, we focused on path planning by capturing stereo images of the 
environment and rectifying them. Next, we calculated the depth map using the SGBM 
algorithm. With the help of the A* algorithm, the robot was then able to navigate the field 
while avoiding obstacles. 
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In the second stage, we addressed the weed detection task. For this, we first captured 
images using a secondary camera mounted on the base of the delta robot, positioned above 
its end effector. The captured image was then processed to detect weeds. This process 
involved converting the image to grayscale and then to a binary format by applying a threshold 
to emphasize key regions while minimizing the background. From the binary image, the crop 
region was identified using a saliency map and ROI (Region of Interest), which highlighted 
the crop area. The weeds were then detected by subtracting the identified crop region from 
the thresholder image. In the future, extensive field testing and validation will be conducted 
to assess how the dynamic field environment affects the performance of the proposed 
approach. 
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bove-knee amputation remains a significant global issue, leaving many people 
physically disabled due to various natural and man-made causes, such as diseases, wars, 
and disasters. This article presents a novel, non-invasive active prosthesis based on 

electromyography (EMG). The proposed method offers a major advancement by achieving 
higher classification accuracy with minimal hardware requirements. Using EMG input signals, 
the active prosthesis controls three body postures: Sit, Stand, and Walk. These EMG signals 
are classified through two machine learning models: Support Vector Machine (SVM) and Long 
Short-Term Memory (LSTM) networks. Both models are evaluated based on accuracy. The 
results show that SVM outperforms LSTM, achieving a classification accuracy of 82%, while 
LSTM reaches 63%. 
Keywords: Lower Limb Exoskeleton / Prosthesis; Non-Invasive Electromyography; 
Intention Recognition; Support Vector Machine. 
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Introduction: 
Lower limb amputation remains a serious global issue, leaving many people physically 

disabled due to various natural and human-made causes, including diseases, wars, and natural 
disasters. However, diseases are still the leading cause of lower limb amputations. In the United 
States, it is estimated that by 2050, 3.6 million people will be living with amputations, 
compared to 2.2 million in 2021 [1]. In developed countries, diseases are the primary cause of 
trans-femoral amputations, mainly because diabetes mellitus has become more widespread, 
often leading to vascular complications. Peripheral vascular disease is the most common cause 
of lower limb amputations, while trauma is a leading cause in many low- and middle-income 
countries, affecting an estimated 57.7 million people. 

Unlike upper-limb prosthetics, lower-limb prosthetics that integrate neuromuscular 
system signals for control are less widely used. Over time, different types of artificial lower 
limbs have been developed to improve amputee mobility. These include passive, semi-active, 
and active prostheses. Due to various limitations, passive and semi-active prostheses are less 
in demand, while active (or powered) prostheses are increasingly popular and provide better 
support for people with trans-femoral amputations.  

Many researchers have worked to improve powered prostheses and address earlier 
limitations. In paper [2], an active prosthesis controlled by EMG is discussed, along with its 
limitations. Surface electromyography (sEMG) signals sometimes generate errors, which can 
cause amputees to fall. This prosthesis uses a machine learning model with a support vector 
machine (SVM) to classify signals. Another study [3] used a pattern recognition algorithm to 
translate EMG signals and combine sensor data from the prosthesis to interpret the user’s 
intended movements. A study [4] compared three classifiers—LDA, SVM, and LM-BP—to 
identify the best solution, finding that LDA performed the best with an accuracy of 92.46%, 
enabling continuous recognition of limb movement intentions. 

In paper [5], prosthesis control is achieved directly through neural signals activated by 
muscle contractions using EMG. Another experiment [6] analyzed modes using a finite-state 
approach and highlighted challenges in controlling the prosthesis using EMG signals. Study 
[7] proposed an automatic system for detecting and analyzing muscle defects by evaluating 
different leg movements with sEMG sensors and advanced machine learning algorithms, using 
SVM to classify muscle movements. 

A study [8] focused on intelligent lower-limb prostheses, emphasizing the importance 
of segmenting locomotion modes. Researchers analyzed five states—ramp descent (RD), level 
walking (LW), stair ascent (SA), stair descent, and ramp ascent—and achieved 99.16% ± 
0.38% accuracy with an ANN-based adaptive online learning algorithm. In paper [9], classifiers 
like linear discriminant analysis, Naive Bayes, k-nearest neighbor, and SVM were used to 
predict knee angles based on EMG data recorded while sitting and standing. Fifteen features 
were used to improve prediction accuracy, and principal component analysis helped address 
dimensionality issues, with the SVM classifier (quadratic kernel) performing the best. 

In study [10], the focus was on using electromyography and mechanical sensors to 
detect movement intentions in trans-femoral amputees using powered prostheses. The 
combination of mechanical sensor data and EMG signals reduced transitional error by 18% 
and steady-state error from 3.85% to 1.05%. Another study [11] developed an EMG-
controlled trans-femoral prosthesis using four machine learning models (LDA, SVM, KNN, 
and Decision Tree) to classify extension and flexion movements by analyzing signals from two 
muscle channels with six features each. Two models achieved accuracy below 80%, while the 
other two reached 80% and 81%. 

The main objectives of this study are to design and develop an EMG-controlled active 
prosthetic leg, create a muscle signal classification algorithm, and develop a prosthetic leg 
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control system. This research builds upon previous work [11] and offers the following key 
contributions: 
• Reduced Hardware Complexity: The proposed approach uses a single-channel 
setup instead of the two-channel system in the previous study, reducing complexity while 
maintaining high classification performance. 

• Higher Classification Accuracy: The classification accuracy of SVM has improved 
to 82%, compared to 70% in earlier work. 

• Enhanced Feature Extraction: This study extracted 22 features (21 time-domain 
and 1 frequency-domain), compared to just 6 time-domain features in the previous 
approach. 

• Dimensionality Reduction: Principal component analysis was applied to optimize 
classification performance, a technique missing in the earlier study. 

• Deep Learning Integration: Unlike the previous study, which relied solely on 
machine learning, this research incorporates long short-term memory (LSTM) to 
explore the potential of deep learning in prosthetic control. 

Objectives of the Study: 
The primary objective of this study is to design and evaluate a non-invasive 

electromyography (EMG)-based active prosthesis for above-knee amputees, enhancing 
intention recognition accuracy, classification efficiency, and real-time applicability. The 
specific objectives of this study are: 

• To develop a low-complexity, single-channel EMG acquisition system that reduces 
hardware requirements while maintaining high classification accuracy. 

• To compare the performance of traditional machine learning (SVM) and deep 
learning (LSTM) models for intention recognition in lower limb prosthetic control. 

• To optimize feature extraction and dimensionality reduction techniques by 
incorporating time-domain and frequency-domain features, enhancing 
computational efficiency. 

• To evaluate real-time feasibility and processing latency of the proposed system for 
potential integration into wearable prosthetic devices. 

• To assess the impact of dataset size, signal variability, and electrode displacement on 
classification accuracy, ensuring robustness across diverse user conditions. 

Novelty Statement: 
This study introduces a low-complexity, single-channel EMG-based prosthetic control 

system, which significantly reduces hardware requirements compared to conventional multi-
channel setups while maintaining high classification accuracy. Unlike previous works that 
primarily rely on linear classifiers or feature-limited datasets, this study integrates a 
comprehensive feature extraction framework with 22 extracted features and applies 
dimensionality reduction (PCA) to optimize classification performance. Additionally, the 
research provides a comparative analysis between SVM and LSTM classifiers, highlighting the 
advantages of traditional machine learning for small datasets and real-time applications. The 
findings demonstrate the potential for deploying EMG-based prosthetic control in real-world 
scenarios, bridging the gap between biomedical signal processing and practical assistive device 
development. 
Materials and Methods: 

EMG signals are acquired using non-invasive electrodes. These signals are then sent 
to the pre-processing module, where they are amplified, rectified, and filtered. Next, the 
feature extraction module processes the pre-processed data and extracts 21 time-domain 
features and 1 frequency-domain feature using a specific algorithm. A dimension reduction 
technique is then applied to optimize the data. 
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After this step, 10 principal components are provided to both classification modules 
for signal classification. The classifier with the best performance is selected. Based on the 
recognized motion intention, the accepted classifier sends commands to the control system, 
which then activates the prosthetic limb’s actuators accordingly. Figure 1 illustrates the block 
diagram of the lower limb exoskeleton. 

 
Figure 1. Block diagram of lower limb prostheses. 

Figure shows that EMG signal is acquired and then preprocessed to extract useful 
features for the brain intention of muscular actuation and classification task. With the classified 
intention the proposed system generates appropriate motor commands to generate required 
posture of active limb. 
Signal Acquisition: 

The signal is acquired using non-invasive electrodes, which are attached to the relevant 
muscles. The terminals of these electrodes are connected to an Arduino, which collects the 
data from the electrodes. This data is then transmitted and displayed on a monitor via a 
Raspberry Pi. This entire process constitutes signal acquisition. The electrodes used in this 
setup are shown in Figure 2. 

 
Figure 2. EMG Surface Electrodes 

Preprocessing: 

Preprocessing involves several steps, including amplification, rectification, filtering, 
normalization, and feature engineering. Signal preprocessing can be carried out using two 
methods: 
• Using an EMG Muscle Sensor Kit (this excludes normalization and feature 
engineering). 
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Using programming. 
In this study, both methods are applied for specific reasons, which are explained later. 

The EMG kit is used to preprocess the signal. It amplifies the raw muscle signal from millivolts 
(mV) to thousands of volts, depending on the gain setting, which is adjusted to 10,350 volts 
in this case. After amplification, rectification is performed to remove negative voltages from 
the signal, helping preserve the useful information within it. 

Since the effective frequency range of EMG signals is between 0 and 500 Hz, the 
sensor kit filters out frequencies below 0 Hz and above 500 Hz, ensuring that the output signal 
has a bandwidth of 0 to 500 Hz. These steps are handled by the sensor kit. The signal is then 
acquired and partially preprocessed through this combination of processes, as shown below. 

 
Figure 3. Muscle signal acquisition and partially preprocessing framework 

Now, all the remaining steps are carried out using programming. The signal undergoes 
filtration to remove motion artifacts and power interference while staying within the effective 
frequency range. To achieve a noise-free signal, a 4th-order Butterworth stop-band filter is 
applied, blocking the 20 Hz frequency associated with motion artifacts. Then, another stop-
band filter is used to block the 50 Hz frequency, which represents power line interference. 
After filtration, normalization is performed to limit the signal voltage to a range between 0 
and 1 volt, which improves the classifier's accuracy. 

At the final stage of preprocessing, feature engineering is applied to extract 21 time-
domain features and 1 frequency-domain feature from the signal. To prevent the issue of high-
dimensional data (also known as the "curse of dimensionality") and to enhance model 
efficiency, Principal Component Analysis (PCA) is used. In this study, features are first 
extracted and then reduced using PCA to select the most important principal components, 
which helps the classifier make better predictions. 

Feature extraction is the process of obtaining key characteristics or features from the 
signal. In biomedical signal processing, feature extraction is categorized into three types: time-
domain features, frequency-domain features, and combined time-frequency features. Here, 21 
time-domain features and 1 frequency-domain feature, as mentioned earlier, are extracted 
using a rolling window of 50 data points, with an increment of 1 data point at each step. These 
features include the following: Minimum, Maximum, Mean, Root Mean Square, Variance, 
Standard Deviation, Signal Power, Peak, Peak-to-Peak, Crest Factor, Skewness, Kurtosis, 
Form Factor, Pulse Indicator, Average Absolute Value, Signal Similarity Index, Integrated 
EMG, Waveform Length, Logarithmic, Willison Amplitude, Mean Frequency, and Mean 
Absolute Value. The formulas and explanations for how these features are calculated are 
provided below. 
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Willison Amplitude: 
The Willison Amplitude feature, in the context of EMG signal analysis, measures the 

peak-to-peak amplitude of the EMG waveform to estimate the overall amplitude of the EMG 
signal. A threshold of 0.002 V is set, which indicates the strength of muscle contractions. 

A =  ∑ 𝑓 (|𝑥𝑛 − 𝑥𝑛−1|𝑁−1
𝑖=1 ) (1) 

𝑓(𝑥) = {
1, 𝑖𝑓 𝑥 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

0,                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Where, xn is the EMG value of n index and xn-1 is the   previous value of the current 

value. 

Root Mean Square: 

Root Mean Square (RMS) is a widely used technique in electromyography (EMG) 

signal analysis to quantify the amplitude or magnitude of the EMG signal. It provides a signal 

strength or level indication for the entire signal over a given time period. 

RMS =  √
1

𝑁
∑ 𝑥𝑖

2𝑁
𝑖=1  (2) 

Where, xi is the EMG value of i index and N is the total samples of EMG value in a 
window. 
Mean Absolute Value: 

Mean absolute value (MAV) is defined as mean of total positive value of EMG signal. 

It also tells about muscle contraction power. It is mathematically represented as 

MAV =  
1

𝑁
∑ |𝑥𝑖|

𝑁
𝑖=1  (3) 

Where, xi is the EMG value of i index and N is the total sample of EMG value in a window. 

Average absolute value: 

The average of the absolute changes between successive EMG signal levels is 

measured by Average absolute change (AAC). It specifies fluctuating in muscle movement. 

Mathematically, 

AAC = 
1

𝑁−1
∑ |𝑥𝑖+1 − 𝑥𝑖|

𝑁−1
𝑖=1  (4) 

Where, xi is the EMG value of i index and xi+1 is the upcoming value of the current 

value. N indicates the total samples in a window.  

Variance: 

Variance is a technique which provide information about spread of EMG data points 

around the mean. It tells about the fluctuations of EMG signal over time. Mathematically,  

Variance =
1

𝑁−1
∑ 𝑥𝑖

2𝑁
𝑖=1  (5) 

Where, xi is the EMG value of i index and N indicates the total samples in a window. 

Log detector: 

Log detector (LD) in case of EMG signal used to transform the EMG signal from 

linear scale to logarithmic scale. This scale down the large variations in the signal amplitude. 

LD =  𝑒
1

𝑁
∑ ln (|𝑥𝑖|𝑁

𝑖=1  (6) 

Where, xi is the EMG value of i index and N indicates the total samples in a window.  

Simple Square Integral: 

The EMG signal's sum of squared values is known as the simple square integral (SSI). 

It displays the strength of the signal throughout a chosen window. Higher SSI means high 

level of contraction. Mathematically, 

SSI = ∑ 𝑥𝑖
2𝑁

𝑖=1  (7) 

Where, xi is the EMG value of i index and N indicates the total samples in a window. 
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Integrated EMG: 

The EMG signal's absolute levels are added together to form IEMG. It measures all 

of the muscle activity in a certain amount of time. IEMG indicates the overall muscle 

movements. It is mathematically represented as    

IEMG =  ∑ |𝑥𝑖|
𝑁
𝑖=1  (8) 

Where, xi is the EMG value of i index and N indicates the total samples in a window. 

Waveform Length: 

The cumulative length of the EMG signal waveform over a specified time is measured by 

Waveform Length (WL). It displays the signal's dynamic muscle contraction. Mathematically, 

WL = ∑ |𝑥𝑖+1 − 𝑥𝑖|𝑁−1
𝑖=1  (9) 

Where, xi is the EMG value of i index and xi+1 is the upcoming value of the current value. N 

indicates the total samples in a window. 

Standard Deviation: 

The EMG signal's degree of fluctuation or dispersion is measured by standard deviation. It 

displays the signal’s variability that helps the model to identify different muscle activities. 

STD = √
1

𝑁
∑ (𝑥𝑖 − 𝑥̅)2𝑁

𝑖=1  (10) 

Where, xi is the EMG value of i index and 𝑥̅ is mean of all values in a window. N indicates the 

total samples in a window. 

Maximum: 

The maximum EMG value of muscle over specific period of time. 

Minimum: 

The minimum EMG value of muscle over specific period of time 

Mean: 

The average value of the muscle signal. Mathematically, 

Mean =
1

𝑁
∑ 𝑥[𝑖]𝑁

𝑛=1  (11) 

Where x is the signal amplitude, and N is the total number of EMG samples. 

Signal Power: 

The average power of EMG signal is called signal power (SP). Mathematically, 

SP = 
1

𝑁
∑ 𝑥[𝑖]2𝑁

𝑛=1  (12) 

Where x is the signal amplitude, and N is the total number of EMG samples. 

Peak: 

The highest value of signal amplitude. 

Peak-to-Peak (P2P): 

The difference of highest and lowest value of signal 

Peak-to-Peak = Maximum−Minimum 

Crest factor: 

The ratio of the signal's peak amplitude to its RMS value. It indicates how extreme the peaks 

are relative to the RMS. 

Crest Factor = 
𝑃𝑒𝑎𝑘

𝑅𝑀𝑆
 (13) 

Skewness: 

Measures the asymmetry of the signal’s amplitude distribution. 

Skewness = 

1

𝑁
∑ (𝑥[𝑖]−𝑀𝑒𝑎𝑛)3𝑁

𝑛=1

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
 (14) 
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Positive skewness indicates more values above the mean, while negative skewness indicates 

more values below it. 

Kurtosis: 

Indicates the sharpness or flatness of the amplitude distribution A high kurtosis value suggests 

sharp peaks. 

Kurtosis = 

1

𝑁
∑ (𝑥[𝑖]−𝑀𝑒𝑎𝑛)4𝑁

𝑛=1

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛4 (15) 

Form Factor: 

The ratio of RMS to the mean absolute value (MAV) of the signal 

Form factor = 
𝑅𝑀𝑆

𝑀𝐴𝑉
 (16) 

Pulse Indicator: 

The ratio of the peak amplitude to the mean absolute value 

Pulse Indicator = 
𝑃𝑒𝑎𝑘

𝑀𝐴𝑉
 (17) 

Mean Frequency: 

The average frequency of the signal in the frequency domain, often obtained via a   Fourier 

transform 

Mean frequency =  
∑ 𝑓.𝑝(𝑓)𝐹

𝑓=0

∑ 𝑝(𝑓)𝐹
𝑓=0

 (18) 

The algorithm for extracting the 22 features is explained above. Here, "rolling" refers 
to an array of 50 EMG data samples. Initially, all these features are extracted from the dataset 
and standardized. After standardization, they are passed to Principal Component Analysis 
(PCA) to reduce the dimensionality of the data. 

PCA is a crucial step in machine learning model training because it helps prevent the 

curse of dimensionality and reduces computational complexity. While other techniques, such 

as feature selection or feature elimination, are available, they come with certain limitations. 

Initially, the Exhaustive Feature Selection (EFS) approach was considered, but it follows the 

formula (2^n - 1), which makes the computation highly complex and time-consuming. To 

address this issue and save time, PCA was chosen. 

PCA works by transforming a set of correlated variables into a smaller set of 

uncorrelated variables. In this study, PCA reduces the 22 extracted features to 10 principal 

components, which are then sent to both classifiers for further analysis. 

 

1.Initialize Parameters: 

• Define the input emg data and the rolling window_size. 

• Create 22 empty lists (MIN, MAX, MEAN, RMS, etc.) to store calculated feature 

values for each window. 

2.Iterate Through the EMG Data: 

• Use a for loop to slide the rolling window across the EMG signal: 

• The loop runs from index 0 to len(emg) - window_size + 1. 

• For each iteration: 

• Extract a segment of emg corresponding to the current rolling window (rolling = 

emg [i:i + window_size]). 

3.Compute Features for Each Window: 

• For the current rolling window, calculate all these features. 

• Append each calculated feature to its corresponding list. 
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Support Vector Machine: 

Support Vector Machine (SVM) is a supervised learning model that classifies data by 

creating a separating boundary between different classes. It does this by finding the optimal 

hyperplane and maximizing the margin (the distance between the hyperplane and the nearest 

data points). In this work, the Radial Basis Function (RBF) kernel is used to enhance SVM's 

performance. 

K(X1,X2) = exp (−
‖𝑿𝟏−𝑿𝟐‖𝟐

𝟐𝝏𝟐
) (19) 

Here, ||X1 - X2||² represents the Squared Euclidean Distance, and σ is a free parameter used 
to fine-tune the equation. 

In this study, Grid Search CV is applied to optimize the classifier by selecting the best 
parameters, which enhances the model's accuracy and efficiency. This technique systematically 
explores a predefined range of parameter values to identify the optimal hyperparameters for a 
machine learning model. The model is trained using various values of C and Gamma, followed 
by an evaluation of its accuracy. In SVM, C acts as the regularization parameter, while Gamma 
determines the influence of individual training examples. 

Table 1. Hyper parameter values and purpose of SVM 

Hyper parameter Value in code Purpose 

Regularization (C) 100 Reduce classification error 

Gamma 1 Model learn meaningful 
decision boundaries 

Kernel RBF Good for nonlinear data 

Long Short-Term Memory: 

Long Short-Term Memory (LSTM) is an advanced type of Recurrent Neural Network 
(RNN) designed to manage long-range dependencies in sequential data. LSTM consists of 
three gates: input, forget, and output, which control the flow of information. It can process 
sequential data in both forward and backward directions and store information over extended 
periods. The block diagram of the LSTM is shown below in Figure 4. 

 
Figure 4. LSTM block diagram. 

A Sequential model will be used, meaning the layers will be added one after another. 

The model includes 50 LSTM neurons in the layer, along with dropout layers to prevent 

overfitting and improve regularization. Since there are three classes, a dense layer is added for 

multi-class classification, utilizing the SoftMax activation function.  
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Table 2. Hyper parameter values and purpose of LSTM 

Hyper parameter Value in my code Purpose 

Dropout rate 0.2 (twice) Reduces overfitting 

Learning rate 0.001(fixed) Controls weight update 

Batch size 32 Define training step size 

The classifier categorizes the signal into three classes: sit, stand, and walk, based on 
the extracted features. Initially, both classifiers will be trained on a labeled leg dataset. Once 
the training phase is complete, the testing phase will begin, and the accuracy will be monitored. 
The classifier with the highest accuracy will be selected. In this study, a Support Vector 
Machine (SVM) classifier will be used due to its superior accuracy, as explained in the next 
section. The extracted features are sent to the classifier, which categorizes them accordingly 
and assigns appropriate labels. For example, when a walking signal is generated by the muscles, 
the features are extracted and passed through PCA, followed by classification. The classifier 
then identifies the signal as walking and labels it accordingly. This command is then 
transmitted to the control system. 
Sit Posture:  

When a person sits on a chair, the knee angle is usually around 90 degrees, although it 

may vary based on posture. In this sitting position, the stepper motor should rotate 90 degrees 

in the anticlockwise direction. Assuming the stepper motor starts at a 0° position, it will move 

accordingly. The formula is to calculate how many steps stepper motor revolves to go to 

desired degree is given below: 

Steps = ( 
0

1.8
−

90

1.8 
) = − 50 = 90o (anticlockwise direction) 

Here 1.8o means that the stepper motor used in this project is designed in such a way that it 

covers 1.8o per step and negative sign indicates the direction of stepper motor. 

Stand Posture: 

When a person stands up from the chai, the knee angle transforms from 90o to nearly 

0o. In stand posture, according to given formula result, the stepper motor takes 50 steps in 

clockwise direction. 

Steps = 
90

1.8 
−

0

1.8
= 50 = 90o (clockwise direction) 

Stand Posture: 

For walking of a robotic leg, stepper motor should work in to and fro motion. The 

angle of normal human knee while walking is 0 to 20 degrees. In walking posture, the stepper 

motor goes from 0o to 20o and then from 20o to 0o. Now to calculate the steps, formula will be 

used; 

Steps = 
0

1.8 
= 0  & Steps = 

20

1.8 
= 12 

The stepper motor first takes 12 steps in the anticlockwise direction, followed by steps 

in the clockwise direction to form the walking pose. In this study, the NEMA 17 stepper 

motor is used, controlled by the A4988 module, which serves as the motor driver. The 

connections between the stepper motor and its driver are somewhat complex. 

Results: 

The dataset [12] was recorded from 10 able-bodied individuals, and details about the 

dataset are provided in Table 2 below. Only three classes of data are selected, amounting to 

approximately 171,000 samples. The unprocessed dataset is used for model training and then 

processed according to the steps outlined in the methodology. First, the dataset is balanced 

using the under-sampling technique. After balancing, the data undergoes detrending, or mean 

removal. The correlation heatmap is shown in Figure 5. 
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Table 3. Dataset Information 

Gender Age Weight Height 

7 Males 24±2 years 77±10 kg 183±9cm 

3 Females 24±2 years 77±10 kg 183±9cm 

The correlation heatmap shows the variance of features in relation to each other and 
the target variable. A value closer to 1 indicates a strong positive correlation, while a value near 
-1 reflects a strong negative correlation. Values close to or equal to 0 suggest no correlation. 
In this case, most features show little to no correlation with the target, indicating a lack of 
linear relationships. Considering this, the Radial Basis Function (RBF) kernel is used, as it is 
more effective in handling nonlinear data relationships. Next, the standardized features are 
sent for dimensionality reduction using Principal Component Analysis (PCA), where 10 
principal components are selected. Both models are then trained and tested. The SVM, a 
supervised machine learning model, is trained on these principal components. Figure 6 
illustrates the accuracy and loss across each epoch for the SVM model. 

 
Figure 5. Correlation heat map of features extracted employed for brain intention 

classification. 

 
Figure 6. Accuracy and loss over epochs of SVM classifier. 
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Nearly 90% of the data was used to train the model, while the remaining 10% was 
reserved for testing. The performance of the trained model is presented in Table 3, and the 
confusion matrix is displayed in Figure 7. The model achieved an accuracy of 82.14%, as 
shown below. 

Table 4. Classification report of SVM 

Class Precision Recall F1 score 

0 0.78 0.84 0.81 

1 0.91 0.79 0.85 

2 0.79 0.84 0.81 

 
Figure 7. Confusion matrix of SVM model 

The 95% confidence interval for the SVM model is 80.20% to 82.09%, indicating that 

the model's performance is stable. The reported accuracy of 82.14% represents the average 

accuracy obtained after performing 5-fold cross-validation.  

 
Figure 8. Accuracy and loss over epochs of LSTM 

After training the model, real-time signal classification is conducted. The muscle signal is 
obtained from the rectus femoris using electrodes. This raw signal is processed and sent from 
Arduino to Visual Studio Code through serial communication. The muscle signal, as shown in 
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Figure 10, is amplified, rectified, and filtered. The normalized EMG signal is shown in figure 
11. 

 
(a) 

 
(b) 

 
(c) 

Figure 10. Input muscle signal for various lower limb postures. (a) Sit posture EMG signal, 

(b) Stand posture EMG signal, (c) Walk posture EMG signal. 
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(a) 

 
(b) 

 
(c) 

Figure 11. Preprocessed muscular signals for (a) Sit (b) Stand (c) Walk posture. 
Subsequently, features are extracted, and standardization is performed. All 22 features 

are then passed to PCA, which reduces them to 10 principal components (PC). These 
components are fed into the SVM model for intention recognition, with the results presented 
in Table 4. 
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Table 5. Prediction on unknown muscle signal data 

PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 PC 7 PC 8 PC 9 PC 10 Class 

1.451 -0.258 0.107 0.018 -0.225 -0.455 -0.172 -0.258 -0.445 -1.593 0 

3.082 3.020 3.350 3.351 2.346 3.311 2.715 3.020 2.799 0.326 1 

-0.564 -0.508 -0.573 -0.553 -0.224 -0.431 -0.271 -0.508 -0.466 -0.266 2 

After the intention is recognized, a message is sent to the control system, which reads 
the message and instructs the actuators to perform the desired motion. Figure 12 illustrates 
the three positions of the prosthetic leg. 

 
(a) 

 
(b) 

 
(c) 

Figure 12. Prosthesis knee postures, (a) Sit, (b) Stand, (c) Walk. 
Discussion: 

This study presents a low-complexity, single-channel electromyography (EMG)-based 

active prosthesis designed for above-knee amputees, addressing key challenges in intention 

recognition, classification accuracy, and real-time feasibility. The results demonstrate that 

Support Vector Machine (SVM) achieves the highest classification accuracy (82.14%), 

outperforming Long Short-Term Memory (LSTM) networks (63.25%). The superior 

performance of SVM aligns with previous research emphasizing the effectiveness of 

traditional machine learning models for small biomedical datasets [2], [3]. On the other hand, 

while deep learning models such as LSTM are often expected to perform well in time-series 

signal classification, the results in this study indicate that LSTM does not prove to be the best 

model for EMG-based intention recognition. 

The LSTM model was trained on 90% of the dataset and tested on 10%, similar to the 

SVM training approach, but the results were not satisfactory. As shown in Figure 8, the 

accuracy and loss plots indicate that the model is learning step by step over each epoch, and 

the loss consistently decreases after every iteration. Importantly, there is no sign of overfitting, 

as the loss and validation loss remain close to each other throughout training. However, 

despite this, LSTM achieves only 63.25% accuracy, which is significantly lower than the 

82.14% obtained using SVM. The accuracy plot for LSTM, as shown in Figure 9, further 

confirms that while the model gradually improves with training, it does not reach a 

performance level sufficient for real-world prosthetic applications. Due to these findings, SVM 

is selected as the final model for implementation in this project. 

A key contribution of this study is the reduction of hardware complexity through the 

implementation of a single-channel EMG acquisition system, compared to traditional multi-

channel EMG setups [5], [8]. This reduction in sensor count simplifies the integration of the 

prosthetic control system into wearable devices, making it more cost-effective and practical 

for real-world applications. Furthermore, the use of 22 extracted features (21 time-domain, 1 

frequency-domain) combined with Principal Component Analysis (PCA) improves the 

efficiency of the classification model. Unlike previous approaches that relied on a limited 
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number of features, this study demonstrates that a diverse feature set enhances classification 

performance without significantly increasing computational load. 

Despite achieving high classification accuracy, several challenges remain for real-time 

implementation and practical deployment. The study does not address processing latency, 

power consumption, and wireless communication feasibility, which are crucial factors for 

wearable prosthetic devices [9]. Future research should evaluate the real-time response of the 

system, investigating potential delays in muscle signal processing and the computational 

efficiency of embedded hardware components. Additionally, exploring deep learning models 

such as CNNs and hybrid CNN-LSTM architectures may provide further improvements in 

classification robustness, feature extraction, and adaptation to muscle fatigue-induced 

variations. 

Furthermore, robustness against signal variability due to muscle fatigue, electrode 

displacement, or noise artifacts is an important consideration for real-world usability.  

Previous research [6] has shown that EMG signals fluctuate due to physiological 

conditions, leading to inconsistencies in prosthetic control. Future work should incorporate 

adaptive filtering techniques, transfer learning approaches, and real-time signal correction 

methods to enhance system stability. Additionally, while the study provides a comparative 

analysis of classification models, increasing the dataset size and participant diversity will further 

improve model generalization and performance across different user demographics. 

 
Figure 9. Accuracy graph of SVM and LSTM 

The primary objective of this study is to develop an improved and reliable above-knee 
prosthesis that can efficiently assist amputees. The proposed study incorporates several 
advancements compared to previous research [11]. 

Table 6. Comparing results with previous study 

Factor Previous Approach [11] Our Approach 

Muscle classification 2 muscles (Femoris & 
Vastus) 

1 muscle (Rectus 
Femoris0 

Features used 6 features for each muscle 22 features 

Dimensionality 
reduction 

Not used PCA 

Model type 4 ML 1 ML and 1 DL 

Common model type 
used 

SVM, linear kernel 
(70% accuracy) 

SVM, RBF kernel 
(82% accuracy) 

Total movement 
recognition 

2 (Extension & Flexion) 3 movement 
recognition 
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Conclusion: 
We discussed that the main goal of our project is to design a lower limb 

exoskeleton/prosthetic device for rehabilitation. To achieve this, we have developed and 
designed a mechanical model of a robotic leg, which can be attached to an amputee to enhance 
efficiency. The core objective of this project is to create lower limb prostheses that improve 
human health, provide comfort, and remain financially affordable. We also examined different 
methods to enhance the efficiency of conventional prosthetic devices, which are often 
uncomfortable and less effective. 

Our project is implemented in two stages. In the first stage, we focused on signal 
acquisition and processing to accurately capture muscle signals. Signal processing includes 
several operations, such as amplifying the acquired signal, filtering out unwanted noise, 
rectifying the signal, and normalizing it to scale the output between 0 and 1. This improves 
signal quality, enabling more accurate feature extraction and enhancing the prediction 
efficiency of the machine learning model. 

In the second stage, we worked on the control system of the robotic leg to execute the 
intended actions. The machine learning model predicts the required signal, which is then sent 
to the control system to trigger the actuator and perform the corresponding action. By 
integrating this device into real-world prosthetic applications, it can assist individuals with 
above-knee amputations. Due to effective signal processing and modeling, the device has 
demonstrated promising results when tested on new participants. The test outcomes, shown 
in the above section, highlight its performance. Additionally, the model's classification 
accuracy could be further improved by employing more advanced deep learning models, such 
as CNN-based architectures. 
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rdu ligatures play a crucial role in text representation and processing, especially in 
Urdu language applications. While extensive research has been conducted on 
handwritten characters in various languages, there is still a significant gap in studying 

raster-based generated images of Urdu characters. This paper presents a generative model 
designed to produce high-quality samples that closely resemble yet differ from existing 
datasets. Utilizing the power of Generative Adversarial Networks (GANs), the model is 
trained on a diverse dataset comprising 40 classes of Urdu alphabets and 20 classes of numerals 
(both modern and Arabic-style), with each class containing 1,000 augmented images to capture 
variations. The generator network creates synthetic Urdu character samples based on class 
conditions, while the discriminator network evaluates their similarity to real datasets. The 
model’s effectiveness is assessed using key metrics such as the Peak Signal-to-Noise Ratio 
(PSNR), Structural Similarity Index (SSIM), and Fréchet Inception Distance (FID). 
The results confirm that the proposed GAN-based approach achieves high fidelity and 
structural accuracy, making it highly valuable for applications in text digitization and Optical 
Character Recognition (OCR). 
Keywords: Generative Adversarial Network, Structural Similarity Index, Fréchet Inception 
Distance, Peak Signal-to-Noise Ratio, Optical Character Recognition. 

     

 
 

   

    
 

 

U 

mailto:sulemankhalil12@gmail.com


                              International Journal of Innovations in Science & Technology 

Mar 2025|Special Issue UOG                                                                             Page |165 

Introduction: 
The increasing reliance on digital text representations in document archiving, optical 

character recognition (OCR), and font design highlights the need for efficient methods to 
generate digital versions of various writing systems. Generative Adversarial Networks (GANs) 
have numerous practical applications, such as enhancing OCR system performance by training 
on diverse datasets to improve recognition accuracy. Additionally, GANs assist typographers 
in creating new fonts by generating diverse ligatures and numeral designs. Research has 
explored techniques like GANs for generating handwritten text in various languages, including 
Arabic [1], Bangla [2], Chinese [3], Nepali [4], and Urdu ligatures [5]. These studies primarily 
used handwritten datasets for model training. While models like Stable Diffusion [6][7] and 
DALL-E [8] are designed for general purposes, this study aims to bridge a gap by investigating 
the potential of using Conditional GANs (cGANs) to generate raster images of characters 
from Urdu, Arabic, and modern numerals. 

Urdu belongs to the Indo-Aryan subgroup of the Indo-European language family. 
Approximately 70 million people speak Urdu as their mother tongue, while around 100 million 
others, primarily in Pakistan and India, use it as a second language [9]. It is recognized in India's 
constitution and serves as Pakistan's official language [9]. Significant Urdu-speaking 
communities exist in the United Arab Emirates, the United States, and the United Kingdom. 
Notably, Hindi and Urdu are mutually intelligible [10]. The Urdu script consists of 60 
characters, derived from 28 Arabic letters and 32 Persian characters, written in Naskh and 
Nastaliq styles [11]. These two fonts are widely used in different languages: Nastaliq is 
primarily employed for Urdu, Punjabi, and Sindhi, while Naskh is used for Arabic, Persian, 
and Pashto [12]. Nastaliq follows an elegant, cursive, right-to-left writing style, featuring 
ligatures formed by both joining and non-joining alphabets [11][13][14]. 

Arabic numerals originate from the Hindu-Arabic numeral system, which includes 
both isolated (non-joining) and connected (joining) alphabets, reflecting its cursive nature 
[11][13][14]. This system, which originated in India and was later adopted by Arabic 
mathematicians [15], is often mistakenly considered "Western" or "Latin" digits. The numerals 
(0-9) are widely used worldwide, including in Urdu and Arabic scripts. Ensuring accuracy and 
consistency in generating these numeral shapes is crucial for OCR systems recognizing 
numbers within Urdu text. In this research, "modern numbers" may refer to specific numeral 
glyphs within certain scripts, such as the extended Arabic-Indic digits used in Urdu [16]. This 
study differs from previous research by using a raster-based dataset instead of handwritten 
images for cGAN training. Raster images are widely used in photographs, bitmap graphics, 
and scanned documents due to their ability to depict a broad range of colors and intricate 
details. We explore the application of Conditional Generative Adversarial Networks (cGANs), 
a specialized class of generative models [17]. These networks consist of two primary 
components: the generator (G) and the discriminator (D). The generator (G) creates synthetic 
images that mimic real data, while the discriminator (D) evaluates the images to distinguish 
between real and generated samples. 

The primary goal of this research is to develop a system capable of generating realistic 
Urdu alphabets and numerals to enhance existing datasets. Figure 1(a) presents research papers 
on GANs that we reviewed. HiGAN+ [18] introduces a framework that separates latent space 
into style and content factors, allowing independent control over handwriting form while 
preserving its core content. StackGAN++ [19] generates high-resolution images from text 
descriptions. VQGAN [20] integrates an autoencoder with a GAN architecture, using vector 
quantization to capture intricate image details. Mirrorgan [21] introduces a novel text-to-image 
generation technique based on redescription. TiGAN [22] provides an innovative framework 
for interactive text-driven image creation and modification. AttnGAN [23] focuses on 
generating images from text descriptions, while JoinFontGAN [24] employs few-shot learning 
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to produce high-quality fonts. TeDiGAN [25] uses text descriptions to create and manipulate 
face images with high realism and control. 

 
Figure 1(a). A recent study of GANS. 

Novelty: 
The key contributions of our research are as follows: 

• We created a novel dataset for training Generative Adversarial Networks (GANs) to 
address a significant gap in resources for Urdu script generation. This dataset can 
further aid in developing robust Urdu Optical Character Recognition (OCR) systems. 

• We successfully demonstrated the generation of raster images for Urdu characters, 
Arabic numerals, and modernized numerals using a Conditional Generative 
Adversarial Network (GCN). To the best of our knowledge, this is the first instance 
of cGAN being applied to Urdu characters. 

• We introduced an innovative approach to data augmentation by generating synthetic 
raster-based images, potentially transforming dataset creation for various applications. 

• We evaluated the effectiveness of a machine learning model trained on synthetic data 
generated by GCC. The model demonstrated strong performance when tested on real-
world data. 

Objectives: 
Our study aimed to achieve several objectives. First, we sought to address the scarcity 

of resources for Urdu text, ligatures, and numeral images required for training cGAN models. 
To bridge this gap, we developed a dataset comprising 40,000 Urdu ligature images and 20,000 
numeral images. 

Second, our goal was to develop a robust cGAN model capable of generating an 
unlimited number of realistic Urdu text images. This objective was successfully realized using 
our custom-built dataset. 

Additionally, we assessed the model’s robustness using various evaluation metrics to 
ensure its reliability and effectiveness. 
Related Work: 

In 2014, Ian Goodfellow and his colleagues introduced the foundational research 
paper on Generative Adversarial Networks (GANs) [26]. This paper presents a framework 
where two neural networks—a generative model (G) and a discriminative model (D)—are 
trained together in an adversarial process. The objective of G is to model the data distribution, 
while D evaluates the probability that a given sample comes from the training data rather than 
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being generated by G. This minimax game framework enables effective training through 
backpropagation and allows the generation of high-quality samples without requiring Markov 
chains. This approach leverages adversarial networks to generate competitive samples, offering 
potential solutions to challenges in generative modeling. 

One of the notable studies on GAN-based handwritten English text generation was 
conducted by Eloi Alonso et al. [27]. They proposed an adversarial approach for generating 
handwritten word images using a bidirectional long short-term memory (LSTM) recurrent 
neural network to extract the words for generation. These extracted words were then fed as 
conditional input, along with noise, into the generator networks. An additional recognizer was 
also incorporated into the network. While the numerical results were promising, the generated 
images of French and Arabic words were significantly blurry. Wu et al. [28] employed the 
DCGAN architecture to generate images of tomato leaf disease, thereby augmenting the 
dataset of diseased leaves. This method, known as dataset augmentation using DCGAN, 
provided an alternative to traditional augmentation techniques such as translation, rotation, 
and flipping, which do not always generalize well. Their DCGAN-based augmentation 
approach improved model recognition accuracy compared to conventional techniques. 
Furthermore, their findings indicated that the DCGAN-generated results were more 
convincing in both the visual Turing Test and t-distributed Stochastic Neighbor Embedding 
analysis. 

 
Figure 1(b). The workflow of this research study 

In [1], Mustapha et al. used the DCGAN architecture to generate handwritten Bangla 
digits. They utilized three widely recognized handwritten Bangla datasets—Ekush, their 
dataset, BanglaLekha-Isolated, and CMATERdb—to achieve their objective. Since the 
proposed DCGAN efficiently generates Bangla digits, it serves as a reliable model for 
producing handwritten Bangla digits from random noise. Their study aims to apply the 
DCGAN architecture to generate Arabic characters. The dataset comprises handwritten 
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images of 33 Arabic alphabets, from "alef" to "yeh," with each character having 480 images, 
each sized 32x32 pixels. Recent advancements in generative models for text and image 
synthesis have significantly enhanced the ability to generate high-quality synthetic data for low-
resource languages. While GANs have been widely used for handwritten character generation 
and font synthesis, newer approaches, such as transformer-based diffusion models, have 
demonstrated superior results in text-to-image generation. Studies by Ramesh et al. [8] on 
DALL-E and Rombach et al. [6] on Stable Diffusion indicate that diffusion models trained on 
large-scale datasets outperform GANs in generating visually coherent text-based images. 
However, these models require substantial computational resources and large-scale 
pretraining, making them impractical for low-resource languages like Urdu. In contrast, 
conditional GANs (cGANs) provide a computationally efficient alternative, enabling fine-
grained control over script-specific character generation while maintaining high visual quality. 

Urdu Optical Character Recognition (OCR) and script synthesis present unique 
challenges due to complex ligature formations, cursive structure, and varying diacritic 
placements. Unlike Latin-based scripts, where characters remain distinct, Urdu letters change 
shape depending on their position (isolated, initial, medial, or final), making OCR-based 
training datasets highly diverse and difficult to standardize. Prior research by Arafat & Iqbal 
[29][30] highlighted that traditional machine learning and neural network-based OCR models 
struggle with segmentation errors due to overlapping ligatures. Recent studies have explored 
GAN-based data augmentation to enhance Urdu OCR performance; however, most existing 
approaches rely on basic GAN architectures (e.g., DCGAN, Pix2Pix) rather than more 
sophisticated conditional architectures like cGANs. This study addresses this gap by leveraging 
cGANs for Urdu character and numeral generation, providing a more adaptable framework 
for low-resource script synthesis and OCR model training. 

Despite the success of GANs in generating realistic images, their application in low-
resource language processing remains underexplored, particularly in text-based image 
generation. Previous studies have successfully employed CycleGAN for domain adaptation 
[22]. Additionally, research by Guan et al. [31] on GAN-based data augmentation for 
handwritten datasets underscores the potential of generative models in enhancing dataset 
diversity for OCR tasks. By implementing cGANs with controlled conditioning on Urdu 
characters and numerals, this study introduces a scalable and effective generative framework 
for script-based OCR improvement, filling a crucial research gap in Urdu script synthesis. 
Dataset: 

The dataset used in this study is based on the Urdu Ligatures dataset [29], originally 
comprising 45,000 unique ligatures. These ligatures included nine distinct transformation 
types, along with a standard set of ligatures. To enhance the dataset for this study, the following 
steps were taken: 
• Resolution Standardization: Using the cv2 library, all images were resampled to a 
resolution of 64x64 pixels, ensuring consistency across the dataset. 
• Data Augmentation: Based on techniques outlined in [32], ten different 
transformation methods were applied to the ligatures. This augmentation process significantly 
expanded the dataset, generating 1,000 images for each letter and numeral using 
transformations such as scaling, rotation, and flipping. 

As a result, the dataset increased to 60,000 images, comprising 40,000 Urdu characters 
and 20,000 numerals (both Urdu and Modern Indo-Arabic). The general steps involved in 
creating the Urdu dataset are shown in Figure 1(b). 

This refined and standardized dataset provides a diverse and well-balanced 
representation of Urdu characters and numerals, making it ideal for machine learning 
applications such as text recognition and computational linguistics. Furthermore, it addresses 
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a significant gap in resources for Urdu script generation, laying the foundation for future 
research in this area. 
Developed Methodology: 
Model Development: 

Conditional Generative Adversarial Networks (cGANs) are a variation of the GAN 
architecture in which the generator receives an additional conditional input alongside the latent 
noise. This configuration enables the model to generate data based on specific inputs, making 
it suitable for tasks such as generating images corresponding to predefined labels or categories. 
In this research, we employed a cGAN to generate vector-based images of Urdu alphabets, 
Arabic numerals, and modern digits. The GCC consists of two neural networks: a generator 
(G) and a discriminator (D), as illustrated in Figure 2. This work is the first to apply cGANs 
specifically for low-resource languages, such as Urdu, for ligature and numeral generation, 
highlighting the model’s effectiveness in producing diverse and high-quality images. 
Generator: 
 The generator network takes a label and a random array as input, producing images 
that align with the structure of the training data for that label. 
Discriminator: 

The discriminator evaluates labeled data batches, combining real data from the training 
set with generated data, classifying each sample as either "real" or "generated." 
Generator Model: 

Our generator model takes a latent input and generates an image. Its architecture 
includes fully connected layers, transposed convolutional layers, batch normalization, and 
activation functions such as ReLU and Tanh. An input layer is used to define the input layer 
for latent variables, and a concatenation layer integrates the conditional information with the 
generated features. 

 
Figure 2. Proposed Methodology 

The function layer is a custom layer designed to apply a transformation that converts 
an appearance into an image. To keep the pixel values of the output image within the range of 
[-1, 1], a tanh layer is used. Figure 3 illustrates the structure of our generator. 
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Figure 3. Structure of Generator network. 

The generator's loss function is given in Equation 1. 

.1 
The generator's score is determined by the average feasibility assigned by the 

discriminator to the generated data, as shown in Equation 2. 

 2 
Discriminator Model: 

The discriminator model is designed to evaluate the authenticity of an input image, 
determining whether it is real or generated. Its architecture includes key components such as 
convolutional layers, batch normalization, dropout, Leaky ReLU activation, and concatenation 
layers. The Image Input Layer serves as the entry point for image data, while the Dropout 
Layer helps reduce overfitting by applying regularization. The Leaky ReLU activation function 
provides a small gradient for negative inputs, aiding efficient learning. Additionally, the 
Concatenation Layer combines conditional data with image features, improving the model's 
ability to distinguish between real and generated images. The discriminator's architecture is 
illustrated in Figure 4. 

 
Figure 4. Structure of Discriminator network. 
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Equation 3 defines the loss function for the discriminator. 

 3 
The discriminator's score is calculated as the average contingency assigned to real and 

generated data by the discriminator, as shown in Equation 4. 

4 
Training Parameters: 

With a learning rate of 0.0002, a gradient decay rate of 0.5, and a squared gradient 
decay rate of 0.999, we used the Adam optimizer to train both the discriminator and generator 
networks. Adam is widely recognized for its efficient optimization and adaptive learning rate 
capabilities. 

The training process included 45 epochs for the Urdu characters dataset and 81 
epochs for the Urdu numerals dataset, where each epoch represents a complete pass through 
the entire training data. To balance computational efficiency with the ability to capture diverse 
gradients from the data, a batch size of 128 samples was used. 

The model's performance was evaluated on a validation set every 100 iterations to 
monitor training progress and reduce the risk of overfitting. Training progress graphs were 
updated accordingly, and the performance graphs for the generator and discriminator on the 
Urdu characters and numerals datasets are shown in Figure 5 and Figure 6, respectively. 

 
Figure 5. Generator and discriminator score graph for Urdu characters dataset 

 
Figure 6. Generator and discriminator score graph for numbers dataset 



                              International Journal of Innovations in Science & Technology 

Mar 2025|Special Issue UOG                                                                             Page |172 

Evaluation Metrics: 
We use PSNR (Peak Signal-to-Noise Ratio) [33], where a higher PSNR value indicates 

better image quality, and SSIM (Structural Similarity Index) [34], where values closer to 1 
represent higher similarity, while values closer to 0 indicate lower quality. A low PSNR score 
suggests significant numerical differences between images. 

Additionally, we evaluate our model using FID (Fréchet Inception Distance) [35]. A 
perfect FID score of 0.0 means the two sets of images are identical, while lower FID values 
indicate greater similarity or a closer statistical alignment between them. The formulas for 
these metrics are provided in Table 1. 

Table 1. Formulas for measurements. 

Measurements Formulas 

FID 

5 

SSIM 

6 
PSNR 

7 

Results and Discussion: 
The results strongly indicate that the cGAN-based model can generate high-quality 

and visually realistic characters, including both Urdu alphabets and numerals (Arabic and 
modern). 

When assessing generative models, key evaluation metrics such as Peak Signal-to-
Noise Ratio (PSNR), Fréchet Inception Distance (FID), and Structural Similarity Index 
Measure (SSIM) serve as essential benchmarks. Each metric captures a different aspect of 
generation quality: 
FID (Fréchet Inception Distance).  

A lower FID value indicates that the generated images closely resemble the real dataset 
in terms of feature distributions. The reported top FID scores—0.0100 for the Urdu alphabet 
dataset and 0.0006 for the numeral dataset (as shown in Table 2)—are exceptionally low. This 
suggests that the synthetic characters are nearly indistinguishable from real ones at a high-level 
statistical representation. The average FID values—0.0055 for the alphabet set and 0.0035 for 
the numerals—are still highly promising. However, the top scores emphasize the model’s 
potential under optimal training configurations or specific hyperparameter settings. 

A few sample outputs are illustrated in Figures 7(a), 7(b), and 7(c). 
PSNR (Peak Signal-to-Noise Ratio): Measures how closely the generated images resemble 
a reference image at the pixel level. Higher PSNR values indicate less distortion and better 
image quality. The top PSNR scores—25.699 for Urdu alphabets and 28.844 for numerals—
demonstrate that, at their best, the generated characters exhibit minimal noise and high pixel-
level fidelity. 

While the average PSNR values are slightly lower, they remain strong (23.4098 for 
alphabets and 25.9774 for numerals, as shown in Table 2). This indicates that, on average, the 
generated outputs are clean, detailed, and well-defined. 
Some sample outputs are illustrated in Figures 7(a), 7(b), and 7(c). 
SSIM (Structural Similarity Index Measure): evaluates structural and perceptual similarity, 
ensuring that the generated images preserve the shapes, edges, and patterns characteristic of 
the original character forms. 
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The top SSIM scores—0.9056 for alphabets and 0.9480 for numerals (as shown in 
Table 2)—are remarkably high, indicating that the generated characters closely resemble real 
examples in terms of structural integrity. 

The average SSIM values—0.8320 for alphabets and 0.8347 for numerals—are also 
strong, demonstrating consistent structural fidelity across different generation conditions. 

Some sample outputs are illustrated in Figures 7(a), 7(b), and 7(c). 
MS-SSIM (Multi-Scale Structural Similarity Index Measure): is an enhanced version of 
SSIM that evaluates images at multiple levels of detail, from fine to coarse. This approach 
improves the traditional SSIM metric by comparing structural features such as brightness, 
contrast, and patterns across different resolutions, making it more aligned with how humans 
perceive visual information. 

Our experimental results reveal promising outcomes, demonstrating that cGANs 
effectively address training data sparsity for low-resource languages. The model successfully 
generated coherent and contextually relevant Urdu text and numerals, emphasizing the 
potential of cGANs for text generation in resource-constrained environments. 

This capability is significant for several reasons: 
1. Expanding Linguistic Diversity – cGANs facilitate automated content 
generation, supporting underrepresented languages. 
2. Enhancing NLP Applications – Synthetic text can augment training datasets, 
improving performance in text classification, sentiment analysis, and machine translation for 
low-resource languages. 

Additionally, our findings contribute to the broader field of language modeling and 
GAN-based research. By demonstrating that cGANs can generate meaningful Urdu text, our 
study paves the way for future research on GAN-based NLP models, particularly for languages 
that are underrepresented in digital spaces. 

The results of our various experiments, including top and average scores for each 
evaluation metric, are illustrated in graphs and figures throughout the study. 

 
Figure 7(a). Evaluation scores for Urdu character ‘stay’ 

 
Figure 7(b). Evaluation scores for Arabic number ‘8’ 

 
Figure 7(c). Evaluation scores for the modern number ‘0’ 
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We calculated both the average scores and top scores for PSNR, FID, and SSIM for 
each class in the numbers dataset. The results are presented in Figure 8(a), Figure 8(b), and 
Figure 8(c). 

 
Figure 8(a). Average vs top PSNR score of numbers dataset 

 
Figure 8(b). Average vs top FID score for numbers 

 
Figure 8(c). Average vs top SSIM score for numbers 
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The average scores and top scores for PSNR, FID, and SSIM for each class in the 
Urdu characters dataset are shown in Figure 9(a), Figure 9(b), and Figure 9(c). 

 
Figure 9(a). Average vs PSNR score for Urdu alphabets 

 
Figure 9(b) Average vs top FID score for Urdu alphabets 

 
Figure 9(c). Average vs top SSIM score for the Urdu alphabet 
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We calculated the average scores and top scores for both datasets, as presented in 
Table 2. 

Table 2. Various Evaluation Results 

Dataset FID PSNR SSIM 

Urdu 
alphabets 

Average 
score 

Top score 
average 

Average 
score 

Top score 
average 

Average 
score 

Top score 
average 

0.0055 0.0100 23.4098 25.6999 0.8320 0.9056 

Numbers 0.0035 0.0062 25.9774 28.8484 0.8347 0.9480 

 
Figure 10. Samples of real images 

 
Figure 11. samples of generated images 

The generated images in Figure 11 closely resemble the real images shown in Figure 
10. 
• Figure 12(a) presents the average PSNR score bar chart, while Figure 12(b) displays 
the top PSNR score for each class of Urdu characters. 
• Figure 13(a) and Figure 13(b) illustrate the average and top SSIM scores, respectively. 
• Figure 14(a) and Figure 14(b) show the average and top FID scores, respectively. 

 
Figure12(a). Average PSNR score bar chart for each class of Urdu Characters. 
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Figure12 (b). Top PSNR score bar chart for each class of Urdu characters 

 
Figure13(a). Average SSIM score bar chart for each class of Urdu characters 

 
Figure13 (b). Top SSIM score bar chart for each class of Urdu characters 
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Figure14(a). Average FID score bar chart for each class of Urdu characters 

 
Figure14 (b). Top FID score bar chart for each class of Urdu characters 

Figure 15(a) and Figure 15(b) present the average and top FID scores for each class 
of numbers, respectively. 

 
Figure15 (a). Average FID score bar chart for each class of numbers 
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Figure15 (b). Top FID score bar chart for each class of numbers 

Figure 16(a) and Figure 16(b) display the average and top PSNR scores for each class 
of numbers, respectively. 

 
Figure16 (a). Average PSNR score bar chart for each class of numbers 

 
Figure16 (b). top PSNR score bar chart for each class of numbers 
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Figure17 (a). Average SSIM score bar chart for each class of numbers 

Figure 17(a) and Figure 17(b) present the average and top SSIM scores for each class 
of numbers, respectively. 

 
Figure17 (b) Top SSIM score bar chart for each class of numbers 

We also compared our results with the Arabic cGAN for character generation using 
the MS-SSIM metric and obtained encouraging results. The findings are presented in Table 3. 

Table 3. Comparison of MS-SSIM scores for Urdu and Arabic Characters 

Dataset Classes MS-SSIM 

Arabic characters dataset [1] 28 0.6350 

Our Urdu characters dataset 40 0.6683 

Discussion: 
The findings of this study highlight that Conditional Generative Adversarial Networks 

(cGANs) offer an effective method for generating high-quality Urdu alphabet and numeral 
images. This contributes significantly to dataset augmentation for OCR training and script 
synthesis. The proposed model effectively captures the unique stylistic characteristics of Urdu 
script, addressing key challenges such as ligature complexity, cursive nature, and contextual 
character shape variations. Performance evaluations using PSNR, SSIM, and FID confirm that 
cGAN-generated images exhibit high visual fidelity and structural accuracy, making them well-
suited for real-world OCR applications. 

In comparison to traditional handwritten dataset augmentation methods, cGANs 
provide a scalable and automated solution for expanding Urdu script datasets—eliminating 
the need for extensive manual annotation. A key finding of this study is the superiority of 
cGANs over Variational Autoencoders (VAEs) and diffusion models in Urdu text generation. 
While diffusion models have gained popularity in text-to-image synthesis, their high 
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computational cost and training instability make them less practical for low-resource 
languages. 

Our results show that cGANs achieve significantly lower FID scores (0.0055 for 
alphabets, 0.0035 for numerals), demonstrating superior image realism and text coherence 
compared to VAEs. However, despite their strong performance, cGANs still face challenges 
in handling highly stylized ligatures and complex diacritic placements. These limitations could 
be addressed through hybrid architectures incorporating transformers or attention 
mechanisms, enhancing the model’s ability to generate more accurate and detailed Urdu text. 

While this study successfully generates high-quality synthetic Urdu characters, certain 
deployment challenges remain unaddressed: 
• Computational Efficiency – Further research is needed to explore the feasibility of 
cGANs in edge computing environments, as real-world OCR systems require lightweight, low-
latency models. 
• Adversarial Robustness – GAN-generated text images may be susceptible to 
perturbations, which could negatively impact OCR model performance. 
Future Work: 

To address these challenges, future studies should focus on: 
• Optimizing model efficiency for real-time applications. 
• Integrating adversarial defense mechanisms to enhance robustness against 
distortions and occlusions. 
Comparative Analysis: 

In comparison to Diffusion Models [36] and VAEs [37], which offer alternative text 
generation solutions: 
• Diffusion Models are well-suited for high-quality text generation when abundant 
data is available. 
• VAEs perform better in scenarios where data is sparse, but diversity is less critical. 
• cGANs, however, provide a balanced approach, generating contextually aware, 
accurate, and diverse text, even with limited data availability. 
Conclusion: 

Overall, can emerge as a compelling solution for low-resource language generation, 
such as Urdu, striking a balance between diversity, contextual relevance, and practical 
applicability. 
Importance of These Metrics and Their Strong Values: 

These evaluation metrics and their high scores are crucial for several reasons: 
1. Assessing Image Quality 
o Peak Signal-to-Noise Ratio (PSNR) measures how closely the generated images 
match reference images at the pixel level. 
o Higher PSNR values indicate less distortion, ensuring that the generated text remains 
clear and readable. 
2. Evaluating Structural Similarity: 
o Structural Similarity Index Measure (SSIM) ensures that the shapes, edges, and 
patterns in the generated images preserve the structural integrity of real Urdu characters. 
o High SSIM scores confirm that the generated text remains visually and contextually 
accurate. 
3. Measuring Statistical Alignment 
o Fréchet Inception Distance (FID) evaluates the similarity between real and generated 
datasets in terms of feature distributions. 
o Lower FID values suggest that the synthetic images are nearly indistinguishable from 
real data, enhancing the reliability of generated text. 
4. Enhancing OCR Training and Recognition: 
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o High-quality synthetic images contribute to better dataset augmentation for OCR 
models. 
o This improves the accuracy of text recognition systems, especially in low-resource 
languages like Urdu. 
5. Supporting NLP Applications 
o These strong values validate the effectiveness of cGAN-generated text for 
applications in machine translation, sentiment analysis, and text classification. 
o A well-generated Urdu script dataset helps improve performance in natural language 
processing (NLP) tasks. 
6. Ensuring Practical Use for Real-world Applications 
o Maintaining visual fidelity ensures that synthetic text can be used for digital 
typography, font generation, and educational tools. 
o This broadens the application of AI-driven text synthesis in linguistic research, 
publishing, and digital content creation. 

These metrics collectively demonstrate that cGANs are a powerful tool for Urdu text 
generation, offering high-quality, structurally accurate, and statistically reliable synthetic 
images. 
Validation of Dataset Quality: 
Significance of High FID, PSNR, and SSIM Scores: 

Achieving strong FID, PSNR, and SSIM scores serves as a validation of the newly 
developed dataset and training protocols. These high scores confirm several key aspects: 
1. Dataset Quality & Representativeness 
o A well-curated dataset is crucial for training generative models. 
o High scores indicate that the dataset contains diverse and high-quality samples, 
making it effective for training robust generative models. 
2. Realism & Fidelity of Generated Images 
o Low FID scores suggest that the generated images closely match real-world samples 
in feature space. 
o High PSNR values confirm minimal pixel-level distortion, ensuring that the generated 
characters retain clarity and detail. 
o High SSIM scores validate that the structural properties of the generated characters 
remain true to the original script. 
3. Effectiveness of Training Protocols 
o High metric scores reflect the efficacy of the training pipeline, including data 
preprocessing, augmentation, and model optimization techniques. 
o This confirms that the model learns efficiently and generalizes well across different 
character classes. 
4. Suitability for OCR & NLP Applications 
o A high-quality generative model enhances OCR dataset augmentation, making it 
useful for real-world Urdu script recognition. 
o Text-based AI applications, such as handwriting recognition and font generation, 
benefit from synthetic yet highly realistic text samples. 
5. Potential for Future Research & Development 
o Strong metric scores indicate that the training methodology can be used for other 
low-resource languages and extended to various generative AI tasks. 
o This opens doors for further refinements, including the integration of transformers, 
diffusion models, or hybrid architectures for improved Urdu text generation. 

By achieving strong FID, PSNR, and SSIM scores, this study validates the dataset’s 
robustness and confirms that the training protocols effectively guide the model toward 
generating realistic, high-quality Urdu script images. 
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Benchmarking Performance.  
Establishing Baseline Performance Metrics for a New Dataset: 

When working with a new dataset, setting baseline performance metrics such as FID, 
PSNR, and SSIM provides a critical reference point for evaluating and improving model 
performance. These baselines serve several key functions: 
1. Benchmark for Future Improvements 
o Establishing initial scores allows researchers to compare future model iterations and 
measure progress over time. 
o Any enhancements in preprocessing, augmentation, or architecture can be directly 
evaluated against the baseline. 
2. Standardized Performance Evaluation 
o A baseline provides a consistent framework to assess different models or training 
strategies. 
o This is especially important for comparing cGANs, VAEs, Diffusion Models, and 
hybrid architectures on the same dataset. 
3. Dataset Suitability for Generative Tasks 
o If the baseline scores are too low, it may indicate that the dataset requires better 
quality control, balancing, or augmentation. 
o Strong baseline scores suggest the dataset is sufficiently diverse and informative for 
training high-quality generative models. 
4. Guiding Hyperparameter Tuning 
o Researchers can use baseline metrics to fine-tune learning rates, batch sizes, and 
regularization techniques. 
o This prevents unnecessary adjustments and provides a data-driven approach to 
optimizing performance. 
5. Comparability Across Studies 
o When published, baseline scores enable other researchers to reproduce results and 
compare new techniques against an established reference. 
o This fosters scientific rigor and promotes collaboration in generative AI research. 

By setting baseline FID, PSNR, and SSIM scores, researchers create a solid foundation 
for evaluating generative models, ensuring that progress is measurable, reproducible, and 
meaningful. 
Practical Applications.  

In domains such as typography design, calligraphy digitization, and OCR (Optical 
Character Recognition) pre-training, the quality of generated characters plays a critical role in 
determining their usability. 
Why Character Quality Matters? 
1. Typography & Font Design 
o High-quality synthetic characters help in designing new fonts with stylistic 
consistency. 
o cGANs enable the automatic generation of script-specific typefaces, reducing manual 
effort. 
2. Calligraphy Digitization 
o Many historical and artistic scripts lack digital representation. 
o AI-generated characters preserve intricate calligraphic details, making them usable in 
modern applications. 
3. OCR Pre-Training & Dataset Augmentation 
o OCR models require large, diverse datasets for high accuracy. 
o High-fidelity synthetic text improves OCR performance by providing additional 
training samples, especially for low-resource languages. 
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By ensuring high visual fidelity and structural accuracy, cGAN-generated text 
enhances usability across digital design, linguistic research, and AI-driven text recognition. 
Generalization Potential: 
Significance of Strong Average Scores: 

While peak results highlight the best-case performance of a model, strong average 
scores indicate consistency across different samples, making the model more reliable in real-
world applications. 
1. Robustness Across Variability 
o A high average PSNR, SSIM, and FID suggest that the model performs well 
on most samples, not just a few ideal cases. 
o This is essential for text generation tasks, where variations in handwriting, font 
styles, and distortions can affect recognition. 
2. Scalability & Generalization 
o A model with strong average performance can generalize well across different 
datasets, character styles, and script variations. 
o This is particularly valuable for low-resource languages, where real-world 
dataset augmentation is required. 
3. Foundation for Further Research 
o The presented results confirm that cGAN-based text generation is effective 
and provides a benchmark for future improvements. 
o The datasets and methodologies established here can be expanded and refined 
for broader linguistic and AI applications. 
Conclusion: 

By achieving both top-performing and high-average scores, this study reinforces that 
cGANs offer a reliable and scalable approach for text and character-based image synthesis, 
paving the way for further advancements in generative AI for script-based languages. 
Conclusion: 

This research demonstrated the potential of using a cGAN to generate raster images 
of different writing systems, possibly marking the first successful attempt for Urdu characters 
and numerals. The GCN successfully produced realistic and recognizable representations of 
Urdu script, Arabic numerals, and modern numerals, demonstrating its effectiveness in font 
generation, optical character recognition, and data augmentation. Further study and 
development can explore multiple GAN designs, increase the quality and consistency of 
produced pictures, and look into particular applications in a range of language processing and 
design domains. This research opens doors for further exploration in generating raster-based 
representations for diverse writing systems. 

This research demonstrated the potential of using cGANs to generate raster images 
for different writing systems, possibly marking the first successful attempt at generating Urdu 
characters and numerals. The model effectively produced realistic and recognizable 
representations of: 
• Urdu script 
• Arabic numerals 
• Modern numerals 
Key Contributions and Implications: 
1. Applications in Font Generation & OCR 
o The study highlights cGANs’ effectiveness in font design by generating high-quality, 
script-aware text. 
o It enhances Optical Character Recognition (OCR) systems by providing diverse 
synthetic data for training. 
2. Advancements in Data Augmentation 
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o By generating realistic synthetic text, cGANs can expand low-resource datasets 
without manual annotation. 
o This helps improve NLP and OCR models for underrepresented scripts. 
3. Future Research Directions 
o Exploring multiple GAN architectures (e.g., StyleGAN, BigGAN) to refine quality 
and consistency. 
o Hybrid models with transformers to enhance context-aware text generation. 
o Extending to other scripts such as Persian, Pashto, and Sindhi to broaden the research 
impact. 

This research lays the foundation for future exploration in generating raster-based 
representations for diverse writing systems, paving the way for breakthroughs in 
computational linguistics, typography, and AI-driven text synthesis. 
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The environmental risks associated with ammonium nitrogen (NH₄⁺-N) pollution have led to 

a growing focus on prevention. Electrochemical advanced oxidation is an effective and eco-

friendly method that only requires electricity and electrolytes to remove NH₄⁺-N from 

wastewater. This study assesses the effectiveness of electro-oxidative natural manganese sand 

(NMS) in removing ammonium nitrogen under different conditions. Due to NMS’s high redox 

potential, it significantly enhanced the electrochemical oxidation process, increasing NH₄⁺-N 

removal and generating reactive chlorine species (ClO⁻/HClO) when NaCl was added. The 

experiment was also conducted without a catalyst, quartz sand, and natural manganese sand, 

but NMS removed 86.4% of NH₄⁺-N, outperforming the other treatments. The removal 

efficiency was tested at five different pH levels (3, 5, 7, 9, and 11), with NMS showing the 

highest efficiency of 95.2% at pH 9. At a current density of 15.5 mA/cm², the removal rate 

reached 94.9%, and with a NaCl concentration of 9 g/L, the removal efficiency peaked at 

96.2%, driven by increased production of reactive chlorine species (ClO⁻). These results 

demonstrate the electro-oxidative NMS system as a highly efficient, scalable, and eco-friendly 

solution for ammonium nitrogen removal in wastewater treatment. 

Keywords: Electrochemical Oxidation; Manganese Sand Catalyst; Ammonium Nitrogen 

Removal; Wastewater Treatment; Sustainability 
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Introduction: 

Ammonium nitrogen (NH₄⁺-N) is highly toxic and poses a significant threat to global 
water quality. It originates from various sources, including the excessive use of nitrogen 
fertilizers like urea, discharges from human and animal waste, agro-industrial wastewater, 
landfill leachate, and untreated domestic wastewater [1]. Water contamination from 
ammonium nitrogen has severe effects on the ecosystem [2]. High concentrations of ammonia 
and ammonium in water can cause unpleasant odors and tastes. Excessive intake of 
ammonium nitrogen can disrupt the body's acid-base balance, making the blood too alkaline 
and leading to serious health issues. These health concerns highlight the dangers of elevated 
ammonia levels in water. As a result, the WHO and EU have set a maximum permissible limit 
of 2 mg/L for ammonia nitrogen concentrations in water [3]. 

Conventional methods for removing ammonium nitrogen include air stripping [4], ion 
exchange and adsorption, capacitive deionization, membrane technology [5], the activated 
sludge process [6], and biological methods using ammonia-oxidizing bacteria (AOB) [7]. While 
these techniques are effective, they are not always cost-efficient and may contribute to 
environmental contamination. This has created a growing demand for abundant and cost-
effective oxidants or catalysts [8]. 

Advanced oxidation processes (AOPs) have emerged as promising alternatives 
because they can generate powerful oxidative species to break down stubborn contaminants 
with minimal secondary pollution [9]. Radical-based oxidation, such as catalytic systems, is also 
used to treat industrial low-volatile pollutants [10]. Among these methods, the electrochemical 
oxidation process stands out due to its strong capability to remove ammonium nitrogen. This 
method offers benefits such as precise control, mild reaction conditions, and reduced 
environmental impact, allowing for ammonium nitrogen removal through both direct and 
indirect approaches [11]. 

Manganese is one of the most abundant elements in nature and is commonly found as 
manganese oxides (MnOx). Its natural abundance, high surface area, and strong redox ability 
make it a promising material for wastewater treatment [12]. The effectiveness of manganese 
in wastewater treatment can be enhanced by using chloride ions, as active chlorine is involved 
in the oxidation process [13]. In this study, manganese sand was electrochemically activated 

for ammonium nitrogen (NH₄⁺-N) removal. Various factors were investigated, including 
solution pH, NaCl concentration, and current density. The goal of this study is to fill the 
research gap and assess the potential of electrochemically activated manganese sand in 

developing more effective and sustainable methods for removing NH₄⁺-N from wastewater, 
as well as integrating NMS with electrochemical processes for industrial scalability. 
Objectives of the Study: 

The primary objective of this study is to evaluate the catalytic performance of electro-

oxidative natural manganese sand (NMS) for ammonium nitrogen (NH₄⁺-N) removal in 
wastewater treatment. The specific objectives include: 

• To investigate the efficiency of natural manganese sand (NMS) as a catalyst in electro-

oxidation processes for NH₄⁺-N removal. 

• To optimize key process parameters, including pH, NaCl concentration, and current 

density, to achieve maximum NH₄⁺-N removal efficiency. 

• To compare the electro-oxidation performance of NMS with quartz sand and electro-
oxidation alone, determining the catalytic contribution of manganese sand. 

• To explore the reaction mechanisms involved in NH₄⁺-N removal, identifying key 
oxidation pathways and intermediate species. 
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• To assess the feasibility of NMS for practical wastewater treatment applications, 
including potential scalability, reusability, and cost-effectiveness. 
Novelty Statement: 

This study introduces natural manganese sand (NMS) as a novel catalyst for electro-
oxidative ammonium nitrogen removal, offering an efficient and sustainable approach to 

wastewater treatment. Unlike conventional NH₄⁺-N removal techniques such as ion exchange, 
biological nitrification, and membrane filtration, which often suffer from high operational 
costs and secondary pollution, this research demonstrates that NMS significantly enhances 
electro-oxidation efficiency without requiring complex modifications. 
Material and Methods: 
The experiment was carried out in a batch electrolytic cell using a 250 mL beaker fitted with electrodes. 
A 100 mg/L ammonium nitrogen solution was prepared in distilled water, with 3 g/L of sodium 
chloride added. To enhance the electrochemical oxidation process, 7.1 mg/L of sodium sulfate was 
included as a supportive electrolyte to increase ionic strength. 

 
Figure 1. Flow Diagram of Methodology 

A catalyst dose of 100 g of manganese sand was added to facilitate the oxidation of 
ammonium nitrogen. The electrochemical oxidation process was conducted for 120 minutes, 
with current densities ranging from 5.5 to 15.5 mA/cm². To evaluate the impact of various 
parameters on ammonium nitrogen removal efficiency, samples were collected at 20-minute 
intervals throughout the experiment. The pH of the system was maintained between 3 and 11 
by adjusting with dilute HCl. After each sampling, the collected solutions were filtered to 
remove any solid manganese particles before analysis. Ammonium concentrations in the 
filtered samples were measured using a spectrophotometer coupled with an ion-selective 
electrode. 

Additionally, the effect of varying sodium chloride (NaCl) concentrations was 
examined, with NaCl concentrations ranging from 1 to 9 g/L. This approach allowed for the 
evaluation of key factors influencing the efficiency of ammonium nitrogen removal. 
Determination of Ammonia Nitrogen: 

Ammonium nitrogen was determined using Nessler’s spectrophotometry method [14], 
as shown in Figure 1. A standard curve was created using a known concentration of 
ammonium nitrogen, in the form of free ammonia or ammonium ions, which reacts with 
Nessler’s reagent to form a brown complex. The absorbance of this complex was directly 
proportional to the ammonium nitrogen concentration. For analysis, the samples were diluted 
with 50 mL of deionized water, followed by the addition of 1.0 mL of potassium sodium 
tartrate solution and 1.0 mL of Nessler’s reagent. After the reaction, the absorbance of the 
samples was measured using the standard curve to determine the ammonium concentration. 
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Figure 2. Standard Curve of Ammonium Nitrogen 

Result and Discussion:  
The catalytic performance of the electro-oxidative natural manganese sand (NMS) 

system for ammonium nitrogen oxidation was thoroughly investigated by comparing three 
systems: electro-oxidation alone, electro-oxidation with quartz sand, and advanced electro-
oxidation with manganese sand. The results showed that electro-oxidation alone achieved a 
removal efficiency of 42.7%, and electro-oxidation with quartz sand reached 37.6%. However, 
with the inclusion of manganese sand, the removal efficiency significantly improved to 86.4% 
after 120 minutes of electrolysis, demonstrating the superior performance of the electro-
oxidative manganese sand system in treating inorganic pollutants.  

 
Figure 3. Performance of electro-0xidation manganese sand on removal of Ammonium 

Influence of Operating Conditions on Electro-Oxidative NMS Performance: 
Effect of Ph on Removal Rate:  

The influence of pH on ammonium nitrogen removal was evaluated, and the system 
showed adaptability to a wide pH range. At higher pH values, the system facilitated the 

formation of easily removable ammonia (NH₃), while pH levels below 8 made ammonium 
nitrogen removal more challenging. The system achieved ammonium nitrogen removal 
efficiencies ranging from 90.45% to 94.4% across a pH range of 3 to 11 after 120 minutes. 
This enhanced removal efficiency was attributed to the system's ability to effectively oxidize 
ammonium nitrogen even at lower pH levels, ensuring the stability of the electrochemical 
manganese sand system. 
Effect of Current Density:  
The effect of current density on ammonium nitrogen removal was also examined. As the 

current density increased from 5.5 to 15.5 mA/cm², the removal efficiency increased 

accordingly. After 60 minutes, removal rates ranged from 55% to 77.3%, while after 120 

minutes, the removal efficiency reached up to 94.9% at the highest current density of 15.5 
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mA/cm². The enhancement in performance was attributed to the increased production of 

hypochlorite (ClO⁻), which facilitated the oxidation of ammonium nitrogen. 

 
Figure 4. pH vs. NH₄⁺-N Removal Efficiency (%) 

 
Figure 5. Current density vs. NH₄⁺-N Removal Efficiency (%) 

Effect of NaCl Concentration:  
The role of NaCl concentration in ammonium nitrogen removal was evaluated by 

increasing NaCl concentration from 1 to 9 g/L. Removal efficiency progressively improved, 
with the highest efficiency of 96.2% achieved after 120 minutes. NaCl played a crucial role in 

generating hypochlorous acid (HClO) and hypochlorite (ClO⁻) at the anode, which 
enhanced the oxidation of ammonium nitrogen. This demonstrated the potential of the 
NMS system as an effective technology for ammonium nitrogen removal, offering high 
removal rates, adaptability to varying pH conditions, and minimal secondary pollution. 

 
Figure 6. NaCl amount vs. NH₄⁺-N Removal Efficiency (%) 
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Proposed Mechanism: 
The most probable reaction mechanism for eliminating ammonium nitrogen from wastewater is given 
below. 

2Cl− → Cl2  + 2e− (1) 

Cl2  + H2O →  HClO + Cl− + H+ (2) 

HClO → ClO− + H+ (3) 

2H₂O +  2e⁻ →  H₂ +  2OH⁻ (4) 

Cl2 +  H2O →  HClO +  H+ + Cl− (5) 

NH4
+ +  OH− → NH3 +  H2O (6) 

2NH3 + 3HClO → N2 + 3HCl + 3H2 (7) 
2NH3 + 2ClO− → N2 + 2HCl + 2H2O (8) 

NH4
+ +  HClO → NH2Cl  +  H2 +  H+ (9) 

NH2Cl +  HClO →  NHCl2 +  H2 (10) 

NHCl 2 +  HClO →  NCl3 + H₂O (11) 

NCl3 + NHCl2 + 5OH− →  N2 + 3Cl− + 3H₂O + 2ClO− (12) 

2NH4
+ + 3HClO →   N2 +  3H₂O  +  5H+ +  3Cl− (13) 

2NH4
+ +  3ClO− →   N2 +  3H₂O + 2H+ +  3Cl− (14) 

This mechanism is proposed to eliminate ammonium nitrogen from wastewater. 
Electrochemically generated chlorine reacts with water to produce hypochlorous acid (HClO) 

and hypochlorite (ClO⁻) [15]. Ammonium ions (NH₄⁺) convert to ammonia (NH₃) in the 
presence of hydroxyl ions [16]. Intermediate chloramines, such as monochloramine, 
dichloramine, and trichloramine, are then formed when ammonia combines with HClO and 

ClO⁻. These chloramines further decompose into byproducts like nitrogen gas, hydrogen ions, 
and chloride ions [9]. 

Manganese sand acts as a catalyst, providing active sites [17] for ammonia (NH₃), 

ammonium ions (NH₄⁺), hypochlorite (ClO⁻), and hypochlorous acid (HClO). It also 
facilitates electron transfer between ammonia/chloramines, hypochlorous acid, and 
hypochlorite. 
Discussion: 

The results of this study demonstrate the significant enhancement in ammonium 
nitrogen removal achieved through the use of electro-oxidative manganese sand (NMS) 
systems. In comparison to electro-oxidation alone and electro-oxidation with quartz sand, the 
inclusion of manganese sand greatly improved the removal efficiency, achieving a remarkable 
86.4% after 120 minutes of electrolysis (Figure 3). This indicates that manganese sand plays a 
crucial role in facilitating the oxidation process, likely by acting as a catalyst that enhances 
electron transfer and supports the formation of key reactive species such as hypochlorous acid 

(HClO) and hypochlorite (ClO⁻), which are involved in ammonium nitrogen oxidation 
[15][17]. 

The impact of operating conditions on the performance of the electro-oxidative NMS 
system was thoroughly investigated. A key finding was that the system exhibited high 
adaptability to varying pH levels, with effective ammonium nitrogen removal across a broad 
pH range (3 to 11), reaching removal efficiencies of over 90% in most conditions (Figure 4). 

The formation of ammonia (NH₃) at higher pH levels and ammonium ions (NH₄⁺) at lower 
pH was consistent with previous findings [18], indicating that both acidic and alkaline 
environments are favorable for the oxidation of ammonium nitrogen. The higher removal 

efficiencies observed at pH values around 8 and above suggest that ClO⁻ ions, which are more 
abundant under alkaline conditions, accelerate the oxidation process, further supporting the 
role of manganese sand in promoting these reactions. 
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The effect of current density on ammonium nitrogen removal was also explored, 
revealing a positive correlation between increased current density and enhanced removal 
efficiency (Figure 5). Higher current densities generate a greater driving force for 

electrochemical reactions, leading to higher production of ClO⁻, which facilitates the oxidation 
of ammonium ions. These findings align with previous studies that have shown an increased 
rate of pollutant removal with higher current densities in electrochemical oxidation systems 
[19]. 

Additionally, the study examined the role of NaCl concentration in the electro-
oxidative NMS system. Increasing NaCl concentration from 1 to 9 g/L led to a progressive 
increase in ammonium nitrogen removal efficiency, reaching 96.2% at 9 g/L (Figure 6). This 
can be attributed to the increased production of hypochlorous acid and hypochlorite at the 
anode, which are key oxidizing agents that promote the oxidation of ammonium ions [20]. 
The synergy between NaCl concentration and manganese sand highlights the importance of 
optimizing these parameters to enhance the performance of electrochemical treatment systems 
for wastewater treatment. 

Overall, the electro-oxidative NMS system demonstrates promising potential for 
efficient ammonium nitrogen removal from wastewater. The system’s high removal efficiency, 
adaptability to varying pH conditions, and the synergistic effect of NaCl and manganese sand 
suggest that it could be an effective technology for treating ammonium nitrogen 
contamination in industrial effluents. Future studies should further explore the long-term 
stability and scalability of this system, as well as its potential application in larger-scale 
wastewater treatment facilities. 
Conclusion: 

The removal efficiency of ammonium nitrogen (NH₄⁺-N) was improved by adjusting 
various parameters such as pH, current density, and NaCl concentration. Manganese sand 
serves as an effective catalyst due to its high redox potential and large surface area, significantly 

enhancing NH₄⁺-N removal. Varying NaCl concentrations (1–9 g/L) notably improved the 

removal efficiency, reaching 96.2%, due to the formation of reactive chlorine species (ClO⁻ 
and HClO). Increasing the current density (from 5.5 to 15.5 mA/cm²) further enhanced 
performance, achieving 94.9% removal at the highest current density by generating more 

active chlorine species (ClO⁻). The system is adaptable to a wide pH range (3–11), with the 

highest removal efficiency (95.2%) observed at pH 9. At this pH, NH₃ and ClO⁻ are more 

prevalent, speeding up the oxidation process and shifting the equilibrium toward NH₃ 
formation. However, in strongly acidic conditions, activated ions from manganese sand may 
leach, reducing removal efficiency and possibly deactivating the catalyst due to the reaction of 
byproducts [21]. This electro-oxidative NMS method is characterized by its controllability, 
scalability, and high removal efficiency, making it ideal for treating toxic waste in metropolitan 
and industrial settings. Its adaptability to various operational conditions ensures its 
effectiveness across multiple applications. 
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ith technological advancements, innovations like the Internet of Things (IoT) have 
become widespread, connecting more devices to the Internet. However, as the 
number of connected devices increases, cyber-attacks—especially Distributed 

Denial of Service (DDoS) attacks—are also becoming more frequent. This research explores 
these cyber threats, focusing on DDoS attacks, and proposes strategies to protect IoT devices. 
It specifically aims to detect DDoS attacks in IoT devices using feature selection methods and 
machine learning algorithms. The study targets attack detection at the application layer of IoT 
devices by analyzing a relevant dataset. By applying feature selection techniques and machine 
learning models, we strive to enhance the accuracy and efficiency of DDoS detection, 
ultimately improving IoT security. 
Keywords: Distributed Denial of Service (DDoS), Cybersecurity, Internet of Things, Feature 
Selection. 
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Introduction: 
In recent years, millions of IoT devices have been connected for communication, 

relying on the Internet to transmit data between devices. These include sensors, smart devices, 
actuators, and RFID devices. However, IoT devices face cybersecurity challenges, particularly 
cyber-attacks. As the number of connected devices grows, different types of attacks emerge, 
including Distributed Denial of Service (DDoS) attacks. 

ADDoS attack does not steal information but floods the server with excessive traffic, 
slowing it down. This study focuses on detecting exploitation- and reflection-based DDoS 
attacks using reduced features [1]. The main goal of a DDoS attack is to overwhelm a targeted 
website or server with high traffic from multiple sources, rendering it inaccessible. These 
attacks are particularly harmful because they originate from numerous locations, making them 
difficult to mitigate [2]. 

Application-layer DDoS attacks, such as HTTP request-based attacks, are especially 
dangerous because they require relatively few attacking connections to disrupt a website. Their 
traffic closely resembles normal traffic, making detection challenging [3]. In APDDoS attacks, 
attackers send numerous packets to the target server, causing congestion and slowing it down. 
To launch this attack, each participating system first establishes a TCP connection with the 
victim’s server, requiring a valid IP address [4]. 
Research Contributions: 
• This study focuses on detecting DDoS attacks at the application layer of IoT devices, as 

shown in Figure 1. 
• It employs the Extra Tree feature selection method to identify relevant features for 

detecting DDoS attacks. 
• Hyperparameter tuning and k-fold cross-validation are applied to enhance model 

robustness and prevent overfitting. 
• Machine learning models and feature selection techniques are used to improve IoT security 

and enhance DDoS attack detection. 

 
Figure. 1. Application-layer DOS attack 

DDoS attacks are categorized into two types: 

• Network Layer DDoS Attacks – These aim to generate high volumes of traffic to 
overwhelm the target. 

• Application Layer DDoS Attacks – These mimic legitimate behavior while using low 
bandwidth, making them harder to detect and mitigate [5]. 

DDoS attacks can harm networks in various ways. Most application-layer DDoS 
(APDDoS) attacks exploit protocols such as HTTPS, HTTP page flood, DNS query flood, 
and HTTP bandwidth utilization [6]. 

• Exploitation attacks include SYN flood, UDP lag, and UDP flood. 
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• Reflection-based attacks involve SNMP, MSSQL, LDAP, SSDP, DNS, and 
NETBIOS. 
The objective of this paper is to detect DDoS attacks at the application layer of IoT devices. 
The research contributions include: 
• Detecting DDoS attacks using a feature selection method. 
• Applying machine learning algorithms for detection. 
• Comparing different ML models to improve DDoS attack detection at the application 

layer. 
Denial of Service Attack: 

A DDoS attack targets IoT devices by overwhelming them with excessive traffic. 
Hackers exploit these devices to access resources and disrupt normal operations [7]. In this 
attack, multiple devices send numerous requests to a server, which treats them as legitimate 
and responds to each one. As the server receives more requests than it can handle, it slows 
down. The goal of a DDoS attack is not to steal information but to degrade server 
performance. 

There are three main types of DDoS attacks [8]: 
• Protocol-Based Attacks – Exploit network protocols to overwhelm resources. 
• Application Layer Attacks – Target specific applications, mimicking legitimate traffic. 
• Volume-Based Attacks – Flood the network with massive amounts of traffic. 

When multiple computers send requests to a single server beyond its capacity, the 
server cannot differentiate IP addresses, leading to incorrect responses and further congestion. 
Research Focus: 
• This study focuses on detecting DoS attacks at the application layer in the IoT 

environment. 
• The Extra Tree feature selection method is used to identify key features for detecting 

DDoS attacks. 
• The dataset includes relevant features of application-layer attacks for accurate detection. 
• Hyperparameter tuning and k-fold cross-validation are applied to enhance model 

robustness and prevent overfitting. 
• Machine learning models and feature selection techniques are used to strengthen IoT 

security and improve DDoS attack detection. 
Novelty of the Study: 

This research emphasizes application-layer DDoS attacks, which closely resemble 
normal traffic and are harder to detect than traditional network-layer attacks. By using an 
application-layer DDoS dataset, this approach provides a practical solution for the early 
detection of APDDoS attacks in IoT networks. 
Objectives of the Study: 
Key Objectives of This Study: 
• Detect application-layer DDoS attacks in IoT devices using machine learning 

techniques. 
• Improve detection accuracy and efficiency by applying Extra Tree feature selection, which 

reduces dataset dimensionality while preserving essential features. 
• Evaluate and compare the performance of Decision Tree, Naïve Bayes, and Logistic 

Regression classifiers using key metrics such as accuracy, precision, recall, and F1-score. 
• Enhance IoT security by identifying the most effective machine learning model for real-

time detection and practical deployment in IoT environments. 
Literature Review: 

In [9], the attacker targets an IP address and sends requests to a server via the Internet. 
This type of attack is called a reflection attack, where the response size is larger than the request 
size. DDoS detection methods fall into three categories: 
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• Supervised learning – Uses labeled data for classification. 
• Unsupervised learning – Works with unlabeled data to identify patterns. 
• Hybrid learning – Combines both approaches to distinguish DDoS attacks from normal 

traffic. 
A hybrid machine learning method is used for DDoS detection, working in three 

phases: 
• DBSCAN algorithm clusters benign and DDoS network flows. 
• Clusters are partitioned and analyzed using statistical measures. 
• The CICIDS dataset is used for training, while the CICDDoS2019 dataset is used for 

testing. 
• DBSCAN is used for unsupervised learning, while classification algorithms are applied for 

supervised learning. 
In [10], DDoS attacks are recognized as a major threat to cloud computing, IoT, and 

5G networks. While many researchers have studied DoS attacks, they often use outdated 
datasets that lack modern threats. This study employs an SDN-based (Software-Defined 
Network) architecture to detect DDoS attacks at the transport and application layers using 
deep learning (DL) and machine learning (ML) algorithms. 
• Transport layer attacks: UDP flood, TCP-SYN flood. 
• Application layer attacks: High- and low-volume HTTP-based attacks. 

The study uses machine learning models such as Random Forest (RF), Support Vector 
Machine (SVM), and K-Nearest Neighbors (KNN), along with deep learning techniques like 
Multilayer Perceptron (MLP), Convolutional Neural Network (CNN), and Gated Recurrent 
Unit (GRU). 
• The CICDDoS2017 and CICDDoS2019 datasets are used. 
• Achieved 98% accuracy for application-layer attacks and 95% accuracy for transport-layer 

attacks. 
In [11], the study highlights DDoS attacks as a major challenge to internet security. 

These attacks target the transport, application, and network layers using various protocols such 
as ICMP, HTTP, TCP, and UDP. 
• A DDoS taxonomy is proposed to categorize different attack types. 
• The CICDDoS2019 dataset is used to provide a feature set for detecting various DDoS 

attacks. 
• Machine learning techniques used: Random Forest, Logistic Regression, Naïve Bayes, and 

ID3 algorithms. 
• The study focuses on detecting SYN, DNS, MSSQL, UDP-Lag, and LDAP attacks. 
• In [12], the study addresses IoT security by applying machine learning (ML) and artificial 

intelligence (AI) techniques. 
• IoT devices rely on sensors and communicate via wired and wireless networks. 
• The study applies AI-based intrusion detection and ML-based classification to detect 

anomalies in IoT systems. 
• Neural networks are used to train the system to identify invalid traffic. 
• Focuses on differences between IoT systems and traditional systems. 
• Uses the KDD Cup 1999 dataset, which contains IoT and cybersecurity data. 
• In [13], a review of ensemble learning techniques is conducted, comparing different feature 

selection methods for DDoS detection. 
• Evaluates True Positive Rate (TPR), False Positive Rate (FPR), False Negative Rate 

(FNR), and accuracy. 
• Highlights challenges in existing models, such as high false rates and low detection rates. 
• Compares traditional ML models with ensemble learning techniques: 
• Stacking-based, Bagging-based, and Boosting-based approaches. 
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• Traditional ML methods include Naïve Bayes (NB), K-Nearest Neighbors (KNN), and 
Decision Tree (DT). 

• Focuses on intrusion detection in smart grids to distinguish malicious activities from 
normal activities. 

In [14], various feature selection methods are analyzed for detecting DDoS attacks, 
including: 
• Chi-Square, ANOVA, Extra Tree, and Mutual Information methods. 
• Machine learning algorithms Random Forest (RF) and Decision Tree (DT) are applied. 
• The Extra Tree feature selection method is used to extract the most relevant features for 

detecting different DDoS attack types. 
Table 1. Comparison of Published Results 

Ref Problem Methodology Accuracy% Features Dataset 

[9] Detecting 
unprecedented 
DDoS attacks 

Hybrid ML-
based method 

99% All 
Features 

CICIDS2017 
CICDDOS2019 

[10] SDN-based 
architecture to 
Detect DDOS 
attacks at the 

Application and 
Transport Layer 

ML and DL 
algorithms 

99% All 
features 

CICDDOS2019 

[11] Real-time 
detection of  

different 
taxonomies of  

DDOS 

To propose a 
taxonomy of  
DDOS for 

application later 

 Generate 
dataset 

CICDDOS2019 

[12] To secure the 
IOT system 

AI-based 
intrusion 

detection and 
classification in 
IOT networks 
using machine 

learning. 

97.77% All 
features 

KDD Cup 1999 

[13] Intrusion 
detection in 
smart grids 

Use ensemble 
learning and ML 
techniques for 

intrusion 
detection 

93.4% 
97.4% 

All 
features 

CICDDOS2019 

[14] Feature selection 
for detection of  

DDOS 

Feature selection 
techniques and 
ML classifiers 

82% 
61% 

Top Ten 
Features 

CICDDOS2019 

[15] Detect DDOS 
Attack 

Extra Tree- 
Random Forest 

model is used for 
detection of  

DDOS Attack 

99% 99% CICDDOS2019 

Feature Selection and DDoS Detection: 
In this study, the top 10 features are selected to detect DDoS attacks. The accuracy of 

detection is analyzed using three feature selection methods: 
• Chi-Square 
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• Extra Tree 
• Mutual Information 
The performance of these feature selection techniques is evaluated using two machine learning 
classifiers: 
• Decision Tree (DT) 
• Random Forest (RF) 
Study in [15] 

In [15], the author applies the ET-RF model to the CICDDoS2019 dataset for DDoS 
attack detection. The study is divided into two scenarios: 
1. Performance Evaluation of ML Algorithms 
o Different machine learning models, including K-Nearest Neighbors (KNN), 
Decision Tree (DT), and Random Forest (RF), are compared. 
o The Random Forest (RF) classifier, combined with the ET-RF feature selection 
method, achieves the highest accuracy. 
2. Detection of Different DDoS Attack Types 
o Various DDoS attack types are analyzed independently to improve detection 
precision. 
Methodology: 
Research Methodology: 

First, we identified the research question, focusing on cybersecurity—specifically, the 
detection of DDoS attacks in IoT devices. 
Literature Selection: 

To gather relevant studies, we searched platforms like Google Scholar and 
ResearchGate using keywords such as: 
• "Cybersecurity" 
• "IoT" 
• "Machine Learning" 

During this process, we encountered several recurring papers. After filtering, we 
selected 50 studies most relevant to our topic. 
Data Collection & Analysis: 

As we reviewed these papers, we identified common challenges and gaps in the field. 
We then analyzed data from these studies to understand the current research landscape on 
DDoS attacks in IoT environments. This helped us pinpoint a research gap and refine our 
focus. 
Experimentation: 

For experimentation, we applied an Application-Layer DDoS attack dataset. After pre-
processing, including handling missing or null values, we used the Extra Trees feature selection 
technique to identify the most relevant features, as shown in Figure 2. 

 
Figure 2. Methodology 
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Next, we utilized three machine learning classifiers—Naïve Bayes (NB), Decision Tree 
(DT), and Logistic Regression (LR)—to evaluate the performance of the selected features. 

To ensure a fair comparison, we: 
• Tuned hyper-parameters for each classifier to optimize accuracy. 
• Applied k-fold cross-validation to enhance model robustness and prevent overfitting. 

Finally, we compared the performance metrics of NB, DT, and LR. The results, 
presented in Figure 3, provide a clear assessment of their effectiveness in detecting DDoS 
attacks. 

 
Figure 3. Extra Tree Feature selection 

Decision Tree: 
The Decision Tree (DT) algorithm is a supervised learning method used for 

classification. It follows a hierarchical structure to make decisions by partitioning data into 
subsets based on input values. 
DT operates in a tree-like structure, where: 
• Branches represent feature labels. 
• Leaves represent class labels. 
• Decisions are made at each branch, leading to target values at the leaves. 
This structured approach helps in effectively classifying data [16]. 

 
Figure. 4 Decision Tree Learning Architecture 
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Naive Bayes:  
Naïve Bayes is a set of probabilistic algorithms based on Bayes' Theorem, commonly used 
for classification tasks. The term "Naïve" refers to the assumption that all features in the 
dataset are independent, though this is rarely true in real-world scenarios. 

Despite this simplification, Naïve Bayes classifiers often deliver strong performance, 
especially in text classification tasks such as: 
• Sentiment analysis 
• Spam detection 
• Document categorization 

These characteristics make Naïve Bayes a widely used and effective classification 
technique [17]. 

P(A/B) =
P(B/A).P(A)

P(B) 
 (1) 

Logistic Regression: 
Logistic Regression is a widely used machine learning approach for binary 

classification tasks. Despite its name, it is a classification model, not a regression one. 
The primary goal of Logistic Regression is to estimate the probability that a given input 

belongs to a specific category. It does this by applying the sigmoid function, which maps 
predictions to values between 0 and 1, making it ideal for yes/no or true/false classification 
problems. 

 
Figure 5 Logistic Regression 

Result and Discussion: 
The results presented in Table 2 highlight the performance of three machine learning 

classifiers—Decision Tree (DT), Naïve Bayes (NB), and Logistic Regression (LR)—based on 
key evaluation metrics. These results demonstrate the effectiveness of different algorithms in 
detecting application-layer DDoS attacks targeting IoT devices. 

The models were evaluated using multiple metrics, including accuracy, precision, recall, 
F1-score, and cross-validation accuracy. Among these, the Decision Tree (DT) outperformed 
the other classifiers, achieving an accuracy of 99%. It also demonstrated high precision (98%), 
recall (99%), and F1-score (98%), making it a highly effective model for distinguishing between 
legitimate and malicious traffic. 

Furthermore, the high recall value indicates that the Decision Tree is capable of 
detecting the majority of attack instances, making it a reliable choice for real-time security 
applications in IoT environments. 

Table 2: Performance Results of Proposed Machine Learning Models for Detection of 
DDoS 

Algorithm Accuracy Precision Recall F1-Score Cv-Accuracy 

Decision tree 99% 98 999 98 98.9 

Naïve Bayes 94% 99 92 92 94.1 

Logistic regression 89% 88 87 87 88 
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The Naïve Bayes (NB) classifier achieved a notable accuracy of 94%, with an 
exceptionally high precision of 99%. However, its recall was slightly lower at 92%, indicating 
that while the model is highly confident in its positive classifications, it may misclassify some 
attack instances as benign, leading to false negatives. Despite this, its cross-validation accuracy 
of 94.1% demonstrates consistent performance across different data splits, making it a reliable 
and generalizable model. 

Among the three classifiers, Logistic Regression (LR) was the least effective. While it 
remains a viable option, its lower recall suggests that it may fail to detect all attack instances, 
which is critical in cybersecurity applications. However, its high precision indicates that when 
it does classify an instance as an attack, it is highly likely to be correct. 

The bar chart in Figure 6 visually compares the accuracy of the three classification 
models: Decision Tree, Naïve Bayes, and Logistic Regression. The Decision Tree exhibits the 
highest accuracy, followed by Naïve Bayes, while Logistic Regression ranks the lowest. This 
visualization effectively highlights the performance differences among the models, aiding in 
the selection of the most suitable classifier for detecting application-layer DDoS attacks in IoT 
environments. 

 
Figure 6. ML Classifier Comparison 

Overall, the results indicate that Decision Trees are the most effective models for 
detecting application-layer DoS attacks in IoT environments, owing to their high accuracy and 
recall. Naïve Bayes also performs well, particularly in terms of precision, making it useful in 
scenarios where minimizing false positives is a priority. Logistic Regression, while still useful, 
is not the best choice when high recall is essential for detecting all attack instances. 

The bar chart in Figure 6 visually compares the performance of the proposed machine 
learning models, clearly highlighting the Decision Tree as the most effective classifier. 
Discussion: 

This study demonstrates the effectiveness of machine learning-based approaches in 
detecting application-layer Distributed Denial of Service (DDoS) attacks in Internet of Things 
(IoT) environments. By leveraging the Extra Tree feature selection method, the proposed 
framework successfully reduces dataset dimensionality while preserving the most relevant 
features, enhancing both model accuracy and computational efficiency. 

A comparative evaluation of three machine learning classifiers—Decision Tree, Naïve 
Bayes, and Logistic Regression—highlights the superior performance of the Decision Tree 
model, which achieved the highest accuracy (99%), precision (98%), recall (99%), and F1-score 
(98%). This confirms its effectiveness in distinguishing normal and attack traffic, making it a 
reliable choice for real-time DDoS detection in IoT networks. 

The Naïve Bayes classifier also performed well, attaining 94% accuracy and a precision 
score of 99%. However, its lower recall (92%) suggests it may misclassify some attack instances 
as benign, leading to false negatives. This trade-off makes Naïve Bayes suitable for applications 
where minimizing false positives is critical, but less ideal for comprehensive attack detection. 
Logistic Regression, while achieving 89% accuracy, performed less effectively due to its lower 
recall and F1 score. This makes it a weaker option for highly imbalanced datasets or scenarios 
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requiring high recall, though its simplicity and interpretability may still be valuable in specific 
IoT applications. 
Future Directions: 

The results emphasize the importance of selecting appropriate machine learning 
models and feature selection techniques to improve the detection of sophisticated DDoS 
attacks that mimic legitimate traffic. The Extra Tree feature selection method effectively 
enhances classification accuracy by identifying key distinguishing features. 
However, certain limitations remain, including the need for further optimization of classifiers 
for real-time deployment in large-scale IoT networks. Future research could explore: 
• Advanced deep learning models, hybrid algorithms, or ensemble learning techniques to 

improve detection rates and reduce false positives. 
• Expanding the dataset scope to include dynamic, real-time data for improved practical 

applicability in diverse IoT environments. 
Conclusion: 
Securing IoT Devices Against DDoS Attacks Using Machine Learning: 

IoT devices play a crucial role in data collection and communication but remain 
vulnerable to cyber threats, particularly Denial of Service (DoS) and Distributed Denial of 
Service (DDoS) attacks. As the number of IoT devices grows, these threats become more 
severe. 

To address this challenge, we explored DDoS attack detection at the application layer 
using Extra Tree feature selection and machine learning (ML) models. The results showed that 
the Decision Tree classifier achieved the highest accuracy (99%), outperforming Naïve Bayes 
(94%) and Logistic Regression (89%). This demonstrates the effectiveness of ML-based 
feature selection in strengthening IoT security against DDoS attacks. 
Future research could focus on: 
• Advanced deep learning techniques for improved accuracy and robustness. 
• Real-time detection systems to enhance practical applications in IoT security. 
• Hybrid models combine multiple algorithms for stronger and more adaptive defense 

mechanisms against evolving cyber threats. 
Future Work: 

Although, this approach works well. There are ways to make it better. One 
improvement could be making the system faster so it can handle large data easily. Another 
idea is to use advanced machine and deep learning algorithms to make results more accurate. 
Future research can also focus on testing this method in real-world situations to see how well 
it works. 
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BLDC motors have recently made significant advancements in the automation industry. Due 
to their high efficiency and power density, they are widely used in everyday applications such 
as fans, electric bikes, rail transit, and automobiles. The slot-pole structure is a key factor 
influencing motor design. This research explores various slot-pole combinations to enhance 
performance. 

For ceiling fan applications, a balanced and highly efficient stator with concentrated 
winding has been designed based on different slot-pole configurations. Two commonly used 
combinations—18-slot/16-pole and 12-slot/14-pole—were analyzed. However, these 
configurations result in high cogging torque and a low winding factor, reducing the efficiency 
of BLDC ceiling fans. 

To overcome these issues, a 24-slot/22-pole combination is proposed. This design 
improves torque production, power efficiency, and magnetic flux density while reducing 
cogging torque and increasing cogging frequency. The effectiveness of this structure is 
evaluated using the finite element method (FEM) in Ansys Electronics Desktop software. 
Keywords: Brushless DC (BLDC) Motor; Ansys Maxwell Rmxprt; Ceiling Fans; slot-to-pole 
combination and Finite Element Analysis. 
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Introduction: 
In the late 1960s, P.H. Trickey and T.G. Wilson invented and designed the brushless 

DC (BLDC) motor. However, due to the unavailability of permanent magnets, this concept 
became a reality only in the 1980s when Power Tec Industrial Corporation confirmed their 
availability [1]. The BLDC motor consists of a stator, rotor, and an inverter circuit that drives 
the motor. It is considered one of the most efficient types of electric motors due to its high 
power density, high-speed capabilities, durability, and simple design [2]. These features make 
BLDC motors widely used in applications such as rolling and automotive industries [3], electric 
vehicles [4][5][6], ceiling fans [7], washing machines [8], air conditioners [9], gliders, drones 
[10], CNC machines [11], robotics [12], and marine applications [13]. 

BLDC motors come in two main types: inner and outer rotor designs. Motors with a 
higher number of magnetic poles produce greater torque, which is why an outer rotor BLDC 
motor is preferred for such applications [14][15]. In contrast, inner rotor BLDC motors are 
used for high-speed applications. They have fewer magnetic poles, allowing higher rotational 
speeds but limiting torque production [16]. 

To achieve optimal performance, a suitable drive control topology is essential. It helps 
minimize speed fluctuations and ensures torque stability. Various control methods have been 
explored for BLDC motors, including PID control [17][18], fuzzy logic control [19], artificial 
neural networks (ANN) [20][21], and other advanced techniques. 

Ansys Maxwell has been widely used to design, verify, and validate different motor 
types. For instance, induction motors [22], brushed DC motors [23], and three-phase 
induction motors [24] have been designed using this software. Similarly, Ansys Maxwell has 
been applied to develop AC synchronous motors [25], permanent magnet synchronous 
motors (PMSM) [26], synchronous reluctance motors (SRM) [27], and brushless DC (BLDC) 
motors [28][27]. 

Research studies [2][5], [27][29] indicate that altering the number of poles and stator 
slots in a BLDC motor affects power output and load-handling capacity. A comparative 
analysis of three different slot-pole combinations—12-slot/10-pole, 18-slot/20-pole, and 9-
slot/8-pole—has been conducted. Findings suggest that the 18-slot/20-pole combination 
delivers the highest torque at low speeds, making it suitable for agro-electric vehicle (EV) 
applications [30]. Additionally, a comparison of 12, 18, 24, and 30-slot stators with 4-pole 
rotors indicates that the 30-slot stator provides the lowest cogging torque and best 
performance [30]. Another study [31] found that a 24-slot/16-pole BLDC motor is more 
efficient than a 36-slot/18-pole motor. Researchers in [29] compared three different slot 
configurations (6, 12, and 15) with 4-pole rotors and concluded that the 15-slot stator offers 
lower total harmonic distortion (THD) and a more sinusoidal back-EMF waveform than the 
6-slot and 12-slot motors. 

While existing research focuses on high-torque EV applications, it does not provide 
sufficient insights for designing BLDC motors for ceiling fans. This study aims to address that 
gap by optimizing BLDC motor design specifically for ceiling fan applications. 

The literature suggests that a higher slot number results in better torque production, 
lower THD, and a more sinusoidal back-EMF. This research investigates three different slot-
pole combinations—12/14, 18/16, and 24/22—using the finite element method (FEM) in 
the Ansys Maxwell RMxprt environment. These combinations are analyzed based on key 
design parameters, back-EMF characteristics, and cogging torque performance. 
Problem Statement: 

BLDC motors are gaining popularity due to their high-power density and simplicity. 
However, improper motor design can lead to low power efficiency and high cogging torque. 
In the fan industry, two conventional slot-pole combinations—12-slot/14-pole and 18-



                             International Journal of Innovations in Science & Technology 

March 2025|Special Issue UOG                                                                         Page |210 

slot/16-pole—are commonly used [7]. These combinations exhibit high cogging torque and 
lower power density, resulting in reduced efficiency and shorter lifespan. 
 
Research Objectives: 

The main objective of this research is to highlight the inefficiencies of the commonly 
used 12-slot/14-pole and 18-slot/16-pole BLDC ceiling fan configurations. These two 
combinations are analyzed in terms of power density, cogging torque, back-EMF, and winding 
factor. A comparison is made with the proposed 24-slot/22-pole combination, which offers 
higher cogging frequency and lower cogging torque. Additionally, the proposed design 
improves power density and provides a more sinusoidal back-EMF. Finite element analysis 
(FEM) is conducted using Ansys Maxwell RMxprt to validate the findings. 
Research Methodology: 

The design of a BLDC motor depends on various factors, including the slot-pole 
combination, stator winding patterns, the number of turns, magnetic field density, and air gap. 
This research focuses specifically on the impact of slot-pole combinations. Figure 1 illustrates 
the research methodology. 

 
Figure 1. Methodology flow diagram 

Currently, the ceiling fan industry primarily uses two slot-pole combinations: 12-
slot/14-pole and 18-slot/16-pole [7]. However, these configurations result in lower torque 
production, reduced winding factors, lower winding periodicity factors, and high cogging 
torque, which negatively impact motor efficiency. 

This research proposes a 24-slot/22-pole combination, which enhances torque 
production, winding periodicity factor, winding efficiency, and cogging frequency. The 12/14, 
18/16, and 24/22 slot-pole configurations, designed in Ansys Maxwell RMxprt, are shown in 
Figure 2 

   
(a) (b) (c) 

Figure 2. Ansys designed a BLDC motor with (a) 12-slot, 14-pole, (b) 18-slot, 16-pole, (c) 
24-slot, 22-pole combinations. 
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Table 1 presents the design parameters for the 12-slot/14-pole, 18-slot/16-pole, and 
24-slot/22-pole BLDC motors. The maximum observed number of turns per slot is 300. A 
small air gap of 1 mm is chosen to achieve higher torque production with lower input power 
[32]. 

Table 1. Design parameters of different slot-pole BLDC motors 

Parameters slot-pole combinations 

12/14 18/16 24/22 

Stator diameter (mm) 132.5 158 158 

Steel type M19_24G 

Number of winding layers 2 

Stacking factor 0.95 

Number of turns 300 300 300 

Rotor position outer rotor 

Rotor inner diameter (mm) 135 159 159 

Rotor outer diameter (mm) 160 185 185 

Length of magnets (mm) 25 

Magnet type XG196/96 

Control mode DC 

Slot-Pole Ratio: 
The slot-pole ratio, denoted as ‘q,’ is a key factor in BLDC motor design. 

Mathematically, it is defined by Equation (1): 

q =
Ns

Nph. Np
                                    (1) 

Where Ns = number of slots 
Nph= number of phases 
Np = number of poles 

This ratio influences torque, electromagnetic performance, and overall efficiency. A 
higher ratio results in greater torque production, while a lower ratio reduces torque because 
multiple rotor poles interact with a single stator slot. 
Winding Periodicity: 

The winding periodicity factor (z) represents the repetition of winding patterns in the 
stator. A higher value improves magnetic balance and reduces cogging torque. Mathematically, 
it is defined by Equation (2). 

z =
Ns

gcd(Ns, Nph. Np)
                    (2) 

Where, gcd = greatest common divisor, 
Cogging Frequency: 
Cogging frequency is a key factor in determining the generated cogging torque. A higher 
cogging frequency results in lower cogging torque. Mathematically, it is defined by Equation 
(3). 

fcog = LCM(Ns, Np)                       (3) 

Where LCM denotes the least common multiple. 
Ansys Maxwell Analysis: 

Using Ansys Maxwell, the winding factor, cogging torque, generated torque, and back 
electromotive force (BEMF) have been analyzed. 
Winding Factor: 

The winding factor (kw) measures the efficiency of stator windings in generating 
magnetic flux and back-EMF. Mathematically, it is defined by Equation (4). 

     kw = kmn. ken                            (4) 
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Where, kw = winding factor, 
kmn= magnetic winding factor, & 
ken= electrical winding factor 
Cogging torque periodicity 

Using the finite element method (FEM), cogging torque and back-EMF analysis are 
performed. The study is conducted under different load conditions to evaluate cogging torque. 
The periodicity of cogging torque is determined by varying the rotor angle over a single-slot 
pitch [30]. Mathematically, it is defined by Equation (X). 

Pcog =
360

LCM(Ns, Np)
                     (5) 

Results: 
The results of this study provide a detailed evaluation of various slot-pole 

configurations in BLDC motors for ceiling fan applications, focusing on cogging torque, back 
electromotive force (EMF), efficiency, and overall performance. This section presents a 
comparative analysis of simulation results, including torque profiles, back-EMF waveforms, 
and efficiency trends for each configuration. The findings highlight the trade-offs between 
cogging torque reduction, energy efficiency, and manufacturing feasibility, offering insights 
for optimizing energy-efficient BLDC ceiling fan motors. Figure 3 illustrates the winding 
patterns. Transient analysis in Ansys Maxwell shows that the 24-slot/22-pole combination has 
the highest inductance value due to its greater number of slots and turns. 

 
(a) 

 
(b) 

 
(c) 

Figure 3. Winding patterns of BLDC motor with (a) 12-slot, 14-pole, (b) 18-slot, 16-pole, 
and (c) 24-slot, 22-pole combinations. 
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The analysis of Figure 3 shows that the BLDC motor with a 12-slot/14-pole 
configuration exhibits waveform irregularities, leading to torque ripples and unstable 
performance. Similarly, the 18-slot/16-pole motor still shows non-uniformity in its 
waveforms. In contrast, the 24-slot/22-pole BLDC motor maintains a stable, sinusoidal 
waveform, resulting in lower torque ripples, improved stability, and optimal efficiency. 

Table 2 shows that the 24-slot/22-pole BLDC motor has the lowest cogging torque 
periodicity. Using Equations (1-5), the efficiency parameters for the 12/14, 18/16, and 24/22 
slot-pole combinations are presented in Table 2. 

Table 2. Calculated efficiency of different slot-pole combinations 

𝐍𝐬 𝐍𝐩 q z 𝐤𝐰 𝐟𝐜𝐨𝐠 𝐏𝐜𝐨𝐠 

12 14 0.29 2 0.93 84 4.29 

18 16 0.38 3 0.94 144 2.5 

24 22 0.36 4 0.95 264 1.36 

Table 2 shows that the 24-slot/22-pole BLDC motor generates lower cogging torque 
while producing higher magnetic flux and back EMF. Figure 4 illustrates the cogging torque 
for different slot-pole BLDC motor configurations. 

 
(a) 

 
(b) 

 
(c) 

Figure 4. Cogging torque generated by (a) 12-slot, 14-pole, (b) 18-slot, 16-pole, and (c) 24-
slot, 22-pole combinations. 
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Figure 4 shows that the 24-slot/22-pole BLDC motor has the lowest cogging torque 
of 0.18 Nm, while the 12/14 and 18/16 slot-pole combinations produce 0.24 Nm and 0.9 
Nm, respectively. 
Torque Production: 

When the stator magnetic fields interact with the rotor's permanent magnet fields, 
torque is generated in the motor. In the 24-slot/22-pole BLDC motor, more stator and rotor 
magnetic fields interact, resulting in higher torque. Due to its high q value, this combination 
has smaller torque ripples compared to the other two configurations. 

Using FEM, the torque generated by the three motor designs is shown in Figure 5. 
Torque instability leads to inefficiency and excessive heat generation. 

 
(a) 

 
(b) 

 
(c) 

Figure 5. BLDC motor torque is generated by (a) 12-slot, 14-pole, (b) 18-slot, 16-pole, and 
(c) 24-slot, 22-pole combinations. 

Figure 5 shows that the 12-slot/14-pole BLDC motor produces unstable torque, 
oscillating between 0.2Nm and 1.5Nm. This instability can lead to inefficient motor rotation 
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and high torque ripples. Similarly, the 18-slot/16-pole BLDC motor exhibits torque 
fluctuations, making it unsuitable for ceiling fan applications. 

In contrast, the 24-slot/22-pole BLDC motor provides the most stable torque output, 
making it a better choice for ceiling fan applications. 
Back-EMF: 

The FEM results from Ansys Maxwell illustrate the back EMF generated by the three 
different slot-pole combinations, as shown in Figure 6. A higher back EMF corresponds to a 
higher rotational speed (rpm) but lower torque production. 

Figure 6 indicates that the BLDC motor with a 12-slot/14-pole combination produces 
the highest back EMF at 80V, followed by the 24-slot/22-pole motor at 62V, while the 18-
slot/16-pole motor generates the lowest back EMF at 42V. 

 
(a) 

 
(b) 

 
(c) 

Figure 6. Back-EMF of BLDC motor with by (a) 12-slot, 14-pole, (b) 18-slot, 16-pole, and 
(c) 24-slot, 22-pole combinations 

The waveforms in Figure 6 indicate that the BLDC motors with 12-slot/14-pole and 
18-slot/16-pole combinations exhibit quasi-sinusoidal back EMF (BEMF). In contrast, the 
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24-slot/22-pole BLDC motor produces a pure sinusoidal BEMF waveform, making it an 
optimal choice for field-oriented control (FOC) commutation topology [33]. 
24-Slot and 22-Pole BLDC Motor Design: 

The literature review suggests that the 24-slot and 22-pole BLDC motor offers 
superior efficiency due to its low cogging torque, high winding factor, reduced back EMF, and 
increased torque production. A practical demonstration of the 24-slot and 22-pole BLDC 
motor is illustrated in Figure 7. 

 
Figure 7. BLDC motor with (a) 24-slot stator, and (b) 22-pole rotor. 

Table 3 presents the measured parameters of the proposed 24-slot and 22-pole BLDC 
motor when operating at 220V. These parameters include torque, efficiency, cogging torque, 
back EMF, and overall performance characteristics, confirming its superior efficiency and 
stable operation compared to conventional configurations. 

Table 3. Measured parameters of 24-slot, 22-pole BLDC motor 

Measured values Parameters 

220V Vin 

0.17A Iin 

40W Pin 

0.15A Phase current 

0.8N.m. Average Torque 

Table 3. shows the measured parameters of the 24-slot and 22-pole BLDC motor.  
Discussion: 

Your conclusion effectively summarizes the study, highlighting key findings and their 
implications. However, there is a contradiction: earlier, the 24-slot/22-pole configuration was 
presented as the best-performing option, but the conclusion states that the 18-slot/16-pole 
configuration provides the best balance. You may want to clarify this point. Additionally, you 
could briefly reinforce why the 24-slot/22-pole setup, despite its advantages, faces practical 
challenges. Would you like me to refine or streamline this section for better clarity? 
Conclusion: 

A BLDC motor with a 24-slot and 22-pole combination is proposed for ceiling fan 
applications. This configuration is compared with the commonly used 12-slot/14-pole and 18-
slot/16-pole combinations. Using Finite Element Method (FEM) analysis, key efficiency 
parameters are evaluated. Since ceiling fans require high torque for optimal performance, an 
outer rotor BLDC motor is utilized. 

The proposed slot-pole combination demonstrates high torque production, a high 
cogging frequency, and an improved winding factor while maintaining a sinusoidal back EMF. 
Additionally, it produces a lower back EMF, which enhances torque generation while 
operating at a lower input voltage. This research focuses specifically on ceiling fan applications. 
For high-torque applications such as electric vehicles (EVs), BLDC motors with a greater 
number of slots and poles should be considered. 
Acknowledgment: The authors are grateful to Champion Fans for providing invaluable 
resources and support throughout the research. Their dedication to energy-efficient solutions 



                             International Journal of Innovations in Science & Technology 

March 2025|Special Issue UOG                                                                         Page |217 

and innovation was a major factor in this successful work. The authors also acknowledge the 
encouragement and support of their mentors and fellow workers at Champion Fans.  
Author’s Contribution: All authors contributed equally. 
Conflict of interest: The authors declare no conflict of interest for publishing this manuscript 
in IJIST. 
References: 
[1] K. Gadekar, S. Joshi, and H. Mehta, “Performance Improvement in BLDC Motor 

Drive Using Self-Tuning PID Controller,” Proc. 2nd Int. Conf. Inven. Res. Comput. Appl. 
ICIRCA 2020, pp. 1162–1166, Jul. 2020, doi: 10.1109/ICIRCA48905.2020.9183219. 

[2] A. Kumar, R. Gandhi, R. Wilson, and R. Roy, “Analysis of Permanent Magnet BLDC 
Motor Design with Different Slot Type,” 2020 IEEE Int. Conf. Power Electron. Smart 
Grid Renew. Energy, PESGRE 2020, Jan. 2020, doi: 
10.1109/PESGRE45664.2020.9070532. 

[3] D. Mohanraj et al, “A Review of BLDC Motor: State of Art, Advanced Control 
Techniques, and Applications,” IEEE Access, vol. 10, pp. 54833–54869, 2022, doi: 
10.1109/ACCESS.2022.3175011. 

[4] H. M. Chico Hermanu Brillianto Apribowo, Musyaffa’ Ahmad, “Fuzzy Logic 
Controller and Its Application in Brushless DC Motor (BLDC) in Electric Vehicle - A 
Review,” J. Electr. Electron. Inf. Commun. Technol., vol. 3, no. 1, p. 35, 2021, doi: 
10.20961/jeeict.3.1.50651. 

[5] M. E. Mehmet Akar, “BLDC Motor Design and Application for Light Electric 
Vehicle,” Afyon Kocatepe Univ. J. Sci. Eng., vol. 21, no. 2, pp. 326–336, 2021, doi: 
https://doi.org/10.35414/akufemubid.889877. 

[6] A. N. Patel, “Slot opening displacement technique for cogging torque reduction of 
axial flux brushless DC motor for electric two-wheeler application,” Electr. Eng. 
Electromechanics, 2023, doi: https://doi.org/10.20998/2074-272X.2023.2.02. 

[7] S. Shastri, U. Sharma, and B. Singh, “Design and analysis of brushless DC motors for 
ceiling fan application,” 9th IEEE Int. Conf. Power Electron. Drives Energy Syst. PEDES 
2020, Dec. 2020, doi: 10.1109/PEDES49360.2020.9379863. 

[8] A. Dhar et al., “Tribrid IoT-based intelligent washing machine,” Meso, vol. 2845, no. 1, 
Sep. 2023, doi: 10.1063/5.0157247. 

[9] M. Ben Slimene, “Solar based Air Conditioner with Standalone BLDC, Charger 
Controller and Battery Backup for Improved Efficiency,” Prz. Elektrotechniczny, vol. 
2023, no. 9, pp. 141–144, 2023, doi: 10.15199/48.2023.09.26. 

[10] M. W. Andrzej Sikora, Adam Zielonka, “Minimization of Energy Losses in the BLDC 
Motor for Improved Control and Power Supply of the System under Static Load,” 
Sensors, vol. 22, no. 3, p. 1058, 2022, doi: https://doi.org/10.3390/s22031058. 

[11] A. Lavanya, S. Revathi, N. Sivakumaran, and K. Rajkumar, “Control of Feed Drives 
in CNC Machine Tools Using Artificial Immune Adaptive Strategy,” Artif. Intell. Cyber 
Secur. Ind. 4.0, pp. 237–251, 2023, doi: 10.1007/978-981-99-2115-7_10. 

[12] C. A. C.-V. Erick Axel Padilla-García,Héctor Cervantes-Culebro,Alejandro 
Rodriguez-Angeles, “Selection/control concurrent optimization of BLDC motors for 
industrial robots,” PLoS One, 2023, doi: 
https://doi.org/10.1371/journal.pone.0289717. 

[13] U. K. K. Tanmay Shukla, “A BL-CC Converter-Based BLDC Motor Drive for 
Marine Electric Vehicle Applications,” Int. Trans. Electr. Energy Syst., 2022, doi: 
https://doi.org/10.1155/2022/7026462. 

[14] O. T. Ozturk Tosun, “The Design of the Outer-Rotor Brushless DC Motor and an 
Investigation of Motor Axial-Length-to-Pole-Pitch Ratio,” Sustainability, vol. 14, no. 
19, p. 12743, 2022, doi: https://doi.org/10.3390/su141912743. 



                             International Journal of Innovations in Science & Technology 

March 2025|Special Issue UOG                                                                         Page |218 

[15] N. S. V. Naeini, “Optimum Design of the Outer Rotor Brushless DC Permanent 
Magnet Motor with Minimum Torque Ripples,” J. Oper. Autom. Power Eng., 2024, doi: 
10.22098/joape.2024.14250.2093. 

[16] K. R. Jayandiran Sundaram, “A new wedge shaped inner rotor for a BLDC motor: 
Performance analysis,” Therm. Sci. Eng. Prog., vol. 54, p. 102863, 2024, doi: 
https://doi.org/10.1016/j.tsep.2024.102863. 

[17] A. N. N. Md Mahmud, S. M. A. Motakabber, A. H. M. Zahirul Alam, “Control 
BLDC Motor Speed using PID Controller,” Int. J. Adv. Comput. Sci. Appl., vol. 11, no. 
3, 2020, doi: http://dx.doi.org/10.14569/IJACSA.2020.0110359. 

[18] M. Mahmud, M. R. Islam, S. M. A. Motakabber, M. D. A. Satter, K. E. Afroz, and A. 
K. M. Ahasan Habib, “Control Speed of BLDC Motor using PID,” 2022 IEEE 18th 
Int. Colloq. Signal Process. Appl. CSPA 2022 - Proceeding, pp. 150–154, 2022, doi: 
10.1109/CSPA55076.2022.9782030. 

[19] F. A. Hari Maghfiroh, Musyaffa’ Ahmad, Agus Ramelan, “Fuzzy-PID in BLDC 
Motor Speed Control Using MATLAB/Simulink,” J. Robot. Control, vol. 3, no. 1, 2022, 
doi: https://doi.org/10.18196/jrc.v3i1.10964. 

[20] A. B. S. Y. Porselvi Thayumanavan, Sai Ganesh Cs, “Artificial Neural Networks 
Based Analysis of BLDC Motor Speed Control,” AXRIV. Accessed: Mar. 12, 2025. 
[Online]. Available: 
https://www.researchgate.net/publication/354207678_Artificial_Neural_Networks_
Based_Analysis_of_BLDC_Motor_Speed_Control 

[21] J. G.-G. Jose-Carlos Gamazo-Real, Víctor Martínez-Martínez, “ANN-based position 
and speed sensorless estimation for BLDC motors,” Measurement, vol. 188, p. 110602, 
2022, doi: https://doi.org/10.1016/j.measurement.2021.110602. 

[22] R. M. B. Aishwarya, M., “Design of Energy-Efficient Induction motor using ANSYS 
software,” Results Eng., vol. 16, p. 100616, 2022, doi: 
https://doi.org/10.1016/j.rineng.2022.100616. 

[23] H. C. Hsiao, C. Y. Hsiao, and G. R. Chen, “Finite Element Analysis and Optimal 
Design of DC Brush Motor for Automotive Engine Start Applications,” 2019 IEEE 
Student Conf. Electr. Mach. Syst. SCEMS 2019, Nov. 2019, doi: 
10.1109/SCEMS201947376.2019.8972634. 

[24] B. Ankita, D., M., “Three Phase Induction Motor -Model Design and Performance 
Analysis in ANSYS Maxwell,” Int. Res. J. Eng. Technol., vol. 8, no. 4, pp. 3125–3131, 
2021. 

[25] D. A. Sergey Gandzha, Bakhtiyor Kosimov, “Application of the Ansys Electronics 
Desktop Software Package for Analysis of Claw-Pole Synchronous Motor,” Machines, 
vol. 7, no. 4, p. 65, 2019, doi: https://doi.org/10.3390/machines7040065. 

[26] Doğukan Ayhan, “Analysis and optimization of interior permanent magnet 
synchronous motor for electric vehicle applications using ANSYS Motor-CAD,” Int. 
J. Automot. Eng. Technol., vol. 12, no. 3, pp. 105–120, 2023, doi: 
https://doi.org/10.18245/ijaet.1247462. 

[27] B. Gecer, O. Tosun, H. Apaydin, and N. F. Oyman Serteller, “Comparative analysis 
of SRM, BLDC and induction motor using ANSYS/Maxwell,” Int. Conf. Electr. 
Comput. Commun. Mechatronics Eng. ICECCME 2021, Oct. 2021, doi: 
10.1109/ICECCME52200.2021.9591010. 

[28] G. Z. Chuanhui Zhu, Rujie Lu, Congli Mei, Tao Peng, “Design and Simulation 
Analysis of Stator Slots for Small Power Permanent Magnet Brushless DC Motors,” 
Int. Trans. Electr. Energy Syst., 2023, doi: https://doi.org/10.1155/2023/1152243. 

[29] A. D. Cemil Ocak, “A comparative analysis of four-pole brushless DC motors with 
different slot and winding arrangement based on THD values,” Int. J. Energy Appl. 



                             International Journal of Innovations in Science & Technology 

March 2025|Special Issue UOG                                                                         Page |219 

Technol., vol. 7, no. 1, pp. 7–12, 2020, doi: https://doi.org/10.31593/ijeat.669064. 
[30] L. S. T. Muhammad Izanie Kahar, Raja Nor Firdaus Kashfi Raja Othman, Aziah 

Khamis, Nurfaezah Abdullah, Fairul Azhar Abdul Shukor, “Effect of Slot-Pole 
Numbers on the Performance of a BLDC Motor for Agro-EV Application,” ECTI 
Trans. Electr. Eng. Electron. Commun., vol. 20, no. 1, pp. 51–61, 2022, doi: 
https://doi.org/10.37936/ecti-eec.2022201.246104. 

[31] A. T. Prakash, Anand, “Comparison analysis of slot design of brushless DC motor,” 
J. Harmon. Res. Eng., vol. 8, no. 3, pp. 77–80, 2020, [Online]. Available: 
https://escires.com/articles/JOHRE-8-286.pdf 

[32] A. N. Patel and T. H. Panchal, “Sizing and Analysis of Dual Air-Gap Axial Flux 
Surface Mounted Permanent Magnet Brushless DC Motor for Electric Vehicle 
Application,” Proc. 3rd IEEE Int. Conf. Power Electron. Intell. Control Energy Syst. 
ICPEICES 2024, pp. 324–328, 2024, doi: 10.1109/ICPEICES62430.2024.10719269. 

[33] Z. Machhour, M. El Mrabet, Z. Mekrini, and M. Boulaala, “Comparative Study 
Between DTC and FOC Control Strategies Applied to the BLDC Motor: A Review,” 
Lect. Notes Networks Syst., vol. 930 LNNS, pp. 262–271, 2024, doi: 10.1007/978-3-031-
54318-0_22. 

 

 

Copyright © by authors and 50Sea. This work is licensed under 
Creative Commons Attribution 4.0 International License.  

 



                              International Journal of Innovations in Science & Technology 

March 2025|Special Issue UOG                                                                                Page |220 

 

 

Vortex Powerplant Implementation in A Coastal Community 
Muzammil Anayat1, Sajjad Miran1*, Nazam Siddique2, Waseem Arif1, Yasir Hussain1, Atta ul 
Hassnain1 
1Department of Mechanical Engineering, University of Gujrat, Pakistan. 
1Department of Electrical Engineering, University of Gujrat, Pakistan. 
* Correspondence: Sajjad.miran@uog.edu.pk 
Citation|Anayat. M, Miran. S, Siddique. N, Arif. W, Hussain. Y, Hassnain. A, “Vortex 
Powerplant Implementation in A Coastal Community”, IJIST, Special Issue. pp 220-235, 
March 2025 
Received| Feb 23, 2025 Revised| March 07, 2025 Accepted| March 13, 2025 Published| 
March 16, 2025.  

 gravitational water vortex power plant is an eco-friendly device that generates 
electricity from renewable energy sources. In this system, a turbine extracts energy 
from the vortex created by tangentially channeling water into a circular basin. This 

article aims to explore the feasibility of implementing vortex power plant technology in coastal 
communities using an experimental model. The study investigates the potential of wastewater 
as a renewable energy resource by analyzing the relationship between flow rate, torque, and 
efficiency under different material and pipe configurations, particularly in urban areas. For 
experimental purposes, Gujrat city was selected. The wastewater outlet points near Bolley 
Bridge discharge approximately 74,714,000 liters per day. Based on our survey, the average 
household water usage in Gujrat city is 500 liters per day. An experimental model was designed 
to estimate potential energy generation. The model's design focused on optimizing the basin 
shape, inlets, outlets, and turbine configuration. 
Using different pipes (cast iron and steel), the average water velocity and discharge rates were 
evaluated. The steel pipe produced higher velocity. Efficiency and production were further 
analyzed using LED lights, revealing that at 60 RPM, the system achieved significant efficiency 
and output voltage. 
Keywords: GWVPP (Gravitational Water Vortex Power Plant), EFT (Eco-Friendly 
Technology), Hydropower, Wastewater, Turbine.  
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Introduction: 
The increasing global demand for sustainable and decentralized energy solutions has 

driven significant interest in renewable energy technologies that utilize naturally available 
resources. Traditional energy sources, such as fossil fuels and grid-based electricity, not only 
contribute to carbon emissions and environmental degradation but also pose challenges in 
cost and accessibility, particularly for coastal and urban communities with limited 
infrastructure for large-scale renewable energy deployment. In response to these challenges, 
Gravitational Water Vortex Power Plants (GWVPPs) have emerged as a promising alternative, 
offering a low-maintenance, environmentally friendly method for small-scale power 
generation. While most studies have focused on implementing GWVPPs in natural streams 
and rural hydropower projects, the potential for harnessing urban wastewater discharge as a 
renewable energy source remains largely unexplored. The growing global emphasis on 
sustainable energy solutions has led to the exploration of innovative technologies that balance 
efficiency and environmental conservation. Among these, Gravitational Water Vortex Power 
plants (GWVPs), as shown in Figure 1, have emerged as a promising method for generating 
energy from low-head water flows. Unlike conventional hydropower systems, which often 
require large infrastructure and cause environmental disruption, GWVPs offer a low-impact 
alternative. 

A typical GWVP system consists of an inlet channel to guide water, a circular basin 
where the water circulation forms a vortex that converts kinetic energy into mechanical energy, 
a water outlet or discharge point at the base, and turbine blades connected to a shaft. This 
shaft drives the generator, enabling the conversion of mechanical energy into electrical energy. 
GWVPPs operate by directing water through a specially designed basin to create a stable 
vortex, which drives a turbine connected to a generator. Unlike conventional hydropower 
plants, which require significant elevation differences and large water flow rates, vortex power 
plants function efficiently in low-head water environments, making them suitable for urban 
wastewater applications. Several studies have investigated turbine design, vortex stability, and 
generator efficiency in rural implementations, demonstrating that GWVPPs can achieve high 
energy conversion rates with minimal ecological impact [1]. However, limited research has 
been conducted on optimizing GWVPP systems for wastewater-driven applications, 
particularly in coastal regions where urban water discharge is abundant. 

This study aims to bridge this research gap by evaluating the feasibility of 
implementing GWVPP technology in an urban wastewater setting, focusing on coastal 
communities with high discharge volumes. A key aspect of this research is the optimization of 
basin shape and turbine design to maximize energy extraction efficiency. Additionally, this 
study compares the performance of different generator configurations, specifically a 12V DC 
motor and a Permanent Magnet Alternator (PMA), to determine the most effective energy 
conversion mechanism. The results of this study could contribute to the development of 
decentralized, small-scale hydropower solutions that integrate seamlessly with existing urban 
wastewater infrastructure, reducing reliance on traditional power sources while promoting 
environmental sustainability. 

Beyond technical feasibility, this research also explores the economic and practical 
implications of wastewater-driven GWVPP implementation. By assessing power generation 
potential, system efficiency, and scalability, this study provides insights into how coastal urban 
areas can leverage wastewater as a renewable energy source. Furthermore, evaluating the 
economic viability, return on investment (ROI), and potential policy incentives will help 
determine whether GWVPP technology can be adopted at a municipal or community level. 
Ultimately, this research aims to establish a new paradigm for wastewater-based energy 
solutions, contributing to the broader goal of integrating renewable energy into urban 
sustainability initiatives. 
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This study evaluates the eco-friendly nature of vortex power plant technology by 
comparing it with conventional hydropower systems. It explores ways to enhance the plant’s 
efficiency through the experimental optimization of basin shape, inlet and outlet 
configurations, and turbine design. Additionally, the study examines the cost-effectiveness and 
potential scalability of GWVPs for decentralized energy generation.  
Objectives of the Study: 

The primary objective of this study is to evaluate the feasibility and efficiency of a 
Gravitational Water Vortex Power Plant (GWVPP) for small-scale renewable energy 
generation in coastal urban communities. The specific objectives include: 

• To design and implement a GWVPP system utilizing wastewater discharge for 
sustainable and decentralized energy production. 

• To analyze the impact of basin shape and turbine design on power generation 
efficiency, optimizing system performance. 

• To compare the effectiveness of different generator configurations (12V DC motor 
vs. Permanent Magnet Alternator) in improving energy output and efficiency. 
Novelty Statement: 

The novelty of this study lies in demonstrating the potential for implementing 
GWVPPs in small-scale urban settings, enabling cities to generate electricity from water 
outlets. Unlike traditional hydropower plants, this research explores the use of wastewater as 
a sustainable energy source, presenting an innovative solution for urban energy needs. The 
study specifically focuses on deploying GWVPPs in coastal communities, where such 
technology has yet to be widely tested. A key finding is that conical basins are more efficient 
than cylindrical ones, enhancing basin design for improved performance. Additionally, the 
study evaluates different pipe materials (cast iron and steel) to assess their impact on water 
velocity and discharge. 

 
Figure 1. A Sketch of GWVP 

Literature Review: 
By channeling water into a circular basin, these systems create a vortex that powers 

turbines to generate electricity [2]. Their scalability, simplicity, and ability to operate in rivers, 
canals, and other low-gradient water systems make them ideal for decentralized energy 
production in underserved areas [3]. Coastal regions are especially suitable for adopting 
GWVP due to their easy access to water sources. These systems are particularly useful in such 
areas because they are scalable, easy to use, and can function efficiently in various water bodies, 
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including rivers and canals [4]. Coastal areas benefit from steady water flows from rivers and 
tidal streams, which makes them well-suited for GWVP installation. These regions often face 
energy shortages and rely heavily on diesel generators or unstable grid connections [5]. 
GWVPs can help address these issues by reducing dependence on fossil fuels, promoting local 
energy self-sufficiency, and providing a reliable, renewable, and eco-friendly energy source [6]. 
Additionally, their compact size and minimal land requirements allow them to be installed in 
different environments without significantly altering the natural landscape [7]. 

From an environmental perspective, GWVPs offer significant advantages. They enable 
unhindered fish migration and prevent water stagnation, which is common in dam-based 
systems, thereby helping to protect aquatic ecosystems [8]. Moreover, GWVPs produce no 
carbon emissions during operation, supporting global efforts to combat climate change and 
transition to renewable energy [9]. These features make GWVPs particularly attractive to 
developing countries, where the demand for sustainable energy solutions is growing. Despite 
their benefits, several challenges hinder the widespread adoption of GWVPs. Technical issues, 
such as managing sediment buildup in the vortex basin and improving turbine efficiency, need 
to be addressed to enhance performance and reliability [10]. Financial barriers are also 
significant, as the high upfront costs of turbines and infrastructure can be prohibitive for 
resource-limited communities. Additionally, the lack of legal frameworks and government 
incentives often limits large-scale implementation [6]. 

This study explores the potential of GWVPs for coastal communities by examining 
their technical feasibility, environmental impact, and economic benefits. By analyzing existing 
applications and critically evaluating the technology, the research aims to offer valuable 
insights into GWVPs as a sustainable energy solution. 
Comparison between GWVPP and Other Hydropower Plants: 

The ultra-low head of the GWVPP ranges between 0.7 and 3 meters, whereas 
traditional hydropower plants require a large head height of over 10 meters [5]. Unlike 
conventional plants that depend on dams, GWVPPs can operate without them, allowing 
factories and cities to construct water outlets instead [1]. Additionally, due to its ultra-low head, 
the initial setup cost of GWVPP is significantly lower compared to other hydropower facilities 
[3]. GWVPPs offer flexible design specifications, unlike other plants that demand more 
specific configurations [4]. While traditional plants often require large, remote areas far from 
cities, GWVPPs can be installed within city limits [11]. They also need fewer workers and 
require only moderately skilled staff, unlike conventional plants, which rely on highly 
experienced and qualified personnel [2]. Moreover, GWVPPs demonstrate high operational 
efficiency [8]. 
Methodology: 

The research team conducted various field measurements, including assessing the 
width and topography of the canal and identifying existing structures and suitable locations 
for building the powerhouse. The proposed project site is located approximately 20 minutes 
from the University of Gujrat and 15 minutes from Gujrat City. To select the most suitable 
site, multiple surveys were carried out, and public input was gathered during the process. 
Community meetings were also held at different times to collect feedback. Additionally, the 
transmission and distribution routes for the water pipeline were measured to ensure proper 
planning. 

Given the growing energy demand, it is crucial for the government of Pakistan to focus 
on such low-head, cost-effective hydropower solutions. The study emphasizes the need to 
raise government awareness about the potential of GWVHP systems to generate electricity at 
city water outlets. A detailed cost estimate and analysis were prepared for the proposed 
GWVHP system, considering local labor rates and the availability of construction materials. 
The plan takes into account both skilled and unskilled labor, ensuring feasibility. 
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Electromechanical components were priced according to market rates or installer prices to 
maintain cost-effectiveness. However, the cost of these components may vary depending on 
market fluctuations over time. Figure 2 illustrates the step-by-step sequence followed in the 
methodology. 

 
Figure 2. Flow Diagram of Methodology 

The proposed project site is located approximately 12 km from the University of 
Gujrat, a distance that takes around 20 minutes by vehicle. It can also be easily accessed from 
Gujrat City via an earthen road. The site is situated near a wastewater outlet, where water exits 
from various points in Gujrat. Most of the city's wastewater flows through the Bollay Bridge 
stream, the oldest wastewater channel in the area. At Bollay Bridge, water from different city 
exit points converges, and a well has been drilled to collect the wastewater. A pump is installed 
in the well to discharge the collected water into the Bollay stream. The diameter of the 
discharge pipe was measured, and the flow velocity was recorded at 3.3 m/s. Based on these 
measurements, the design discharge rate was calculated as 61.46 liters per second. Accurate 
measurement of flow rates is essential for managing wastewater, as fluctuations can 
significantly impact treatment processes [12]. 

The proposed Gravitational Water Vortex Power Plant (GWVPP) will not disrupt 
nearby villages that have water rights, as it requires only a small volume of water. Additionally, 
during the growing season, the power plant will have no adverse effects on the irrigation 
system, ensuring that water usage remains unaffected. Since the GWVPP is designed to utilize 
wastewater as a source of electricity, it can be installed at city outlets. To estimate wastewater 
availability, data was collected from Gujrat City. The city has 149,428 households, with 87,189 
located in urban areas [13] A survey of 50 households revealed that each household uses 
approximately 500 liters of water per day. The detailed data is summarized in Table 1. 

Table 1. Average data for daily houses wastewater 

Sr. No Daily Waste Water Liter/day 

1 Washing and Bathing 150 

2 Kitchen Sink 40-50 

3 Toilet 50-60 

4 Clothing Washing Machine 70 

5 Floor Washing 40-50 

6 Other uses 120 

With an average household size of 4 to 5 people, the wastewater generation per capita 
per day may vary. This variation depends on several factors, including water conservation 
practices, household appliances, family size, and climate conditions. The Gravitational Water 
Vortex Power Plant (GWVPP) represents an innovative approach to energy generation, 
distinguished by its unique design and minimal civil construction requirements. Its structure 
and operational principles differ significantly from those of conventional micro-hydropower 
plants. The intake section plays a crucial role by providing a proper passage for water to flow 
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into the system. This section channels water from the input to the basin, with steel intake walls 
measuring 3 mm in thickness. 

At the outflow of the intake system, a conical basin is connected. Conical basins are 
preferred over cylindrical ones due to their superior efficiency. The system utilizes water 
flowing through the intake channel, which enters the basin via a notch in the canal, rotates 
within the basin’s system, and exits through the basin’s bottom. Key design parameters for the 
basin include the canal’s length, width, height, and notch dimensions, which must be carefully 
considered [14]. During system testing, high voltage output and high revolutions per minute 
(rpm) were observed at the center of the basin, indicating efficient energy generation[15]. This 
technology is particularly well-suited for applications such as ice-making factories and 
wastewater outlets in cities, where it can effectively utilize wastewater to produce electricity. 

The system’s efficiency can be enhanced by increasing the water head from 0.7 meters 
to 3 meters, which increases the flow rate and power output. Additionally, experiments 
conducted on peaches demonstrated that the system is suitable for use in food processing and 
fish farming. The symmetrical blade design ensures that no contact points exist that could 
harm fish, further enhancing its suitability for aquaculture applications. 
Calculations:  
Area and Discharge:  
The cross-sectional area is the ratio between Discharge and velocity of the fluid. 

A = Q/v.  (1) 
After simplifications velocity obtained 3.3 m/s and calculated area is 0.018 m².  
The following formula can be used to find the flow rate in m³/s:  

Q = Av (2) 
Obtained water flows through the circular pipe at a rate of 61.46 L/s. The flow bay and basin 
were designed to have a flow rate (Q) is 0.06146 m³/s. It has been considered that the flow 
velocity (V) through the water fore Bay is 3.3 m/s. Let the width and height of the passage be 
according to design; it will prevent the overflow of the water, and we take a factor of safety as 
2.  
The height of the canal can be calculated from  

H = Width * Safety Factor (3) 
Governing Equations:  
In this experiment with conical basin and single stage turbine used with the discharge of 61,46 
L/s as constants in all variations.  
To find the best performance to rotor basin and turbine blade shape.  

 =
2 𝜋 𝑁

60
   (4) 

  is the rotational speed of the turbine and it can measure by tachometer apparatus to check 
the performance based on the load.  

𝐹 = 𝑚𝑔  (5) 
The load value acts as a braking torque, meaning the measured load on the load cell 

represents the total mass (𝑚) of the turbine. The torque (𝑇) on the turbine is determined using 
the force measured by the load cell, which is generated by the rope brake system. This system 
produces the total mass acting on the turbine, allowing for an accurate calculation of the 
applied force. The power output of the system can be expressed as: 

𝑃in = 𝑔𝑄𝐻 (6) 
Water flows into the basin with specific discharge formed vortex by rotationally 

movement at certain height  is fluid density, 𝑔 is the gravitational acceleration, 𝑄 is the flow 

rate, and 𝐻 is the effective water head.  

𝑃m = Tω (7) 
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The mechanical power of the turbine (Pm) is the power generated by the rotation of 
the shaft, which depends on the applied torque and rotational speed. In this context, T 
represents the torque (N·m), and ω denotes the angular velocity (rad/s). The basin, shown in 
Figure 3, consists of a rotating system installed in areas that are not prone to flooding and can 
be managed throughout the year. The structure of the rotational tank system can be 
constructed using concrete. The dimensions of the concrete basin are specifically designed to 
meet the hydropower system’s head drop and flow rate requirements. The basin of the 
Gravitational Water Vortex Power Plant (GWVPP) is appropriately sized to ensure both an 
optimal head drop and efficient vortex flow into the hydropower plant. Additionally, the 
rotational system is designed to be waterproof, which protects it from water pressure and the 
impact load of water entering the basin. This feature enhances its durability and effectiveness 
in practical applications. 

 
Figure 3. Basin Design 

The proposed conical design, shown in Figure 4, forms the basis of the basin's structure 
due to its higher efficiency [7]. The top of the basin has a diameter of 400 mm. According to 
previous research, the optimal cylindrical basin diameter for maximizing power production 
should be between 14% and 18% of the system's key parameters [16]. The bottom diameter 
of the basin is 60 mm, while the height of its conical section is 225 mm. The total height of 
the basin is 400 mm. Based on these findings; the conical basin was designed to enhance 
performance. The cylindrical portion of the basin has a diameter of 500 mm, with an exit hole 
diameter of 60 mm. Additionally, our research suggests that the optimal cone angle for 
maximum efficiency is within a specific degree range, based on experimental analysis. 
Mechanical Components: 

This technology requires fewer mechanical components compared to conventional 
systems, such as screw turbines, contributing to its simplified design and lower maintenance 
needs. 

 
Figure 4. Gravitational water vortex Model 
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Flow Regulating Gates: The structure includes two proposed gates. One gate is located at 
the turbine’s intake section to regulate water flow during maintenance. The second gate 
controls the bypass flow in the stream. 
Turbine Runner: The turbine runner (Figure 5) was designed as part of the project conducted 
at the University of Gujrat, Hafiz Hayat campus, in the Department of Mechanical 
Engineering. The design was based on the following parameters:  

• Inner and outer diameter of the basin 

• Height 

• Inlet and outlet blade angles 

• Tapered angle 

• Number of blades: 4 

• Impact angle 

 
Figure 5. Turbine Runner 

Material and Shape of Turbine Blades: 
1. Steel (Curved) 
2. Cast Iron (Curved) 

Specifications of the Proposed Turbine: 
• Type: Gravitational Water Vortex 
• Motor-to-Turbine Speed Ratio: 1:25 (RPM) 

Electrical Components: 
Power Transmission and Drive System: 

Mechanical energy is transferred from the turbine shaft to the generator's rotor 
through a rope drive system, as shown in Figure 6. The rated speeds for the DC motor and 
turbine are 1440 rpm and 60 rpm, respectively, requiring a speed ratio of 1:24. To achieve this, 
pulleys and a planetary rope system are recommended. Additionally, a self-lubricating 
mechanism is used to reduce wear and prevent fatigue. 
Control and Protection System: Overvoltage, undervoltage, over frequency, 
underfrequency, and overcurrent relays are used to protect the system from unfavorable 
conditions. Before powering on the system, all electrical components must be thoroughly 
inspected. 
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Figure 6. Rope Drive System 

Transmission and Distribution: The distance between the load and the power source 
determines the length of the distribution lines. The gravitational water vortex power plant 
generates 9.5 V, which is monitored using a voltmeter. The distribution details are presented 
in Table 2. 

Table 2. Generator Specifications 

Transmission/Distribution Capacity 

Motor 12 V 

Permanent Magnate Alternator 200W to 300W at 60 RPM 

Capacitor 25 microfarads 

Voltmeter 16 V 

Connector 2 LED length 3 m 

Power calculation formula:  

𝑃𝑜𝑤𝑒𝑟𝑖𝑛 = 𝑉 𝑥 𝐼   (8) 
12V-DC Motor: The motor's output power can be evaluated by supplying input to the system. 
A 12V motor with a 2A current (producing 24W) was used, and an effective output power of 
18W was obtained, resulting in a motor efficiency of 75%. Due to heat and friction, the motor 
experiences a power loss of 6W. The turbine's efficiency was measured at 5.59%. Table 3 
provides a breakdown of the 6W power loss across various stages of the Gravitational Water 
Vortex Power Plant (GWVPP). These losses occur due to factors such as hydraulic 
inefficiencies, mechanical friction, electrical resistance, and transmission losses, as detailed in 
Table 3. 
Permanent Magnetic Alternator: 

In our experimental model, the turbine pulley had a diameter of 12 inches, while the 
motor pulley measured 0.5 inches. This created a speed ratio of 1:24, indicating a significant 
speed mismatch, which led to power transmission losses. As shown in Table 2, the permanent 
magnet alternator produced between 160W and 200W, demonstrating that the efficiency of 
the Vortex Power Plant increased from 5.59% to 55.19%. 
Estimation of Work Volume: 

The estimated amounts were based on the selected site area. A low work volume was 
used since this project was designed for demonstration purposes. 
Results and Discussions: 

The primary focus of this power plant is its potential implementation in urban areas, 
with Gujrat city selected as a case study. However, performance evaluations are also necessary 
to analyze the plant’s overall efficiency. Hydraulic efficiency was measured to assess the Vortex 
Power Plant's performance, and graphs were used to show the relationship between torque 
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and hydraulic head. The hydraulic head represents the available power at different flow rates, 
while torque at various rotational speeds reflects the extracted power. 

During the experiment, it was observed that a lower head of 0.7 meters resulted in 
higher efficiency compared to a 3-meter head, as mechanical losses were proportionally smaller 
at lower head levels. Fluid velocity was also examined using three different types of pipes: cast 
iron, steel grade XS, and steel grade SSX. Each pipe had a diameter of 2 inches, and the 
discharge rate (Q) was 61.47 L/s. It was found that velocity was higher in steel pipes of types 
Schedule 40 and Schedule 80. 

Table 3. Breakdown of Power Losses in each stage 

Stage Cause of Loss Estimated Loss (W) 

Hydraulic Losses 

Energy dissipation due to 
turbulence in water vortex. 

Frictional losses in water flow 
through the conical basin and inlet. 

1.2W 

Turbine 
Efficiency Losses 

Imperfect blade angle reducing 
energy conservation. 

Friction between water and turbine 
blades. 

1.0W 

Mechanical 
Friction Losses 

Friction between turbine shaft and 
bearing. 

Energy losses due to misalignment 
or wear in moving parts. 

0.8W 

Generator Losses 

Heat dissipation in permanent 
magnet alternator (PMA) windings. 

Resistance in electrical windings 
reducing output efficiency. 

1.2W 

Transmission 
Losses 

Power loss due to speed mismatch 
between turbine and generator. 

Losses in belt/pulley system 
transferring mechanical energy. 

1.0W 

Electrical Losses 

Initial resistance in 12V DC motor 
and wiring. 

Power loss due to impedance in 
electrical components. 

0.8W 

Turbine efficiency calculated as: 
𝑃 𝑚𝑜𝑡𝑜𝑟  

𝑇𝑢𝑟𝑏𝑖𝑛𝑒𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑
  𝑥 100  (9) 

Torque vs. Speed (12V - DC Motor): 
The turbine supplied 24W of power, resulting in a useful power output of 18W at a 

motor speed of 60 RPM. The calculated turbine torque was 2.87 Nm. Figure 7 illustrates the 
inverse relationship between torque and speed: as speed increases, torque decreases at constant 
power. Additionally, Figure 8 shows that DC motor efficiency was notably high at 60 RPM. 
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Figure 7. Torque Vs Speed 

 

Figure 8. Motor Efficiency vs Speed (RPM) 
Torque vs. Power (Permanent Magnet Alternator): 

In the experimental model, the turbine's efficiency using a 12V DC motor was 
measured at 5.69%, which was relatively low due to the speed mismatch between the turbine 
and the generator. To improve power output, a permanent magnet alternator (PMA) was 
introduced, which generated between 160W and 200W. Given that the turbine supplied 
422.11W of power, the use of the PMA resulted in an output efficiency of 49.5%. The torque 
produced by the PMA ranged from 25.46 Nm to 31.83 Nm, as shown in Figure 9. The vortex 
power plant achieved an optimal efficiency of 55.19%, as illustrated in Figure 10.  
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Figure 9. Torque vs Power 

Power vs Efficiency: 
Figure 10 presents the output power based on the experimental model of the vortex 

power plant. The input and output power were calculated, resulting in a power efficiency of 
75%. This indicates that the vortex power plant is quite efficient in converting electrical power 
into useful output. The voltmeter displayed an output of 9.5 volts from a 12-volt DC motor. 
The 2W power loss may be due to internal losses in the motor, circuit impedance, or minor 
inefficiencies in electrical components. To improve motor performance, a 25µF capacitor was 
added, which helps stabilize the voltage and reduce fluctuations. Figure 11 displays the output 
voltages measured by the voltmeter during the experiment. 

 
Figure 10. Power vs Efficiency 
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Figure 11. Voltage measuring 

Discharge vs Velocity:  
As shown in Figure 12, each 2-inch diameter pipe maintains a constant discharge. The velocity 
recorded for the steel pipe (Schedule 40 to 60 type) is 3.9 m/s, while the cast iron pipe has a 
velocity of 3.3 m/s. The Y-axis represents a discharge value of 61.46 l/s. 

 
Figure 12. Discharge vs velocity 

Typical Day Production: 
The highest discharge and maximum efficiency were recorded at 5 PM, as shown in 

Figure 13.  

 
Figure 13. Efficiency % during the typical day 
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Discussion: 
The experimental model of the Gravitational Water Vortex Power Plant (GWVPP) 

demonstrated an efficiency of 55.19% when using a Permanent Magnet Alternator (PMA), 
aligning with efficiency rates reported in similar vortex power plant studies. [2] and [3] 
documented efficiencies ranging from 50-60%, while [7] emphasized the role of optimized 
basin geometry and turbine design in enhancing performance. A key finding of this study was 
that lower head heights (0.7 meters) produced higher efficiency compared to head 
configurations of 3 meters. This aligns with [17], who attributed improved performance in 
low-head systems to reduced mechanical losses. [8] suggested that efficiency could be further 
enhanced by incorporating multi-stage turbines. 

The study also found that achieving an arc angle of 90° and a blade angle of 50° could 
further boost efficiency. The power output recorded (160–200W) was consistent with findings 
from earlier studies. For instance, [4] reported outputs ranging from 200 to 300W, suggesting 
that increasing discharge rates and improving turbine materials could enhance power 
generation. Similarly, [5] found that using steel turbine blades resulted in outputs of 150–
250W. [8] also highlighted that the lower initial power output (24W) observed in this case was 
due to a mismatch between turbine and generator speeds. This issue was mitigated by 
employing a Permanent Magnet Alternator (PMA), which significantly improved performance. 
Further improvements could be achieved by using a variable-speed generator or a more 
efficient gearbox. Additionally, adjusting the turbine runner position for optimal water flow 
could enhance output. 

The study confirmed that conical basins are more efficient than cylindrical ones, 
supporting findings by [16]. The recommended cone angle in this study aligns with previous 
research, which identified a 60° cone angle as the most effective. 
Moreover, the study demonstrated the feasibility of generating electricity using municipal 
wastewater. Previous research by [1] and [12] also identified wastewater as a potential energy 
source, though they noted that performance may be affected by variations in discharge rates. 
[10] observed that sedimentation in wastewater can reduce system efficiency. To maintain 
consistent energy generation in wastewater streams with fluctuating flow rates, adaptive intake 
systems are necessary. Additionally, energy extraction could be enhanced by increasing the 
vortex’s rotational speed, potentially through a double-stage vortex system. 
Conclusion:  
• The primary focus of this thesis research is on hydraulic phenomena and their applications 

in engineering, particularly in micro hydropower plants serving coastal communities. 
Gravitational Water Vortex Power Plants (GWVPPs) have attracted significant global 
attention due to their environmentally friendly nature. Based on the research findings, 
recommendations can be made on selecting the most efficient turbine system for various 
micro hydropower projects. 

• We concluded that Gujrat and other resource-rich towns could harness wastewater to 
generate sufficient power. Additionally, we found that this power plant can be installed as 
a compound plant and offers environmental sustainability. However, the key challenges 
to its development in different regions of Pakistan include political interference and 
competing agendas. Governmental instability and a lack of interest in adopting new 
technologies further hinder progress in this area. 

• This type of power plant is highly effective for irrigation systems and is remarkably simple 
to construct and install. In our experimental setup, the gravitational water vortex power 
plant successfully generated 12 volts using a 12-volt DC motor. Efficiency could be 
further improved by optimizing the blade angle, refining the basin shape, and selecting an 
appropriate generator. 
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• Several opportunities exist to modify the plant’s design to generate additional mechanical 
energy, which can then be converted into electrical energy using specific tools and 
equipment. 

• To achieve higher efficiency, the inlet blade angle should ideally be around 50°, and the 
blade arc angle should be set at 90°. 

• Our findings suggest that if the channel is parallel to the water surface, lower efficiency is 
observed. By adjusting the channel’s orientation and design, we achieved significantly 
improved efficiency. Additionally, enhancing the blade design and optimizing their 
positioning can increase the rotational speed of the turbine blades, thereby enhancing 
overall performance. 

Limitations: 
This study is based on a small-scale experimental model, which may not fully represent 

real-world conditions in larger applications. It focuses on specific flow rates derived from 
Gujrat’s wastewater data, which may not be applicable to all coastal communities. Additionally, 
the proposed efficiency improvements depend on certain materials, such as steel pipes, which 
may not be readily available in all regions. The turbine efficiency, while promising, remains 
lower than that of conventional hydropower systems due to speed mismatches, highlighting 
the need for further optimization. The study also does not address potential legal, 
environmental, and regulatory challenges associated with large-scale deployment. Although 
cost analysis is discussed, actual implementation costs may vary considerably depending on 
local infrastructure and government incentives. While the system is well-suited for small-scale 
applications, large-scale adoption of GWVPP may require significant modifications to existing 
water management systems. 
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he increasing demand for sustainable energy and reduced reliance on fossil fuels has 
driven the exploration of alternative fuel options. This study aims to evaluate the 
performance of a motorcycle engine using bioethanol-gasoline blends. Simulations 

were conducted using AVL Boost software. By applying AVL Boost in innovative ways, the 
research provides new insights into improving the performance of motorcycle engines 
powered by bioethanol-gasoline blends, contributing to more eco-friendly transportation. A 
numerical model of a single-cylinder engine was developed, and various fuel blends were tested 
to assess performance characteristics at engine speeds ranging from 1000 to 4000 RPM. Single-
cylinder spark ignition engines are commonly used in many types of motorcycles. The results 
showed that the E20 blend achieved a 4% increase in power and improved performance 
characteristics during tests on engines running on lower ethanol blends. 
Keywords: Biofuels, Bioethanol, AVL Boost, Numerical Investigation, Engine Performance.   
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Introduction: 
The rising daily demand for energy has encouraged researchers to explore alternative, 

non-fossil vehicle fuels. With fossil fuel reserves depleting, finding widely accepted alternatives 
has become increasingly urgent. Biofuels, derived from renewable resources, have emerged as 
a promising substitute for conventional fossil fuels due to their limited availability [1][2]. 
Recognized as a sustainable energy source, biofuels play a crucial role in the renewable energy 
sector [3][4]. Among biofuels, alcohol is particularly significant [5]. Bioethanol, in particular, 
stands out as a potential alternative fuel for gasoline engines because it shares several key 
physical and chemical properties with gasoline, as shown in Table 2 [6][7].  Compared to 
conventional gasoline, bioethanol-gasoline blends have been found to significantly lower 
carbon monoxide (CO), hydrocarbon (HC), and particulate matter (PM) emissions while 

offering mixed effects on nitrogen oxides (NOx) and carbon dioxide (CO₂) emissions. This 
research uses a one-dimensional simulation model developed with AVL Boost [8] to analyze 
the performance characteristics of a single-cylinder spark ignition gasoline motorcycle engine 
fueled by gasoline-bioethanol blends. Several parameters affecting engine performance are 
examined, including power, torque, fuel consumption, and efficiency. The objective is to assess 
how the selected fuel blends—E0, E20, and E40—impact engine performance at different 
speeds: 1000, 2000, 3000, and 4000 RPM. Ethanol-gasoline blends with ethanol content of 
50% or higher (E50+) have demonstrated significant potential for improving engine 
performance and reducing emissions. Research has shown that E50 blends can enhance brake 
thermal efficiency, with studies indicating that a compression ratio of 9.1 results in maximum 
power output, while a higher compression ratio of 9.7 leads to minimal fuel consumption. 
Additionally, E50 blends have been found to increase brake torque and power in spark-
ignition (SI) engines, making them a viable alternative to conventional fuels. 

In terms of emissions, E50 blends have been associated with significant reductions in 
carbon monoxide (CO) and hydrocarbon (HC) emissions compared to pure gasoline. 
Furthermore, nitrogen oxide (NOx) emissions also decrease when using E50 blends, 
contributing to a cleaner and more sustainable combustion process. These improvements are 
largely attributed to ethanol’s higher oxygen content, which facilitates more complete 
combustion. 

However, certain operational considerations must be taken into account when using 
E50 blends. Due to ethanol’s lower energy density compared to gasoline, fuel consumption 
may increase slightly. Nonetheless, this effect can be offset by the overall gains in thermal 
efficiency. Another critical factor is material compatibility, as higher ethanol concentrations 
can affect engine components, necessitating further research into long-term durability. Future 
studies on E50+ blends should focus on optimizing engine parameters, assessing material 
compatibility, and conducting real-world driving condition evaluations to fully leverage the 
benefits of higher ethanol content fuels.  

This knowledge could contribute to the development of improved engines and higher-
quality vehicular fuels. There is growing awareness of biofuels, such as bioethanol, as a means 
to reduce environmental impacts and dependence on fossil fuels [9]. As the automotive 
industry searches for more sustainable alternatives, understanding how bioethanol fuel blends 
affect engine performance becomes both essential and challenging [10]. Studying the impact 
of bioethanol-gasoline blends offers valuable insights that can guide the design of engines 
optimized for these alternative fuels. By incorporating bioethanol, the reliance on limited fossil 
fuel reserves can be reduced [11]. 

This report provides several recommendations to help the automotive industry 
transition toward more eco-friendly and sustainable energy sources. However, biofuel 
blending comes with certain challenges. While some blends are compatible with existing 
engines, others are not [12]. Therefore, it is crucial to determine which ethanol-gasoline blend 
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is best suited for single-cylinder spark ignition engines to achieve optimal performance. 
Ultimately, understanding the performance characteristics of biofuels and their compatibility 
with gasoline is key to successful engine integration. 
Objectives of the Study: 

The main objectives of this study on the performance analysis of a motorbike engine 
using bioethanol-gasoline blends are as follows: 

• Analyze the impact of ethanol-gasoline blends (E0, E20, E40) on power, torque, fuel 
consumption, and efficiency using AVL Boost simulations. 

• Utilize AVL Boost software to create and validate a simulation model for a single-
cylinder motorcycle engine. 

• Investigate ethanol's potential to enhance engine performance and reduce reliance on 
fossil fuels. 

• Identify the most efficient ethanol-gasoline ratio for improved engine performance 
while maintaining fuel economy. 
Material and Methods: 

This study uses the AVL Boost simulation tool to develop a simulation model for a 
single-cylinder motorcycle engine. The model is validated using experimental data to ensure 
its accuracy and alignment with current experimental findings [13]. After validation, the 
motorcycle engine model, based on the HONDA CD 70 with a 72cc single-cylinder spark 
ignition engine, is simulated on AVL Boost to analyze performance characteristics, including 
exhaust gas temperature data for each ethanol-gasoline blend at engine speeds of 1000, 2000, 
3000, and 4000 RPM. 

AVL Boost is specifically designed for engine simulations, enabling the analysis of 
changes in fuel compositions, engine configurations, and related components. It provides 
highly accurate predictions for both intake and exhaust parameters. In modern engineering, 
simulations are highly valued due to their ability to save time and costs compared to physical 
experiments, while also optimizing experimental designs. 

This simulation investigates motorcycle engine performance using bioethanol-gasoline 
blends at different speeds. In Pakistan, 70cc motorcycles are widely used and primarily run on 
gasoline. These bikes typically use single-cylinder spark ignition engines equipped with 
carburetor-based fuel systems, which ensure the precise delivery of air and fuel to the 
combustion chamber for optimal engine performance. 

The engine parameters used in this study are sourced from the HONDA CD 70 
technical specification manual, an authoritative and reliable reference for accurate data. The 
study's methodology is illustrated in the flow diagram shown in Figure 1, while the parameters 
used to develop the simulation model are summarized in Table 1. 

 
Figure 1. Flow Diagram of Methodology 

 
 
 
 



                             International Journal of Innovations in Science & Technology 

March 2025|Special Issue UOG                                                                          Page |239 

Table 1: Single Cylinder Four Stroke Engine Parameters 

 
The engine specifications include a bore of 47 mm, a stroke length of 41.4 mm, a 

compression ratio of 9.3, and a connecting rod length of 91 mm. The single-cylinder spark 
ignition motorcycle engine model was developed and calibrated using AVL Boost. The 
physical and thermal properties of gasoline and bioethanol are provided in Table 2.  

Table 2: Properties of Gasoline and Bioethanol 

Fuel Properties Gasoline Bioethanol 

Molecular formula C8H15.6 C2H6O 

Density at 15 ◦C (kg/m3) 720 – 775 792 

Boiling point at 1.013 bar (◦C) 25 – 210 78.4 

Research Octane number (RON) 85 89.7 

Motor Octane Number (MON) 95 108.6 

Heat of vaporization (kJ/kg) 289 854 

Energy density (MJ/kg) 45 26 

Composition C/H/O (%mass) 87.4/12.6/0 52.18/13.04/34.7 

Molecular weight (kg/km) 98 46.070 

The system boundary (SB1) was set with a temperature of 23.85°C and a pressure of 
1 bar. For the system boundary (SB2), the maximum temperature was set at 126.85°C, also at 
a pressure of 1 bar, with a maximum air-fuel ratio of 13. The engine models, using AVL Boost's 
Classic Species Setup, were tested with both gasoline and ethanol. This setup helps simulate 
combustion behavior and analyze the processes occurring during combustion, allowing a 
detailed investigation of engine performance features. 

The engine model characteristics, including the Vibe 2 Zone combustion model, were 
developed based on experimental data on gasoline performance. Previous studies with similar 
engine geometries provided vibration parameters used for ethanol fuel simulations. During 
these investigations, ignition and combustion timing for various gasoline-ethanol blends were 
kept constant. 

The process of examining engine characteristics and applying bioethanol-gasoline 
blends involves several steps. The initial step includes gathering relevant engine data and 
specifications, followed by testing bioethanol-gasoline blends using the AVL Boost simulation 
model. In this model, gasoline has a molar mass of 111.20875 kg/mol and a stoichiometric 
air-fuel ratio of 14.600477%. Ethanol, in comparison, has a molar mass of 46.06952 kg/mol 
and a stoichiometric air-fuel ratio of 8.998616%. 

The indicated engine work [13], calculated using governing equations, can be used to 
derive the engine power equation, as illustrated in the following equation. 

𝑾𝒊 = 𝑷𝒎𝒊𝑽𝑯 = ∫
𝑷𝒅𝑽

𝟏𝟎𝟎𝟎

𝟕𝟐𝟎

𝟎
  (1) 

Parameters Specification Unit 

Engine S I Engine 4 Stroke Air Cooled  

Make & Model HONDA CD 70 2024  

Number of Cylinders 1  

Bore 47 mm 

Stroke 41.4 mm 

Connecting Rod 91 mm 

Displacement Vale 72 cm3 

BMEP Controlled 3 Bar 

Compression Ratio 9.3: 1  

Aspiration Type Natural  

Cooling System Air Cooled  
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𝑵𝒊 =
𝑾𝒊×𝒏

𝟔𝟎 ×𝟐
 (2) 

In the equation, Wi represents the Indicated Engine Power, measured in kilojoules 
(kJ), and Pmi denotes the Mean Indicated Pressure, measured in pascals (Pa). VH is the 
Cylinder Displacement, expressed in cubic meters (m³), while P and V refer to the In-Cylinder 
Pressure (Pa) and Cylinder Volume (m³), respectively. Additionally, Ni represents the 
Indicated Engine Power in kilowatts (kW), and n stands for the engine speed, measured in 
revolutions per minute (RPM).  The given indicated power calculates torque; 

𝑴𝒊 =
𝟔𝟎

𝟐𝝅𝒏
𝑵𝒊  (3) 

In this context, Ni refers to the Indicated Engine Power, measured in kilowatts (kW), 
while n represents the Engine Speed, measured in revolutions per minute (RPM). 

AVL Boost simulations have become an essential tool for research focused on 
improving engine efficiency while reducing both the time and cost associated with engine 
model development. The software provides a wide range of programs related to Internal 
Combustion Engines (ICE). While much of the existing research is centered on spark ignition 
(SI) and compression ignition (CI) engines, some studies have expanded beyond these areas. 

AVL Boost enables users to perform fully computational analyses and integrate 
experimental data with simulation results. Its versatility in handling various fuel types allows 
researchers to perform advanced calculations, including simulations involving alternative fuels. 
Fuel blends can be configured using the Classic Species Setup within the Boost gas properties 
tool, enabling users to adjust fuel blend ratios. The software calculates gas properties for each 
cell at every time step, ensuring accuracy. The fuel blends, defined by fraction ratios in the 
Boost gas properties tool, are listed in Table 3. 

Table 2: Gasoline and Ethanol blending ratio 

Blend Gasoline% Ethanol% 

E0 100 0 

E20 80 20 

E40 60 40 

Result and Discussion: 
Validation of the Model: 

The experimental study data was validated by comparing it with exhaust gas 
temperature data collected from the current experimental engine test. At 4000 RPM, the 
maximum recorded exhaust gas temperature reached 510°C. The observed error in exhaust 
gas temperature was highest at 2% for elevated temperatures, with an average error of 10%, 
as shown in Figure 2. 

 
Figure 2: Engine Speed (RPM) vs Exhaust Gas Temperature 

The maximum torque of 3.21 Nm was observed at 2000 RPM, representing a 16.52% increase 
compared to E100. At 4000 RPM, the torque performance is shown in Figure 3.  
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Figure 3: Engine Speed (RPM) vs Engine Torque 

The engine's observed power output for gasoline and ethanol blends, measured in 
horsepower, is illustrated in Figure 4. The results indicate that power increases with higher 
ethanol content in the blends. However, at a lower speed of 1000 RPM, only the E20 blend 
shows a significant 52.31% increase in power compared to gasoline, making it a promising 
choice. This is due to ethanol’s higher volatility, which allows it to expand and combust more 
efficiently in the E20 blend, thereby producing maximum power at 1000 RPM. Additionally, 
at lower RPM, the extended combustion time enhances power generation. The superior 
performance of the E20 blend at low speeds is attributed to its optimal volatility, which leads 
to highly efficient combustion. 

 
Figure 4: Engine Speed (RPM) vs Engine Power 

Fuel consumption, measured in kilograms per hour (kg/h), represents the rate at which an 
engine uses fuel, expressed as the mass consumed over time, as shown in Figure 5. Ethanol 
contains 33% less energy per gallon compared to gasoline due to its higher octane rating. 
Additionally, ethanol’s faster vaporization contributes to increased fuel consumption. 

 
Figure 5: Engine Speed (RPM) vs Engine Fuel Consumption (Kg/h) 

For small engines (< 100 cc), fuel efficiency varies between 25% and 35%, with engine 
load and friction conditions influencing the indicated efficiency. For E40, the maximum 
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indicated efficiency is observed at 4000 RPM, as shown in Figure 6. Ethanol improves engine 
efficiency due to its higher-octane rating, which reduces engine knock and enhances 
compression ratios. While pure gasoline achieves maximum efficiency of around 15%, ethanol 
blends demonstrate a 10% to 15% improvement over gasoline at various RPMs. 

 
Figure 6 Engine Speed (RPM) vs Engine Indicated Efficiency 

The effect of bioethanol-gasoline blends on engine mechanical efficiency at varying  
RPM is illustrated in Figure 7.  

 
Figure 7 Engine Speed (RPM) vs Engine Mechanical Efficiency 

At 2000 RPM, the engine demonstrates its highest mechanical efficiency, highlighting 
the optimal operating speed for the tested blends. However, as the RPM increases beyond this 
point, a decline in mechanical efficiency is observed due to increased frictional losses and 
reduced combustion time. Notably, at higher speeds (3000-4000 RPM), the E20 blend 
maintains a slight advantage in mechanical efficiency, particularly at 4000 RPM, where it shows 
a marginal but measurable difference. Other blends, including E0 and E40, exhibit only minor 
variations in efficiency at these higher RPM levels. This suggests that E20 offers a balance of 
efficient combustion and mechanical output, making it more suitable for high-speed 
operations compared to other blends.  
Discussion: 

The findings from this study demonstrate that bioethanol-gasoline blends significantly 
influence the performance characteristics of a motorcycle engine. The AVL Boost simulation 
results indicate that the E20 blend provides the most balanced improvement in power output, 
torque, and efficiency, making it a promising alternative to pure gasoline for small-
displacement engines. 

One of the key observations is the increase in engine power and torque with ethanol 
addition, particularly at low-to-mid engine speeds (1000-3000 RPM). The E20 blend shows a 
4% improvement in power compared to E0, which aligns with previous research findings that 
highlight the efficiency of low-ethanol blends in spark ignition (SI) engines. The increased 
performance is attributed to ethanol’s higher oxygen content, leading to better combustion 
and reduced knocking tendencies. However, at higher RPMs (4000+), efficiency gains plateau 
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or slightly decline, possibly due to ethanol’s lower energy density (26 MJ/kg vs. 45 MJ/kg for 
gasoline), which increases fuel consumption. 

While the simulation results are promising, real-world experimental validations are 
necessary to confirm these findings. Previous studies using dynamometer testing on ethanol-
gasoline blends have reported similar trends, with E20-E40 providing optimal trade-offs 
between performance and fuel economy. However, higher ethanol concentrations (E50-E85) 
require modifications in fuel injection systems, which are not addressed in this study. Future 
research should explore real-time road tests to validate AVL Boost predictions. 

The increase in fuel consumption with ethanol addition is a critical concern, as ethanol 
has a lower energy density than gasoline. As shown in Figure 5, fuel consumption increases as 
ethanol content rises beyond E20. This is consistent with previous research, which found that 
ethanol’s higher volatility leads to increased evaporation losses and fuel consumption. 
However, its higher-octane number (RON 89.7) and heat of vaporization (854 kJ/kg) 
contribute to smoother combustion and reduced engine knocking, making it beneficial in 
modern engines designed for alternative fuels. 

Although this study does not analyze emissions, previous research indicates that 
ethanol blends can significantly reduce CO and HC emissions due to improved combustion 
efficiency. However, NOx emissions may increase due to higher combustion temperatures. 
Future studies should incorporate exhaust gas analysis to assess the environmental impact of 
bioethanol adoption in motorcycle engines. 

Several challenges and opportunities exist for further research in this domain. 
Experimental validation through dynamometer-based testing would provide greater accuracy 
in performance assessments. Investigating the impact of higher ethanol blends such as E50 
and E85, along with analyzing combustion characteristics like heat release rates, flame 
propagation, and ignition delays, would enhance the understanding of ethanol’s effects on 
engine operation. Examining potential engine modifications required for higher ethanol 
concentrations and assessing the economic viability of ethanol fuel adoption in developing 
countries would further strengthen the case for bioethanol as an alternative fuel. 

This study confirms that bioethanol-gasoline blends, particularly E20, improve 
motorcycle engine performance while maintaining fuel economy at lower RPMs. However, 
challenges remain in fuel consumption, emissions trade-offs, and compatibility with existing 
engine systems. With further research, ethanol-blended fuels could serve as a viable transition 
towards sustainable and cleaner transportation fuels. 
Conclusion: 

This study aims to examine the performance of engines using ethanol-gasoline blends. 
The results show that engine performance can be improved by using bioethanol-gasoline 
mixtures. Increasing the ethanol content slightly boosts the power of motorcycle engines as 
engine speed increases. The E20 blend showed a minor improvement in power output. More 
research is needed to explore the potential of ethanol-gasoline blends in motorcycle engines. 
Future studies could focus on developing Flexible Fuel Vehicles (FFVs) that can efficiently 
use these blends and help reduce dependence on fossil fuels. Adding hydrogen to the blends 
may further enhance engine performance and lower carbon emissions.  
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In this study, Computational Fluid Dynamics (CFD) was used to model and simulate 
the photocatalytic degradation of methyl orange (MeO) in a stirred photoreactor, particularly 
in the presence of a bismuth oxide catalyst. This approach not only provides an effective 
method for treating wastewater by breaking down harmful dye pollutants but also highlights 
the potential of cost-effective and eco-friendly catalytic materials for environmental cleanup. 
In the first phase, the catalyst was evenly distributed in an aqueous MeO solution, where 
photocatalysis was employed to degrade the pollutant. The structural properties of the catalyst 
were analyzed using scanning electron microscopy (SEM). Experiments were conducted to 
examine how different factors, such as pH and pollutant concentration, influenced MeO 
removal. 

In the next step, CFD was used to numerically analyze MeO degradation through 
photocatalysis. The results showed that the photoreactor effectively broke down MeO. CFD 
modeling further explained the degradation mechanism, revealing that hydroxyl radicals (OH•) 
played a key role in the heterogeneous photocatalytic process. Photocatalysis significantly 
contributed to pollutant breakdown in both experimental and simulated phases. 

The CFD models closely matched experimental data, confirming the findings related 
to fluid dynamics and species concentration. By offering deeper insights into mass transfer 
and reaction kinetics at a fraction of the cost and time, CFD proved to be more efficient than 
experimental methods in analyzing MeO degradation. 
Keywords. Computational Fluid Dynamics (CFD); Photocatalytic Degradation; Methyl 
Orange; Bi2O3 Nanoparticles; Predictive Modelling 
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Introduction: 
Environmental pollution is a long-standing issue and a major cause of environmental 

illness and mortality, making it one of the biggest challenges facing humanity today. Every day, 
our environment is increasingly contaminated by various toxic and hazardous pollutants. 
Among these, organic pollutants such as pesticides[1], pharmaceuticals[2], and dyes[3] are 
particularly concerning due to their harmful effects on human health and aquatic life. 

Methyl orange, a synthetic dye widely used in textiles, printing, and laboratories, is one 
such pollutant that requires degradation. Due to its chemical properties, it poses serious health 
and environmental risks to living organisms. Pollutant degradation refers to breaking down or 
removing harmful substances. The available methods for degradation fall into three main 
categories: physical, chemical, and biological. Physical methods include filtration and 
adsorption, chemical methods involve advanced oxidation processes[4], electrochemical 
techniques[5], and chemical precipitation, while biological methods include bioremediation[6], 
phytoremediation[7], and enzymatic treatment[8]. The conventional techniques for degrading 
organic contaminants may eventually be replaced by the environmentally friendly approach of 
photocatalysis. 

Photocatalysis is considered one of the most effective chemical methods due to its 
high efficiency in breaking down persistent pollutants, eco-friendly nature, low-cost catalyst 
materials, self-sustaining mechanism, and scalability. This technique is particularly useful for 
treating wastewater with high contaminant levels, limited biodegradability, and complex 
compositions[9]. In practical applications, photocatalysts use solar energy to break down 
pollutants[10], degrading organic contaminants by absorbing specific wavelengths of light in 
water[11][12]. Under ambient temperature and pressure, photocatalysis converts pollutants 
into harmless molecules through redox reactions[13][14]. 

However, some photocatalysts face limitations, including high band gap energies (Eg), 
low light absorption capacity, and rapid electron-hole recombination. A high Eg value leads 
to inefficient charge separation, requiring more energy for activation[15]. Additionally, 
electrons and holes may recombine before contributing to the photocatalytic process, reducing 
the generation of reactive oxygen species (ROS) needed for complete photodegradation. This 
fast recombination rate hinders overall quantum efficiency[16]. 

Despite these challenges, photocatalysis remains one of the most effective techniques. 
The process begins when hydroxyl radicals (·OH) attack the dye molecule's weakest chemical 
bonds, such as the azo bond (–N=N–). When this structure is broken, the dye's conjugated 
system is disrupted[17]. As the reaction progresses, the intermediates undergo further 
oxidation, ultimately decomposing into carbon dioxide and water[18]. 

Table 1 Reactions included in the degradation process[19] 

Reactions 

2HO2 → O2˚ + H2O2 

H2O2 + O2˚ → OH˚ + OH- + O2 

e- + O2 → O2˚
- 

O2˚
- + H+ → 2HO˚2 

The reactivity of dyes in degradation systems depends on their chemical structure[20]. 
Complex dyes generally have low photodegradability due to the presence of functional groups 
that affect adsorption characteristics. Many researchers are studying the removal of different 
dyes under visible and UV radiation[21][22]. 

Experimental work often involves multiple trials and errors, requiring extensive time 
and effort while sometimes yielding ineffective results. One of the most efficient ways to 
overcome these limitations is through modeling and simulation[23]. Computational Fluid 
Dynamics (CFD) simulations help analyze fluid behavior under different conditions, such as 
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flow dynamics and heat transfer. CFD also solves governing equations that describe fluid flow 
and decomposes the physical domain into smaller parts (meshing), including: 
1. Navier-Stokes equations – govern the flow of viscous fluids. 
2. Continuity equation – ensures mass conservation. 
3. Energy equation – explains heat transfer within a fluid. 
There is growing recognition of CFD’s potential in chemical engineering and reaction 
engineering[24]. It has also been applied in various fields, such as fluidization[25] and 
multiphase flow systems[26]. 

Simulation methods include the Finite Volume Method (FVM), Finite Difference 
Method (FDM), Finite Element Method (FEM), and Lattice Boltzmann Method (LBM)[27]. 
Among these, FVM is the most accurate, particularly for processes involving interspecies 
interactions. 
Research Objectives: 

This paper presents the design of a photocatalytic reactor using advanced modeling 
and simulation methods for pollutant degradation through heterogeneous photocatalysis. 

The primary objective of this research is to develop a Computational Fluid Dynamics 
(CFD) model in ANSYS Fluent to simulate the photocatalytic breakdown of wastewater 
contaminants using a bismuth oxide catalyst effectively. Additionally, this study aims to analyze 
how contaminant concentration and photocatalyst dosage influence the efficiency of pollutant 
degradation in an environmentally friendly manner. 
Novelty statement: 

This study provides mechanistic insights by modeling and simulating the 
photocatalytic degradation of methyl orange (MeO) in a stirred photoreactor using 
Computational Fluid Dynamics (CFD), particularly with a bismuth oxide catalyst. This 
approach not only offers an efficient method for treating wastewater by breaking down 
harmful dye contaminants but also highlights the potential of cost-effective and eco-friendly 
catalytic materials for environmental remediation. 
Material and Methods: 

The experimental procedure is detailed here, with all chemicals used in the preparation 
process being of AR grade and purchased from Merck. Double-distilled (DD) water was used 

throughout. Bi(NO₃)₃·5H₂O was dissolved in a few drops of HNO₃ and diluted to a 0.1 M 

solution with DD water to prevent Bi ion precipitation. After adding NH₄OH dropwise, the 
resulting gel was filtered and washed with DD water. The gel was then refluxed at 80°C for 
four hours to form crystals. 

To convert Bi(OH)₃ into its oxide form, it was calcined at 600°C for three hours. The 
structural, optical, and degradation characteristics of the oxide sample were analyzed to 
determine its crystal system, band gap, and reaction kinetics. Polymorph alpha-bismuth oxide 
was synthesized using a simple, surfactant-free chemical process, with methyl orange (MeO) 
used as a model pollutant to assess its degradation properties. MeO, a water-soluble azo dye, 
was chosen with an initial concentration of 16.4 mg/L and a solution pH of 7.07. 
For photocatalysis, a 500W Xenon lamp (Wacom XDS501S) was used as the light source due 
to its high intensity, ensuring strong photon flux, faster reaction rates, and efficient charge 
carrier activity. Bismuth oxide, as a catalyst, has a band gap that allows it to absorb visible light 
from the xenon lamp, enhancing absorption and improving degradation efficiency. The 
experiment was conducted 47 cm from the light source, with an incident light intensity of 
17,400 lux on the sample. Dye colorization kinetics were monitored at intervals of one to four 
hours using a UV-vis spectrophotometer (Techcomp UV2301) to measure the residual dye 
concentration in the solution. 
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Initially, Bi₂O₃ was dispersed in the MeO aqueous solution and stirred in the dark for 
an hour, showing only a slight decrease in absorption. The photocatalytic experiment was 
conducted under two conditions: (i) without photocatalyst light irradiation and (ii) with 
photocatalyst irradiation. Results indicated that a portion of the MeO molecules adsorbed onto 
the sample’s surface. Upon light exposure, the optimal absorption gradually decreased as 

irradiation time increased, confirming the catalytic oxidation of MeO by Bi₂O₃. The MeO 
absorption band shifted from 464 nm to 452 nm, indicating a stepwise movement of ethyl 
groups under radiation. 

Table 2 Some chemical and physical properties of MeO 

Chemical Name Dye Type Molecular 
Weight g/mol 

Molecular 
Formula 

4- [4(Dimethyl Amino) phenyl azo] 
Benzene Sulfonic Acid Sodium 

salt 

Organic 327.33 C14H14N3NaO3S 

Analytical Techniques: 
The ultraviolet-visible (UV-Vis) spectrum recorded during the photodegradation of 

MeO with Bi₂O₃ is shown in Figure. 1. MeO has a maximum absorption at 464 nm and can 
absorb light in both the visible and ultraviolet regions. The absorption in the visible spectrum 
is attributed to MeO's azo linkage chromophore. 

 
Figure 1. UV-vis spectra of photocatalytic degradation of MeO using Bi2O3 calcined at 

600°C[28] 
Figure. 2 (HR-SEM) presents an image used to analyze the surface morphology of the 

Bi₂O₃ catalyst. The sample consists of irregularly shaped platelets of varying sizes and forms, 
with some appearing as large, smooth platelets with sharp edges. This analysis provides 
insights into the textural properties of the catalyst, including porosity, particle size, and surface 
roughness—key factors influencing its performance and activity. HR-SEM is crucial as it 
captures high-magnification images, revealing nanoscale features such as particle size 
distribution, surface morphology, and structural integrity, all of which impact the material’s 
physical, chemical, and catalytic properties. 

 
Figure 2. HR-SEM images of Bi2O3 calcined at 600°C [28] 
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Properties and the Degradation Mechanism of Photocatalysis 
The photocatalytic process involves a reactor equipped with a steel mixer/stirrer, an 

inlet zone, a light source, and an outlet zone. The reacting mixture is placed inside the reactor, 

with bismuth oxide (Bi₂O₃) dispersed as the catalyst. A 500W lamp serves as the ultraviolet 
light source, maintaining a constant intensity throughout the experiment. 

A 50 ml dye solution is introduced into the reactor, and the catalyst is dispersed within 

it. When Bi₂O₃ is mixed with the MeO aqueous solution in the dark and stirred for an hour, 
only a slight reduction in absorption is observed. However, after four hours of exposure to 

light, the degradation of MeO without a photocatalyst is just 2%, whereas with Bi₂O₃, it 

reaches 93%. This confirms that Bi₂O₃ significantly enhances the decolorization of MeO. 
Following four hours of irradiation, the initial MeO concentration decreases from 16.4 mg/L 
to 1.1 mg/L. Samples were collected at specific intervals for analysis. 

 
Figure 3. Variation in Concentration of pollutants with time in the degradation process [28] 
CFD Modelling: 
Governing Equations: 

The equations for mass balance, momentum, and continuity for each species involved 
are presented in Equations (1)– (3) below. By solving these equations, the mass fraction, 
velocity, and pressure contours can be determined. 

𝜕(𝛼𝑞𝜌𝑞)

𝜕𝑡
+ ∇. (𝛼𝑞𝜌𝑞𝑢𝑞) = ∑ 𝑚𝑝𝑞 ̇𝑛

𝜌=1      (1) 

𝜕(𝛼𝑞𝜌𝑞𝑢𝑞)

𝜕𝑡
+ ∇. (𝛼𝑞𝜌𝑞𝑢𝑞𝑢𝑞) = −𝛼𝑞∇𝜌 + 𝛼𝑞𝜌𝑞𝑔 + ∇. 𝜏𝑞 + ∑ (𝑅𝑝𝑞 + 𝑚𝑝𝑞𝑢𝑞) +𝑛

𝑝=1

𝛼𝑞𝜌𝑞(𝐹𝑞 + 𝐹𝑙𝑖𝑓𝑡,𝑞 + 𝐹𝑣𝑚,𝑞)                       (2) 
𝜕

𝜕𝑡
(𝛼𝑖𝜌𝑖𝑌𝑖𝑞) + ∇. (𝛼𝑖𝜌𝑖𝑢𝑖𝑞) = −∇. 𝛼𝑖𝐽𝑖𝑞 + 𝛼𝑖𝑅𝑖𝑞 + 𝛼𝑖𝑆𝑖𝑞 + ∑ (𝑚𝑝𝑞𝑖𝑗 − 𝑚𝑖𝑗𝑝𝑞)   𝑛

𝑝=1   

(3) 

𝑢, 𝜌, 𝑌, and α are the velocity, density mass fraction, and volume fraction of phases. For all 
the reactions, Arrhenius's reaction rate has been consumed. 

 
Figure 4 Geometry and meshing of the stirred photoreactor used in the degradation process 
Boundary Conditions: 

Boundary conditions play a crucial role in computational fluid dynamics (CFD) 
simulations, as they define fluid interactions with the surroundings and influence the 
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simulation's accuracy, stability, and realism. The photoreactor has four side walls, modeled as 
rigid solids with a no-slip boundary condition applied to their surfaces. 

As shown in Figure. 4, turbulence and eddies significantly impact the process due to 
the presence of the stirrer. To capture these effects accurately, the k-ε turbulence model is 
used, providing reliable results that align with practical observations [29]. The photoreactor 
contains a 50 mL solution, and the initial values of various parameters, such as interior velocity, 
are set accordingly. A no-slip condition is applied to the four side walls. 

A hollow space exists above the stirrer, allowing the reactant mixture to be introduced 
into the reactor. During the process, turbulence and eddies play a crucial role due to the 
stirrer's motion. Therefore, the k-ε turbulence model is implemented to ensure accurate and 
trustworthy results [30]. 
Numerical Method: 

The photoreactor was designed using ANSYS Design Modeler. After modeling, 
meshing, and solving the continuity, momentum, and mass balance equations, ANSYS Fluent 
software was used. The software employs a finite volume approach, and the pressure-based 
solver was chosen due to its suitability for incompressible fluids and unstable-state equations. 

For numerical stability and convergence, transient equations were discretized using the 
implicit first-order technique. Velocity, pressure, and species mole fractions were stored at 
nodes using a node-based solving method. The SIMPLE algorithm was used to couple velocity 
and pressure variables, while Green-Gauss discretization was applied to diffusion terms for 
practicality [31]. Standard wall functions were selected as the near-wall treatment approach, 
and mesh refinement near the walls ensured accurate flow field resolution. 

A moving reference frame (MRF) technique was implemented to simulate the stirred 
tank photoreactor. The computational domain was divided into two zones: one containing the 
stirrer and another for the rest of the reactor. Instead of mobilizing the stirrer, a rotating 
motion was imposed on the inner zone to simulate fluid motion efficiently [32]. 

The discretized equations were solved for each mesh element, making mesh size 
crucial for accuracy. A grid independence study was conducted to determine the optimal mesh 
size. The simulation was transient, performed using ANSYS Fluent, with a time step size of 
10 minutes and a total of 14,400 steps. The simulation ran for over two hours to generate 
results for post-processing. The minimum processor required for such simulations was an 
Intel Core i5 series. 

Table 3. Mesh independence analysis 

Reactor Case Mesh Sizes No. of elements 

 1 80cm 21841 

Stirred-photoreactor 2 60cm 37324 

 3 40cm 108273 

 
Figure 5. Trend of decreasing concentration of MeO pollutant concerning time. 
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Figure 6. Flow diagram of methodology of the process used for the degradation in CFD 

simulation 
SEM and AFM Analysis Results: 

SEM results for the catalyst surface were analyzed using high-resolution images, as 

shown in Figure. 2. The Bi₂O₃ sample appears as irregularly shaped platelets of varying sizes 
and forms. Below, larger, smooth platelets with sharp edges can be observed. 

 
Figure 7. Band gap of Bi2O3 calcined at 600°C using Kubelka- Munk function with the 

reflectance spectra as the inset[28] 

Figure. 7 presents the bandgap of Bi₂O₃ along with its reflectance spectra in the inset. 
The Kubelka-Munk function is applied to the reflectance spectrum to determine the sample's 
bandgap. 

K/S= (1-R͚)2/2R ͚≡F(R ͚) (4) 
Kubelka-Munk absorption (K) and scattering (S) coefficients are used to analyze the 

optical properties of Bi₂O₃. The Kubelka-Munk function, F(R͚), is defined as F(R͚) = (K/S), 

where R͚ represents Rsample/Rstandard. The band gap is determined by extrapolating the linear 

portion of the (F(R ͚)hv)¹/² vs. hv plot to F(R͚) = 0. The calculated bandgap value is 2.7344 eV 

(454 nm). This visible-light absorption suggests that Bi₂O₃ can act as a photocatalyst under 
visible light. MeO exhibits maximum absorption at 464 nm, covering both visible and 
ultraviolet regions, primarily due to its azo chromophore. 
Results and Discussions: 
CFD Results: 

CFD simulations provide valuable insights into the spatial distribution of reactive 
species, such as •OH radicals, which are difficult to track experimentally in advanced oxidation 
processes (AOPs). The contours of velocity, velocity vectors, and mass concentration of 
pollutants help visualize the fluid dynamics within the photoreactor. Velocity vectors illustrate 
the flow patterns, showing how the fluid moves throughout the reactor. Dead zones, caused 
by eddies, indicate areas with reduced mixing, which can affect pollutant degradation 
efficiency. These simulations enable optimization of reactor design by identifying areas for 
improved fluid flow and mixing. 
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Figure 8. Contour of velocity used in the degradation process in the stirred photoreactor 

 
Figure 9. Velocity vectors of the stirred photoreactor of the degradation process 

Yes, mass concentration contours are essential for understanding the spatial 
distribution of species within the reactor. They help in identifying regions with high and low 
concentrations, allowing researchers to pinpoint areas of pollutant accumulation or rapid 
degradation. This information is crucial for optimizing photocatalytic reactor design, ensuring 
uniform mixing, and enhancing reaction efficiency. By analyzing these contours, adjustments 
can be made to operating conditions, such as catalyst dosage, flow rates, or reactor geometry, 
to improve overall pollutant degradation performance. 

 
Figure 10. Mass concentration contour of the pollutant degraded in the stirred photoreactor 



                                 International Journal of Innovations in Science & Technology 

March 2025|Special Issue UOG                                                             Page |253 

 
Figure 11. Comparison of CFD and experimental results of MeO degradation with time in 

the stirred-photo reactor 
Yes, the high R² value (0.93) indicates strong agreement between the CFD model and 

experimental results, validating the accuracy of the simulation. The similarity in trends 
confirms that the model effectively captures the degradation kinetics of MeO. This suggests 
that CFD can reliably predict pollutant breakdown in photocatalytic reactors, making it a 
valuable tool for optimizing reaction conditions without extensive experimental trials. 
Discussion: 

Your conclusion effectively highlights the significance of Bi₂O₃ as a visible-light-driven 
photocatalyst and its potential for wastewater treatment. Here are some refinements for clarity 
and impact: 

1. Strengthen the Final Takeaway: Conclude with a strong statement about Bi₂O₃’s 
potential and future research directions. 
2. Improve Flow and Conciseness: Some sections could be streamlined for 
readability. 
3. Enhance Technical Precision: Differentiate between experimental and simulated 
findings when discussing mass transfer and turbulence. 
Would you like me to refine and edit it accordingly? 
Conclusion: 

In this study, the removal of methyl orange (MeO) from wastewater was investigated 
due to its toxicity to aquatic life. Computational Fluid Dynamics (CFD) simulations were 
employed to model MeO degradation under heterogeneous photocatalytic conditions, 
incorporating the mixture model and radiation model. Key factors such as light intensity, 
catalyst distribution, and impeller speed were optimized to achieve maximum degradation. 
Experimental results confirmed significant pollutant removal, with approximately 93% 
efficiency. Numerical simulations provided insight into reaction mechanisms and 
concentration variations over time, validating the model's reliability. The strong agreement 
between CFD and experimental findings highlights CFD's potential to reduce experimental 
costs while optimizing wastewater treatment processes. 
Limitations: 
• The model needs to be .validated if the pollutant and catalyst are changed. 
Future work: 
Based on the conclusion provided, here are some potential future work conclusions: 
• Investigate the scalability of the stirred photoreactor system using CFD for industrial 
applications while maintaining high removal efficiency. 
• Extend the CFD simulations to include systems with multiple pollutants and evaluate 
their interactions and degradation pathways. 
• Explore various methods of catalyst distribution to improve pollutant degradation 
efficiency further and validate these techniques through additional CFD simulations. 
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s the use of smart devices increases, the energy demand continues to grow, leading to 
higher consumption of lithium-ion batteries (LIBs) in portable electronics such as 
laptops, tablets, smartphones, and electric vehicles. This increased usage has resulted 

in a rising number of discarded batteries, which contain hazardous chemicals and heavy metals 
that pose serious environmental risks. Recycling these batteries efficiently is essential for both 
environmental protection and economic sustainability. This study explores a recycling method 
for used laptop and notebook batteries through a pretreatment and solvent dissolution 
process, using mild phosphoric acid as the leaching agent. The hydro-metallurgical process 
successfully recovers 5.124% lithium and 42.143% cobalt, yielding lithium carbonate and 

cobalt hydroxide. The batteries, which consist of 50.80% lithium cobalt oxide (LiCoO₂) 
cathodes on aluminum and graphite anodes on copper foils, serve as the primary source of 
material recovery. The recovered lithium carbonate and cobalt hydroxide are then used to 
synthesize active powder for cathode material. Advanced characterization techniques, 
including Cyclic Voltammetry (CV), Raman spectroscopy, and Electrochemical Impedance 
Spectroscopy (EIS), are employed to analyze the electrochemical properties of the recovered 
materials and synthesized powders. The results confirm the effectiveness of this recycling 
method in recovering valuable materials while reducing environmental impact. By addressing 
the growing problem of battery waste, this approach supports the sustainable production of 
new batteries through the reuse of critical materials. The study emphasizes the importance of 
developing efficient recycling technologies to promote a circular economy and reduce 
dependence on raw material extraction. 
Keywords: Lithium-Ion Batteries, Recycling, Hydro-Metallurgy, Lithium Carbonate, Cobalt 
Hydroxide 
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Introduction: 
In today’s rapidly advancing technological world, the demand for high-performance, 

lightweight, and energy-efficient devices is steadily increasing [1]. Lithium-ion batteries (LIBs), 
introduced by Sony in 1990, have become essential for powering various devices, from 
smartphones to electric vehicles, due to their compact size and high energy density [2][3]. 
However, the limited lifespan of consumer electronics (typically 1 to 3 years) has resulted in a 
growing number of discarded batteries, raising environmental concerns. Improper disposal of 
LIBs, which contain toxic substances such as lithium, cobalt, and nickel, poses serious risks to 
both the environment and valuable resources [4]. Therefore, developing efficient and sustainable 
recycling methods is critical [5]. Efforts to reduce cobalt usage in LIBs to cut costs have affected 
battery performance. Cobalt plays a crucial role in improving thermal stability, particle structure, 
and overall battery capacity. Its reduction or absence presents challenges not only for LIB 
performance but also for recycling effectiveness [6]. This trade-off highlights the difficulty of 
balancing cost, efficiency, and recyclability. 

Although recycling has clear benefits, traditional methods like pyrometallurgy and the 
direct method raise significant environmental issues [7]. As the recycling industry expands, these 
conventional techniques may worsen environmental problems unless more energy-efficient 
alternatives are developed. To manage varying input materials, impurities, geometries, and 
changing market needs, adaptable recycling processes are necessary [8]. Additionally, the 
handling of LIB components requires scalable, standardized, and straightforward processes to 
ensure efficiency and safety [9]. Hydrometallurgical recycling, though not yet widely 
commercialized, shows great promise as a future solution for sustainable LIB management. This 
method enhances the recovery efficiency of cobalt (Co) and lithium (Li) due to the use of 
hydrogen peroxide as a reducing agent. Hydrogen peroxide promotes the formation of 
carbonate ions, which have higher solubility in acidic conditions, leading to increased metal 
extraction during the leaching process. The preferential generation of these easily dissolvable 
carbonate ions explains the observed improvements in Co and Li recovery rates [10]. 

The recycling of end-of-life LIBs is a rapidly growing industry with immense potential 
for future expansion. By prioritizing efficient collection and reuse systems, industries can secure 
a sustainable supply of critical raw materials while reducing dependence on external sources. 
Transitioning from informal disposal to formal, systematic LIB recovery frameworks is essential. 
However, low collection rates, particularly for consumer electronics, remain a key obstacle to 
scaling up LIB waste processing. Currently, data shows that Asian countries lead in collection 
efficiency, achieving rates of around 70%, mainly due to their dominance in LIB manufacturing, 
which incentivizes localized recycling infrastructure [11]. Meanwhile, regions like the European 
Union, Australia, and the Americas are making gradual progress but often struggle to gather 
sufficient volumes of spent LIBs to maintain economically viable recycling operations [12]. 

Handling LIBs requires strict safety protocols, as they are classified as hazardous due to 
their flammable liquid electrolytes. Potential risks include thermal runaway, which can be 
triggered by physical damage, extreme heat, or residual electrical charge, leading to fires or 
explosions during storage, transport, or processing. For instance, crushing discarded LIBs may 
puncture their casings, while inadequate discharge procedures increase the risk of short circuits. 
To address these challenges, three primary strategies are being explored for managing LIB waste: 
refurbishing (repairing for reuse), repurposing (adapting for less demanding applications, such 
as energy storage), and recycling (recovering raw materials) [13][14]. 
Novelty Statement: 

This study introduces a novel recycling method for spent lithium-ion batteries (LIBs) 
using mild phosphoric acid as a leaching agent, an approach that has not been widely explored 
in previous research. Unlike conventional methods that rely on harsh chemicals or energy-
intensive processes, this technique is more eco-friendly and energy-efficient. It achieves 
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impressive recovery rates of 5.124% lithium and 42.143% cobalt, which surpass many existing 

methods. Another distinctive feature is the synthesis of active cathode material (LiCoO₂) directly 
from recovered lithium carbonate and cobalt oxide, demonstrating a closed-loop recycling 
process rarely reported in the literature. 
Objectives: 

This study aims to tackle the environmental and economic challenges caused by the 
disposal of spent lithium-ion batteries (LIBs). The goal is to develop an efficient, scalable 
recycling process that recovers valuable materials like lithium and cobalt, essential for battery 
production. By using mild phosphoric acid as a leaching agent, the process minimizes 
environmental impact and reduces energy consumption. Additionally, the study focuses on 

synthesizing active cathode material (LiCoO₂) from the recovered components, proving the 
feasibility of a closed-loop recycling system. This approach not only reduces dependence on raw 
material extraction but also supports a circular economy by reusing critical resources. Ultimately, 
the research aims to offer a sustainable solution for managing battery waste while addressing the 
growing demand for energy storage technologies. 

This paper highlights the increasing importance of recycling and explores methods to 
enhance it. It starts by stressing the urgency of recycling and the shift from relying on primary 
raw materials, like those from conventional mining, to recovering secondary resources from 
spent lithium-ion batteries (LIBs). The paper will also suggest ways to improve the efficiency 

and purity of material recovery. The main objective is to recycle lithium and cobalt as Li₂CO₃ 
and Co(OH)₂ from spent batteries. 
Materials and Methods: 

For this study, spent lithium-ion batteries (LIBs) were collected from the COMSATS 
hardware lab. Batteries from HP and Dell laptops were chosen for material extraction and 
analysis. 

 
Figure 1. Flow diagram of various lithium-ion battery (LIB) recycling processes 
The spent HP notebook battery, consisting of three cells, was selected for analysis. As 

shown in Table 1, the cathode material in this battery is lithium cobalt oxide (LCO), while the 
anode is made of graphite. This combination is commonly used in high-performance consumer 
electronics, such as mobile phones and laptops, due to its balance between energy density and 
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efficiency. Similarly, the spent Dell laptop battery, containing six cells, was also obtained from 
the COMSATS hardware lab. According to Table 1, this battery also uses lithium cobalt oxide 
as the cathode material, while the anode features a thin graphite film applied to the copper foil. 
This configuration, widely found in portable electronic devices, supports reliable energy delivery 
and extended cycle life. 

 
Figure 2. Schematic Diagram of Hydrometallurgical recycling procedure 

Table 1. Spent HP Notebook and Dell Laptop Battery Specifications 

 
In addition to the specific batteries mentioned earlier, we also obtained lithium-ion 

battery (LIB) chemistries, including lithium nickel cobalt manganese oxide (NCM) and lithium 
manganese oxide (LMO). These chemistries offer distinct advantages based on their metal 
composition and are commonly used in applications that demand high power and energy 
density. Table 2 provides a detailed breakdown of the chemical compositions of the LIB 
chemistries analyzed in this study. Understanding the differences in the relative content of 
lithium (Li), manganese (Mn), cobalt (Co), and nickel (Ni) is essential for evaluating their 
electrochemical performance and overall stability. 

The recycling process begins by discharging the battery cells to safely eliminate any 
residual charge. Once discharged, the next step is dismantling, which is performed carefully to 
avoid damaging the internal components. This process exposes the individual layers of the 
battery, which are then subjected to various chemical treatments to recover valuable materials. 
The recovered materials are further processed through controlled methods to ensure optimal 
purity and efficiency. 

Table 2. Chemical Composition of Obtained Different LIBs Chemistries (%) 
Chemistry Li Mn Co Ni 

LCO 6037 0.23 54.43 0.22 

LMO 3.85 47.03 0.13 0.02 

NMC 6.93 19.28 19.33 20.8 
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Additional steps in the recycling process include filtration and sieving. The next crucial 
phase involves leaching, followed by further filtration, to separate valuable elements such as 
lithium, cobalt, and nickel from impurities. At this stage, the materials are divided into two 
outputs: sediment and filtrate. The filtrate, which contains the recoverable valuable elements, 
undergoes a recovery process for purification and refinement. Finally, the recovered materials 
are analyzed using characterization techniques to assess their quality and confirm whether the 
desired outcomes have been achieved. These steps not only facilitate the extraction of valuable 
components but also ensure that the recycling process is both efficient and environmentally 
sustainable. 

 
Figure 3. Flow diagram of a methodology for the Recycling Process for Spent LIBs 

The recycling process for spent lithium-ion batteries (LIBs) begins with the crucial step 
of discharging the batteries to eliminate any remaining charge. Even after use, these batteries 
may retain 2-5% of their charge, which, if not properly discharged, could lead to short-circuiting 
and serious hazards such as explosions. To prevent this risk, the batteries were fully discharged 
before further processing. 

The discharge process involved submerging the battery cells in a salt solution containing 
500 mL of deionized water and 5 wt% sodium chloride (NaCl) for 24 hours inside a fume hood. 

During this period, gases such as nitrogen (N₂), carbon dioxide (CO₂), water vapor (H₂), 
hydrocarbons (CₓHᵧ), and acetic acid ester (CH₃COOCH₃) were released. This process 
separates the supernatant, which contains small amounts of lithium (Li), cobalt (Co), and 
phosphorus (P), from the sediment, which includes traces of aluminum (Al) and iron (Fe). 

By fully discharging the batteries, the risk posed by residual charge is eliminated, making 
them safe for the subsequent stages of recycling and material recovery. 
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Figure 4. Discharging notebook battery cell 

 
Figure 5. Discharging process of laptop battery cell 

After discharging, the batteries were carefully dismantled. Using pliers and a blade, the 
plastic casing and electrical circuits were removed to expose the rectangular cells from the 
notebook batteries (Figure 4) and the cylindrical cells from the laptop batteries (Figure 5). Once 
separated, the cells were placed in an oven and dried at 60°C for 12 hours to ensure they were 
completely free of moisture before further dismantling. 

Next, the dried cells were processed carefully by cutting and peeling off the plastic and 
metal shields. To safely open the metal casings, both ends were cut using a lathe machine, while 
a milling machine was employed to make precise incisions in the cylindrical metal shells. Once 
opened, the layers of the anode, separator, and cathode were carefully unrolled and separated, 
preparing them for subsequent processing and material recovery. 

 
Figure 6. Dismantling process of the battery cells 
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The next step in the process involved the solvent dissolution method as shown in figure 
7, which aimed to weaken the adhesion of the cathode material to the aluminum foil, making 
extraction easier. The binders, typically polyvinylidene fluoride (PVDF) or 
polytetrafluoroethylene (PTFE), posed challenges during separation. To address this, an organic 
solvent, N-Methyl-2-pyrrolidone (NMP), was used to dissolve the binders. 

The aluminum foil was first cut into smaller pieces and then immersed in NMP at 130°C 
for 24 hours in an oven placed inside a fume hood. During this process, the cathode material is 
mixed with the solution, leaving the aluminum foil intact. The cathode material was subsequently 
recovered through filtration, followed by drying and grinding the filtrate residue to obtain a fine 
cathode powder. 

This powder was then subjected to leaching to extract valuable metals such as lithium 
and cobalt. Phosphoric acid (0.7 moles) was used as the leaching agent and placed in a beaker 
on a magnetic stirrer set to a constant temperature of 40°C. Once the solution reached the 

desired temperature, the powdered cathode material was added, and hydrogen peroxide (H₂O₂) 
was added dropwise to enhance the leaching efficiency. The mixture was stirred continuously 
for one hour as shown in figure 8 and then allowed to cool to room temperature. 

The leaching process successfully extracted lithium and cobalt ions from the cathode 
material into the solution. The resulting liquid was filtered to separate the sediment, which 
contained residual lithium, cobalt, carbon, and other impurities. The filtrate was then processed 
further to recover purified lithium and cobalt. 

 
Figure 7. Cathode powder detached from aluminum foil 

 
Figure 8. Leaching of filtrate 
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To recover cobalt from the filtrate, the solution was placed on a magnetic stirrer, and a 
2M sodium hydroxide (NaOH) solution was added drop by drop, acting as a reducing agent. 
The pH level was continuously monitored using a pH meter figure 9 throughout the process. 

As the pH reached 6, cobalt began to precipitate, forming violet-colored particles. This 
precipitation continued until the pH level rose to 8. The resulting mixture was then filtered to 
collect the violet cobalt precipitates on filter paper. These precipitates were dried to obtain cobalt 
hydroxide in powdered form, which served as a key intermediate product for further processing. 

 
Figure 9. Recovery of Cobalt 

To convert cobalt hydroxide into cobalt oxide, hydrogen peroxide (H₂O₂) was added 
dropwise to the cobalt hydroxide solution under constant stirring (Figure 10). This reaction led 
to the formation of brown cobalt oxide precipitates. 

The solution was then placed in an ultrasonic bath set to 50°C and left for 5 hours, which 
helped refine and enhance the quality of the cobalt oxide precipitates. Afterward, the mixture 
was filtered, and the collected precipitates were dried to obtain cobalt oxide in its final powdered 
form. 

The resulting filtrate from this process was subsequently used for lithium recovery. 

 
Figure 10. Brown precipitates of cobalt oxide from cobalt hydroxide 

For lithium recovery, the filtrate was heated to 100°C while being continuously stirred 

on a magnetic stirrer. Sodium carbonate (Na₂CO₃) solution was then added drop by drop until 
white lithium carbonate precipitates began to form, as shown in Figure 11. 

The precipitates were subsequently filtered and dried to obtain lithium carbonate in 
powdered form. 
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Figure 11. Recovery of lithium 

Preparation of Active Material for Cathode: 
Synthesis of Lithium Cobalt Oxide (LCO): 

Figure 12 shows the flow chart for synthesizing the active powder. The extracted lithium 
carbonate and cobalt oxide particles were centrifuged to remove any remaining impurities. These 
recovered materials, obtained from spent LIBs, were then reused to prepare the cathode active 
material. 

The purified cobalt oxide and lithium carbonate were thoroughly mixed and ground in 
a mortar before being calcined at 800°C for approximately 12 hours in a muffle furnace. After 
calcination, the resulting powder was re-grounded and sintered at 850°C to enhance its 
properties. This process yielded lithium cobalt oxide (LCO) powder, which was ready for use as 
cathode material. 
Data on Recovered Material: 

The recovered materials from the laptop and notebook batteries, along with their 
respective weights (in grams), are summarized in Table 3 below. 

 
Figure 12. Flowchart for synthesis of Active Powder. 
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Table 3. Recovered Materials Data 

 
Result and Discussion: 
Raman Spectroscopy: 

The Raman spectroscopy analysis of lithium carbonate, shown in Figure 13a, reveals 

characteristic peaks associated with the vibrational modes of both the carbonate ion (CO₃²⁻) 
and lithium ions. The prominent band at approximately 1088 cm⁻¹ corresponds to the 

symmetric stretching vibrations of the CO₃²⁻ ion, reflecting its planar structure. Weaker bands 

at around 748 cm⁻¹ and 712 cm⁻¹ represent in-plane bending vibrations, while a smaller band at 

~1458 cm⁻¹ is attributed to the asymmetric stretching of the C–O bonds. These peaks confirm 

the identity of lithium carbonate (Li₂CO₃) and provide crucial insights into its bonding, 
symmetry, and structural properties. This makes Raman spectroscopy an invaluable tool for 
investigating the role of lithium carbonate in batteries and energy storage technologies. 

In Figure 13b, the Raman spectrum of cobalt hydroxide (Co(OH)₂) displays distinct 

peaks at 420 cm⁻¹ and 510 cm⁻¹, which correspond to O-H bending vibrations and the Co-O 
symmetric stretching mode (Ag), respectively. These sharp, well-defined peaks indicate the 
material’s high crystallinity and provide essential information about the bonding environment 
of cobalt and hydroxide ions. This structural characterization highlights the potential of cobalt 
hydroxide for applications in energy storage and catalysis. 

 
Figure 13. Raman Spectroscopy of (a)Lithium Carbonate (Li2CO3) (b) Cobalt Hydroxide (Co 

(OH)2) 
X-ray Diffraction: 
XRD Analysis of Lithium Carbonate and Cobalt Hydroxide: 

The XRD pattern of lithium carbonate (Li₂CO₃), shown in Figure 14a, confirms its 
monoclinic crystal structure with a space group of C2/c. Prominent diffraction peaks are 
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observed at approximately 21.4°, 30.6°, 36.0°, 39.5°, and 43.8° (2θ), corresponding to 
characteristic lattice planes such as (110) and (211). These sharp peaks reflect the high 
crystallinity and phase purity of the sample, with minimal structural defects. This well-crystallized 
nature enhances the thermal stability and electrochemical performance of lithium carbonate, 
making it highly suitable for applications that require structural integrity and reliability, such as 
battery technologies or as a precursor for other lithium-based compounds. Furthermore, the 
precise alignment of lattice planes indicates that the synthesis method employed was effective in 
achieving the desired phase with minimal impurities or defects. 

The XRD pattern of cobalt hydroxide (Co(OH)₂), shown in Figure 14b, exhibits a 
prominent low-angle diffraction peak at 2θ corresponding to the (003) basal reflection, which 
represents the interlayer d-spacing. This peak is characteristic of the layered double hydroxide 

(LDH) structure of Co(OH)₂. However, due to the intercalation of anions (e.g., NO₃⁻, Cl⁻, 
CO₃²⁻) and water molecules within the layers, Co(OH)₂ exhibits a more disordered layered 
structure, resulting in broader and less defined XRD peaks. This irregular alignment of layers 
reduces the overall crystallinity of the material. Higher-order reflections, such as (006) and (009), 
may appear at regular intervals due to the periodic stacking of the layers. The exact position and 
intensity of the peaks may vary depending on factors such as the type of intercalated anions and 
the degree of hydration or water content in the structure. These structural characteristics 
influence the material’s potential applications in catalysis, energy storage, and electrochemical 
processes. 

 

Figure 14. XRD pattern of (a) Li2CO3 showing distinct peaks indicative of its crystalline 

structure (b) Co(OH)2 showing distinct diffraction peaks that suggest the structure and phase 
purity of the sample. 

Fourier Transform Infrared Spectroscopy (FTIR): 

The FTIR spectrum of lithium carbonate (Li₂CO₃) displays key peaks that confirm its 

structure. The peak at 1412 cm⁻¹ corresponds to the asymmetric stretching vibrations of the 
carbonate ion, a crucial feature that confirms the presence of carbonate groups. The peak at 

1087 cm⁻¹ represents the symmetric stretching mode of the carbonate ion, indicating well-

defined carbonate bonding. The peak at 859 cm⁻¹ is attributed to the out-of-plane bending 

vibrations of the carbonate ion, reflecting the structural stability of Li₂CO₃. Similarly, the peak 

at 739 cm⁻¹ is associated with the bending vibrations of the carbonate ion, further validating the 
vibrational properties of lithium carbonate. 

The absence of additional peaks, such as those linked to hydroxyl groups or impurities, 
indicates the high purity of the sample. The observed spectral features match previously reported 
FTIR data for lithium carbonate, confirming its structural identity. 

In addition, the peak at 1054 cm⁻¹ in the FTIR spectrum is characteristic of vibrational 

modes in cobalt-based materials, representing Co–OH bonds. Peaks at 1374 cm⁻¹ and 1636 
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cm⁻¹ arise from the intercalation of OH⁻ and NO₃⁻ anions, respectively. This ion intercalation 

is a distinctive feature of Co(OH)₂, enhancing mass and electron transport between the catalyst 
and the electrolyte during electrocatalysis. 

The peak at 3494 cm⁻¹ corresponds to O–H stretching, which is characteristic of 
hydroxyl groups or water molecules. This suggests that the material is either hydrated or contains 

surface-bound water, as observed in Co(OH)₂. These peaks imply that Co(OH)₂ or its hydrated 
form may influence electrochemical properties by modifying surface chemistry and ion 
transport, which, in turn, affects energy storage performance in applications such as 
supercapacitors or batteries. 

 
Figure 15. FTIR pattern of (a) Li2CO3 showing distinct peaks indicative of its crystalline 

structure and (b) Co(OH)2 showing distinct diffraction peaks that suggest the crystalline structure 
and phase purity of the sample. 

Electrochemical Impedance Spectroscopy (EIS): 

 
Figure 16. Nyquist plot of Cobalt oxide from EIS. 

Nyquist EIS Curve: 

The Nyquist EIS curve of cobalt oxide (CoₓOᵧ) shows a half-semicircle at high 
frequencies, indicating low charge transfer resistance (R_ct). This suggests efficient electron 
transfer at the electrode-electrolyte interface. Following the semicircle, the curve transitions into 
an upward diagonal line, which represents Warburg impedance, reflecting ion diffusion into the 
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material. This indicates a combination of capacitive and diffusion-controlled charge storage 
mechanisms. 

The half-semicircle implies fast charge transfer kinetics, while the diagonal line indicates 
moderate ion diffusion limitations, typical of pseudocapacitive materials. Overall, this behavior 
demonstrates that cobalt oxide has high-rate capability, making it suitable for high-power energy 
storage applications, such as supercapacitors or hybrid capacitors, with good cycling stability and 
efficient electrochemical performance. 
Cyclic Voltammetry (CV): 

The cyclic voltammetry (CV) of cobalt oxide (CoₓOᵧ) exhibits a rectangular shape, which 
is characteristic of pseudocapacitive behavior. In this case, charge storage occurs mainly through 
surface-controlled redox reactions, unlike the intercalation process observed in traditional 
battery materials. The absence of well-defined redox peaks suggests that the electrochemical 
reactions are fast and reversible, enabling rapid charge and discharge cycles. 

This behavior is typical of materials that combine both capacitive and faradaic charge 
storage mechanisms, often seen in transition metal oxides like cobalt oxide. These materials can 
store charge electrostatically and through surface redox processes. The rectangular CV shape in 
Fig. 17a reflects high-rate capability and fast electron transfer, making cobalt oxide ideal for 
high-power applications such as supercapacitors or hybrid energy storage systems. 

Additionally, the observed behavior indicates that cobalt oxide offers good cycling 
stability and long-term performance. The stable electrochemical properties suggest that 
recovered cobalt oxide can be effectively reused in subsequent cycles, providing a sustainable 
and cost-effective option for future energy storage technologies. 

 
Figure 17. Cyclic Voltammetry of (a)Cobalt Oxide and (b) LiCoO2 (LCO) active material 

The cyclic voltammetry (CV) analysis of the recovered LiCoO₂ in Fig. 17b shows a 
distinctive profile, characterized by pronounced peaks near the potential window edges and a 
near-convergence of oxidation and reduction peaks in the central region. This convergence in 
the middle suggests highly reversible redox processes with minimal polarization, indicating 
efficient charge transfer kinetics. In contrast, the distinct peaks at the edges may reflect the 
activation of additional electrochemical processes or slight diffusion limitations at extreme 
potentials. 

Overall, these features highlight a complex balance between surface-controlled 
pseudocapacitive behavior and diffusion-limited kinetics. This CV profile emphasizes the strong 

electrochemical performance of the recycled LiCoO₂, demonstrating its suitability for high-rate 
applications and showcasing the potential of recovered materials in sustainable energy storage 
technologies. 
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Discussion: 
The results of this study demonstrate the feasibility of recycling lithium-ion batteries 

(LIBs) from spent laptop cells using a hydrometallurgical process with mild phosphoric acid 
leaching, achieving significant lithium (5.124%) and cobalt (42.143%) recovery rates. The 

successful synthesis of LiCoO₂ cathode material from recovered metals highlights the potential 
of this process in promoting closed-loop LIB recycling, aligning with global sustainability goals 
for resource conservation and electronic waste management. Compared to conventional sulfuric 
acid and hydrochloric acid leaching methods, the use of phosphoric acid offers a less corrosive, 
more environmentally friendly approach, reducing the formation of secondary pollutants and 
minimizing hazardous waste disposal challenges. These findings contribute to recent 
advancements in sustainable battery recycling technologies, supporting efforts to replace energy-
intensive pyrometallurgical processes with cost-effective hydrometallurgical alternatives 
(Makuza et al., 2021). 

One of the key advantages of this study is the comprehensive characterization of 
recovered materials, which confirms the structural integrity and electrochemical performance of 

regenerated LiCoO₂. XRD and Raman Spectroscopy results indicate that the synthesized 

cathode material retains a stable layered structure, similar to commercially available LiCoO₂, 
while Electrochemical Impedance Spectroscopy (EIS) and Cyclic Voltammetry (CV) confirm its 
favorable charge-transfer properties. However, while initial results suggest promising 
electrochemical behavior, long-term cycling stability tests are required to assess capacity 
retention and degradation mechanisms over extended charge-discharge cycles. Previous studies 

(Richa et al., 2017) have shown that recycled LiCoO₂ may exhibit slightly lower energy density 
and cycle life due to impurity incorporation during the recovery process. Future work should 
focus on optimizing purification steps to enhance material performance and compare the 

electrochemical stability of recovered LiCoO₂ against commercially synthesized cathodes. 
Despite the positive outcomes, certain challenges remain regarding the scalability and 

economic feasibility of phosphoric acid leaching for large-scale LIB recycling. While phosphoric 
acid is less hazardous than strong mineral acids, its leaching efficiency for lithium is relatively 
lower compared to citric acid or oxalic acid-based processes, which have been reported to 
achieve higher lithium recovery rates with minimal environmental impact (Xie et al., 2021). 
Additionally, the study does not evaluate the energy consumption of the leaching, precipitation, 
and calcination steps, which is critical for determining the commercial viability of this method. 
Future research should incorporate a techno-economic analysis to assess the cost-effectiveness, 
reagent consumption, and energy demands associated with phosphoric acid leaching, as well as 
explore hybrid recycling approaches that combine mechanical, hydrometallurgical, and direct 
cathode regeneration techniques for maximum resource recovery. 

Another crucial aspect that requires further exploration is the management of leachate 
residues and wastewater treatment. While hydrometallurgical methods produce fewer emissions 
than pyrometallurgy, they still generate waste streams containing dissolved metals, residual acids, 
and organic binders that require proper treatment before disposal. Previous research (Werner et 
al., 2020) emphasizes that leaching residues can contribute to secondary pollution if not 
adequately neutralized or processed for further metal recovery. Future studies should focus on 
developing closed-loop wastewater treatment systems that enable safe disposal or reuse of 
leachate solutions to minimize environmental impacts. Additionally, investigating the potential 
for recovering additional byproducts such as aluminum, copper, and graphite from spent 
batteries could further improve the sustainability and profitability of LIB recycling. 

In conclusion, this study successfully demonstrates that phosphoric acid-based 
hydrometallurgical recycling is an effective method for lithium and cobalt recovery from spent 
LIBs, offering a sustainable alternative to conventional battery disposal. However, further 
optimizations are needed to enhance lithium recovery efficiency, improve the electrochemical 
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stability of regenerated cathode materials, and address environmental concerns related to 
wastewater treatment and process scalability. By integrating advanced purification techniques, 
optimizing reaction conditions, and conducting large-scale feasibility assessments, future 
research can contribute to the development of commercially viable LIB recycling solutions, 
supporting the transition toward a circular economy in battery materials management. 
Limitations: 

Hydrometallurgical recycling of lithium-ion batteries faces challenges related to 
scalability, cost, and environmental impact. Scalability is limited by complex multi-step 
processes, including leaching, separation, and purification, which must be tailored to 
accommodate variations in battery chemistry. High costs arise from the use of expensive 
reagents (e.g., acids and solvents), energy-intensive operations (such as heating and evaporation), 
and wastewater treatment to handle toxic effluents containing heavy metals and fluorides. 

The recycling process generates chemical waste, including acidic/alkaline wastewater 
and metal-laden sludge, which requires proper disposal to prevent environmental harm. 
Technical challenges include lithium losses due to its solubility, difficulties in separating 
chemically similar metals (e.g., cobalt and nickel), and interference from battery binders (e.g., 
PVDF). Despite offering precise metal recovery and lower energy consumption compared to 
pyrometallurgy, these limitations underscore the need for innovative solutions, such as closed-
loop recycling systems and bioleaching, to improve the efficiency and sustainability of the 
process. 
Conclusion: 

This study successfully developed a scalable and efficient recycling process for spent 
lithium-ion batteries sourced from laptops and notebooks, using mild phosphoric acid as a 
leaching agent. The process achieved notable recovery rates, yielding 5.124% lithium and 
42.143% cobalt, which were subsequently converted into lithium carbonate and cobalt 
hydroxide. Comprehensive characterization confirmed the high purity and structural integrity of 
these recovered materials. Additionally, cobalt oxide extracted during the process was used to 
produce LCO (lithium cobalt oxide) active powder. 

These findings demonstrate the feasibility of repurposing materials from spent batteries, 
offering a sustainable alternative to traditional waste disposal methods that often harm the 
environment. The purified lithium carbonate and cobalt hydroxide not only present 
opportunities for reuse in battery manufacturing but also help address resource scarcity amidst 
rising demand for lithium-ion batteries. 

Ultimately, this research highlights the importance of developing efficient recycling 
technologies to support a circular economy in battery production. By recovering valuable 
materials, the approach addresses environmental concerns while enhancing the economic 
viability of recycling initiatives. 

Looking ahead, the outlook for lithium-ion battery (LIB) recycling is promising but 
requires further innovation and collaboration to overcome existing challenges. Enhancing leach 
efficiency, reducing energy consumption, and improving recovery rates for valuable metals like 
lithium and cobalt will be crucial. The development of direct recycling methods that preserve 
cathode structures could significantly minimize environmental impact and energy use. 

Moreover, integrating automation and AI in recycling operations can further streamline 
the process. Exploring alternative battery chemistries, such as lithium iron phosphate (LFP) or 
sodium-ion batteries, could also reduce dependence on critical materials. Policymakers have a 
key role to play by implementing regulations and incentives to promote recycling and circular 
economic practices. 

Global collaboration and standardization of recycling protocols will be essential to address 
the growing problem of LIB waste on a larger scale. By advancing these areas, the industry can 
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work toward a more sustainable, resource-efficient future, ensuring that the increasing demand 
for energy storage solutions is met without compromising environmental sustainability. 
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sources of similar or different power ratings are connected in parallel within the DC 
microgrid. During operation, these sources generate circulating currents along with their 
normal currents, which disrupt proper current sharing among power electronic 

converters based on their capacity. Consequently, voltage regulation across the system 
weakens. Additionally, the resistance of the connecting lines contributes to this imbalance in 
current distribution. To address circulating currents, droop controllers are commonly used. 
This method allows converters to share power according to their capacity without requiring 
internal communication. However, a major drawback of conventional droop control is that as 
output voltage decreases, the converter's output current increases linearly, leading to 
significant voltage fluctuations. As a result, droop control inherently involves a trade-off 
between voltage regulation and current sharing, making it impossible to optimize both 
simultaneously. To overcome this issue, this paper proposes a sliding mode (SM) controller 
implemented through an IoT-based distributed architecture. A system model is developed to 
evaluate its performance, and conditions for stability and existence are analyzed. MATLAB 
simulations provide detailed experimental results, demonstrating the effectiveness of the 
proposed technique. 
Keywords: Droop Control; Circulating Currents; Voltage Regulation; Sliding Mode 
Controller; Existence Condition; Stability Condition. 
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Introduction: 
In the modern era, microgrids are self-sufficient, small-scale power systems that can 

generate and consume electricity independently. They can also exchange power with other 
microgrids and the utility grid based on demand. From a design perspective, microgrids are 
classified as AC, DC, or Hybrid. In terms of control architecture, they can be categorized as 
decentralized, centralized, or distributed [1][2][3][4]. 

The development of microgrids, particularly in distributed generation, creates new 
opportunities for utilizing renewable energy sources (RESs). This advancement can play a 
crucial role in electrifying underdeveloped regions, helping them bridge the gap with 
developed and emerging nations. A reliable communication system is essential for microgrids, 
ensuring complete and bidirectional connectivity between resources while maintaining 
interoperability. Additionally, a new generation of peer-to-peer communication schemes is 
expected to enhance the efficiency and functionality of modern microgrids [5][6][7]. 

Microgrids are classified as AC or DC based on their operational format. AC 
microgrids integrate various energy sources and loads using an AC bus system. In these 
systems, DC-AC and AC-DC conversions are necessary to support DC loads. Similarly, DC 
microgrids operate comparably to AC microgrids, with the key difference being the use of a 
DC bus for interconnection [8]. 

DC microgrids are becoming increasingly popular due to their high efficiency, 
reliability, and ease of integrating renewable energy sources compared to AC microgrids. 
Additionally, DC systems eliminate issues such as skin effect, reactive power, frequency 
regulation, and synchronization, making them a highly dependable and promising solution for 
future energy needs [9]. Table 1 provides a brief comparison between AC and DC microgrids. 

Table 1 Comparison of AC and DC microgrids 

Factors AC DC 

Converter requirement [6], [8], [10] More Converters Fewer Converters 

Power Requirement [7][8] Complex Power Only Active Power 

Power Factor Issues [7][8] Yes No 

Stability [8], [11][10] Low High 

Microgrid Controls [11][10] Complex Simple 

Protection [7][8] Low Cost High Cost 

Reactive Power Compensation [7] Required Not Required 

Frequency Synchronization [8], 
[11][10] 

Required Not required 

Precise current sharing and voltage regulation are essential in DC microgrids, especially 
when sources are connected in parallel. The current-sharing issue arises due to circulating 
currents, which result from differences in output voltage and cable resistance. These 
circulating currents must be minimized or eliminated to ensure proper current distribution. A 
well-designed control strategy should maintain system stability while achieving the desired 
performance. 

Control schemes for DC microgrids fall into three categories: decentralized, 
centralized, and distributed. Some power flow control methodologies, based on hierarchical 
layers for control parameter flow and decision-making, are discussed in [11], while hierarchical 
control methods are explored in detail in [10]. Power electronic converters are key components 
in every DC microgrid, and their challenges are highlighted in [12]. 

A parallel DC-DC converter arrangement offers several advantages over a single high-
capacity centralized converter. These benefits include increased reliability, improved 
efficiency, enhanced thermal management, lower maintenance, and reduced stress on 
individual converters, as the total load current is distributed among them [13]. However, 
despite these advantages, proper control strategies are necessary to regulate load voltage and 
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ensure precise load sharing among converters [14]. Uneven current distribution can cause 
overheating, potentially leading to system failure. Research shows that the main challenge in 
parallel-connected DC-DC converters is ensuring both voltage regulation and accurate current 
sharing. While centralized controllers can achieve these objectives, they require high-
bandwidth communication, making them vulnerable to single-point failures. To overcome 
these limitations, a decentralized control architecture for DC microgrids is presented in [15]. 
Although it simplifies system design, it lacks information on parallel sources, preventing 
simultaneous load sharing and voltage regulation. Thus, decentralized control is not ideal for 
DC microgrid applications. 

Current-sharing control methods are mainly categorized into droop control and active-
sharing techniques. In islanded DC microgrids, droop control is the most commonly used 
method for stabilizing bus voltage when parallel converters operate without communication 
[16]. Droop techniques involve adding virtual resistance to the output voltage of all converters. 
As a result, each converter's output voltage decreases, increasing the load current. While simple 
and decentralized, droop control often leads to poor voltage regulation. Reducing droop gain 
improves voltage regulation but compromises accurate load sharing. Increasing droop gain 
beyond cable resistance can enhance current sharing, but this results in significant voltage 
deviations from no-load to full-load conditions. 

In contrast, active current-sharing methods typically use a dual-loop control structure 
with an outer voltage control loop and an inner current control loop. These loops are 
decoupled based on frequency considerations [17]. However, variations in bandwidth and 
frequency separation can affect transient performance and overall system stability. A master-
slave current-sharing control strategy for parallel power electronic converters is discussed in 
[18], where the master converter retains its characteristics while slave converters function as 
current-controlled current sources. 

A cooperative distributed control strategy for voltage regulation and current sharing 
in parallel DC converters is presented in [19]. This method does not require knowledge of the 
number of converters. Another distributed control approach, which ensures average voltage 
regulation and current sharing through resistive-inductive electrical lines, is detailed in [20]. 
Distributed control allows simultaneous load sharing and voltage regulation, but conventional 
PI-based control techniques pose challenges. Classical controllers struggle with parameter 
tuning, adapting to load variations, and achieving stability under all conditions, making them 
less suitable for DC microgrid applications. 

The rest of this paper is structured as follows: Section 2 formulates the equations for 
circulating currents and control architectures using voltage-only and cascaded voltage-current 
loops. Section 3 introduces the proposed SM controller and IoT-based distributed 
architecture, along with stability and existence conditions. Section 4 presents the results and 
discussion, while Section 5 concludes the paper. 
Research Objectives:  

The primary objective of this research is to minimize circulating currents among 
parallel-connected sources in a DC microgrid. The second objective is to achieve simultaneous 
load sharing and precise voltage regulation. 
Novelty Statement: 

Existing control techniques fail to achieve both load sharing and voltage regulation 
simultaneously. To overcome this challenge, this paper proposes an IoT-based distributed 
architecture using a robust SM controller. In the SM controller, voltage and current loops are 
processed simultaneously. To evaluate its performance, a system model is developed, and the 
existence and stability conditions of the SM controller are analyzed. MATLAB simulation 
results are presented to demonstrate the effectiveness of the proposed technique. 
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Material and Methods: 
System Modelling: 

The basic structure of the DC microgrid is shown in Fig. 1. All RESs are either direct 
DC sources or DC-compatible. The main utility grid and wind turbines generate AC power, 
which is connected to the DC bus through an AC-DC converter [21]. A single arrow indicates 
unidirectional power flow for loads, PV arrays, and fuel cells, while battery energy storage 
systems (BESS) and the conventional utility grid exhibit bidirectional power flow, meaning 
they can both supply and consume power. 

 
Figure 1 Typical arrangement of a DC microgrid. 

A DC microgrid with two parallel sources connected to a load through a DC bus is 
shown in Fig. 2. Here, R1 and R2 represent the cable resistances, while idc1 and idc2 are the 
currents shared by the two sources, which have terminal voltages vdc1 and vdc2, respectively. 

 
Figure 2 Two sources connected in a parallel configuration. 

Formulation of Circulating Current Equations:  
A steady-state equivalent network of the DC microgrid from Fig. 2 is illustrated in Fig. 

3. Here, vdc1 and vdc2 represent the terminal voltages of sources 1 and 2, while the 
interconnecting cables are modeled by resistances R1 and R2, respectively. Applying 
Kirchhoff’s Voltage Law (KVL) to loop 1, as shown in Fig. 3, the equations for vdc1 and vdc2 
can be expressed as follows in (1) and (2): 

𝑣𝑑𝑐1 = 𝑖𝑑𝑐1𝑅1 +  𝑖𝐿 𝑅𝐿𝑜𝑎𝑑 (1) 

𝑣𝑑𝑐2 = 𝑖𝑑𝑐2𝑅2 +  𝑖𝐿 𝑅𝐿𝑜𝑎𝑑 (2) 
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Figure 3 Steady-state equivalent circuit of two parallel connected sources. 

Here, idc1 and idc2 are the currents supplied by sources 1 and 2, respectively, while it 
represents the load current. These currents are mathematically related as: 

𝑖𝐿 = 𝑖𝐿1 + 𝑖𝐿2 (3) 

𝑖𝑑𝑐1 = 𝑖𝐿1 + 𝑖𝑐1 (4) 

𝑖𝑑𝑐2 = 𝑖𝐿2 + 𝑖𝑐2 (5) 

Here, ic1 and ic2 are the circulating currents of sources 1 and 2, respectively. These 
currents have the same magnitude but flow in opposite directions [22]. To determine idc1 and 
idc2, equations (3), (4), and (5) are substituted into (1) and (2). After simplification, idc1 and idc2 
can be expressed in the form of equations (6) and (7). 

𝑖𝑑𝑐1 = 𝛼1𝑣𝑑𝑐1 − 𝛽𝑣𝑑𝑐2 (6) 

𝑖𝑑𝑐2 = 𝛼2𝑣𝑑𝑐2 − 𝛽𝑣𝑑𝑐1 (7) 

Were, 

𝛼1 =
𝑅2 +  𝑅𝐿𝑂𝐴𝐷

𝑅1𝑅2 +  𝑅2𝑅𝐿𝑂𝐴𝐷 + 𝑅1𝑅𝐿𝑂𝐴𝐷
 

(8) 

  

𝛼2 =
𝑅1 +  𝑅𝐿𝑂𝐴𝐷

𝑅1𝑅2 +  𝑅2𝑅𝐿𝑂𝐴𝐷 + 𝑅1𝑅𝐿𝑂𝐴𝐷
 

(9) 

  

𝛽 =
𝑅𝐿𝑂𝐴𝐷

𝑅1𝑅2 + 𝑅2𝑅𝐿𝑂𝐴𝐷 + 𝑅1𝑅𝐿𝑂𝐴𝐷
 

(10) 

The product 𝑅1𝑅2 in equations (8), (9), and (10) can be neglected, as its value is very 

small compared to the load resistance 𝑅𝐿𝑂𝐴𝐷. Similarly, to determine 𝑖𝑐1 and 𝑖𝑐2, equations (6) 

and (7) are substituted into equations (4) and (5). After simplification, 𝑖𝑐1 and 𝑖𝑐2 can be 
expressed in the form of equation (11). 

𝑖𝑐1 = - 𝑖𝑐2 =  
𝑣𝑑𝑐1−𝑣𝑑𝑐2

𝑅1+ 𝑅2
  = 

𝑖𝑑𝑐1𝑅1−𝑖𝑑𝑐2𝑅2

𝑅1+ 𝑅2
    if (𝑅1 ≠ 𝑅2) 

=  
𝑖𝑑𝑐1−𝑖𝑑𝑐2

2
       if (𝑅1 = 𝑅2) (11) 

Substituting equation (11) into equations (4) and (5) gives equations (12) and (13). 

𝑖𝑑𝑐1 = 
𝑅2𝑣𝑑𝑐2

 𝑅1𝑅𝐿𝑂𝐴𝐷+𝑅2𝑅𝐿𝑂𝐴𝐷
 + 

𝑣𝑑𝑐1−𝑣𝑑𝑐2

𝑅1+ 𝑅2
 (12) 

  

𝑖𝑑𝑐2 = 
𝑅1𝑣𝑑𝑐1

 𝑅1𝑅𝐿𝑂𝐴𝐷+𝑅2𝑅𝐿𝑂𝐴𝐷
 - 

𝑣𝑑𝑐2−𝑣𝑑𝑐1

𝑅1+ 𝑅2
 (13) 

In equations (12) and (13), the first part is the load current, and the second part is the 
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circulating current. Similarly, the analysis of the circulating current for any number of parallel-
connected sources can be extended.  

In equations (12) and (13), the first term represents the load current, while the second 
term corresponds to the circulating current. Similarly, this circulating current analysis can be 
extended to any number of parallel-connected sources. 
Control Methods of DC Microgrid: 

Several control methods in the literature use PI controllers to mitigate circulating 
currents and regulate voltage in DC microgrids. A simple voltage control loop for a source-j 

is shown in Fig. 4. Here, the output voltage 𝑉𝑜𝑗 is compared with the reference voltage 𝑉𝑗
𝑟𝑒𝑓

, 

and the error is processed by a PI controller to generate a Pulse Width Modulation (PWM) 
signal for regulating the Power Electronic (PE) converter. However, this method is only 
suitable for voltage regulation and does not minimize circulating currents. 

A cascaded voltage and current loop method using a PI controller is shown in Fig. 5. 
In this approach, the voltage error regulates the output voltage, while the current error controls 
the current shared by the sources. However, since these control techniques are linear, they 
cannot ensure stability in all operating conditions, making it difficult to minimize circulating 
currents effectively. 

To overcome this limitation, the next section introduces a nonlinear SM control 
technique to minimize circulating currents among sources. 

 
Figure 4 PI control of DC microgrid via voltage loop. 

 
Figure 5 PI control of DC microgrid via cascaded voltage and current loop. 



                              International Journal of Innovations in Science & Technology 

March 2025|Special Issue UOG                                                                         Page |280 

Proposed Sliding Mode Control: 
The Sliding Mode (SM) controller is a nonlinear control method designed specifically 

for variable-structure systems, ensuring robustness and stability under all operating conditions. 
Fig. 6 illustrates the block diagram of a DC microgrid controlled using the SM controller. 

In SM operation, both voltage and current loops function in parallel, enabling a fast 
dynamic response. The switched differential equations of the Power Electronic (PE) buck 
converter, which describe the system’s state dynamics, are presented in equations (14) and 
(15). These equations form the basis for designing the SM controller. 

𝑑𝑣𝑜

𝑑𝑡
=

𝑖𝐿 − 𝑖𝐿𝑖𝑛𝑒

𝐶
 

(14) 

𝑑𝑖𝐿

𝑑𝑡
=

𝑢𝑣𝑖 − 𝑣𝑜

𝐿
 

(15) 

Here, 𝑖𝐿 and 𝑖𝐿𝑖𝑛𝑒 Represent the inductor current and the connecting line current, 

respectively. Similarly, 𝑣𝑖 and 𝑣𝑜 Denote the input and output voltages. The capacitance and 
inductance are represented by C and L, respectively. 

 
Figure 6 SM controller for parallel-connected DC microgrid. 

SM Controller Design: 
The sliding manifold in this paper is designed using the DC voltage error and converter 

current error. The SM controller identifies circulating currents by analyzing these errors. The 
proposed sliding surface is mathematically expressed in equation (16), where: 

• 𝑒𝑣 = 𝑣𝑟𝑒𝑓 − 𝑣𝑜 Represents the DC voltage error. 

• 𝑒𝑖 = 𝑖𝑟𝑒𝑓 − 𝑖𝐿 Represents the converter's current error. 

• 𝛼 and 𝛽 are the sliding surface constraints. 

𝜑 = 𝛼𝑒𝑣 + 𝛽𝑒𝑖 (16) 

The differentiation of the sliding function provides insight into the system's dynamic 
behavior and control response. It is mathematically represented in equation (17), showing how 
the sliding function evolves. 

𝑑𝜑

𝑑𝑡
= −𝛼

𝑑𝑣𝑜

𝑑𝑡
− 𝛽

𝑑𝑖𝐿

𝑑𝑡
 

 
(17) 

By substituting the derivatives of the output voltage and load current from equations 
(14) and (15) into equation (17), we obtain equation (18), which expresses the dynamics of the 
sliding function in terms of system parameters. 
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𝑑𝜑

𝑑𝑡
=

−𝛼(𝑖𝐿 − 𝑖𝐿𝑖𝑛𝑒)

𝐶
−

𝛽(𝑢𝑣𝑖 − 𝑣𝑜)

𝐿
 

 
(18) 

The equation (18) is used to define the transversality condition, which ensures that the 
sliding mode controller effectively influences the system's dynamics. This condition is 
mathematically expressed as: 

𝑑𝜑

𝑑𝑢
≠ 0 

(19) 

This guarantees that the system does not remain in a singularity where control actions 
become ineffective. 

The reachability condition ensures that the system states always move toward and 
remain on the sliding surface. Mathematically expressed as: 

𝜑
𝑑𝜑

𝑑𝑡
< 0 

This ensures that any deviation from the sliding surface is corrected, forcing the system 
toward the desired operating point and maintaining stability. 
Transversality Condition:  

The transversality condition ensures that the control input appears explicitly in the 
sliding surface derivative, allowing the controller to influence system dynamics. 
Mathematically, this condition can be expressed as: 

𝑑𝜑

𝑑𝑡
= 𝑓(𝑥) + 𝑔(𝑥)𝑢 

Where: 

• f(x) represents the system dynamics without control input. 

• g(x)u represents the influence of the control input u. 
This guarantees that the controller can effectively drive the system states to the sliding 

surface and maintain stability. Substituting the value of 
𝑑𝜑

𝑑𝑡
 From equation (18) into equation 

(19) results in the equation (18).  

𝑑
𝑑𝜑

𝑑𝑡

𝑑𝑢
=  

−𝛽

𝐿
𝑣𝑖 

 
(20) 

The result in equation (20) confirms that the control input explicitly appears in the 
system dynamics, ensuring that the modeled system is controllable. 
Reachability Condition:  

The reachability conditions ensure that the system trajectories always move toward the 
sliding surface and do not diverge away. This condition is typically expressed using the 
Lyapunov stability approach. Mathematically given as: 

𝑙𝑖𝑚
𝜑→0−

𝑑𝜑

𝑑𝑡
|

𝑢=1
> 0     and      𝑙𝑖𝑚

𝜑→0+

𝑑𝜑

𝑑𝑡
|

𝑢=0
< 0 (21) 

This inequality ensures that the system state moves toward the sliding surface.  
Where: 

• If 𝜑 > 0 and 
𝑑𝜑

𝑑𝑡
< 0, the system must decrease toward the surface. 

• If 𝜑 < 0 and 
𝑑𝜑

𝑑𝑡
> 0, the system must increase toward the surface. 

For the control action u: 

• u = 1 when the system state is below the sliding surface. 

• u = 0 when the system state is above the sliding surface. 
This switching action forces the system trajectory toward the sliding manifold, 

ensuring robust and stable operation. 
Substituting the equation (17) in (21), the following two relations (22) and (23) can be 
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written as: 

𝑙𝑖𝑚
𝜑→0−

𝑑𝜑

𝑑𝑡
=

𝛼(𝑖𝐿𝑖𝑛𝑒 − 𝑖𝐿)

𝐶
+

𝛽(𝑣0 − 𝑣𝑖)

𝐿
> 0 

 
(22) 

  

𝑙𝑖𝑚
𝜑→0+

𝑑𝜑

𝑑𝑡
=

𝛼(𝑖𝐿𝑖𝑛𝑒 − 𝑖𝐿)

𝐶
+

𝛽(𝑣0)

𝐿
< 0 

 
(23) 

Both equations (22) and (23) need to be satisfied to ensure the reachability conditions 
for the system under consideration. 
Sliding Mode Dynamics: 

In the Laplace domain, the differential equations (14) and (15) impose closed-loop 
features of the system. Taking the Laplace transform of the equation (14) 

𝑠. 𝑣𝑜(𝑠) =
𝑖𝐿(𝑠) − 𝑖𝐿𝑖𝑛𝑒(𝑠)

𝐶
 

 
(24) 

After simplifying, equation (24) results in equation (25). 

𝑖𝐿(𝑠) = 𝑖𝐿𝑖𝑛𝑒(𝑠) + 𝐶. 𝑠. 𝑣𝑜(𝑠) (25) 

Similarly, taking the Laplace transform of equation (16) results in (26). 

𝛼[𝑣𝑟𝑒𝑓(𝑠) − 𝑣0(𝑠)] + 𝛽[𝑖𝑟𝑒𝑓(𝑠) − 𝑖𝐿𝑖𝑛𝑒(𝑠)] (26) 

Substituting the value of 𝑖𝐿(𝑠) From equation (25) and equating it to zero results in equation 
(27). 

𝑣𝑜(𝑠)[𝛼 + 𝛽. 𝐶. 𝑠] =  𝛼𝑣𝑟𝑒𝑓(𝑠) + 𝛽𝑖𝑟𝑒𝑓(𝑠) − 𝛽𝑖𝐿𝑖𝑛𝑒(𝑠) (27) 

In the Laplace domain, the equation (27) expresses the closed-loop dynamic behavior 
of the system. Now as it is evident that the load imposes the constant reference value, the final 
relation can be written as: 

𝑣𝑜(𝑠)

𝑖𝐿𝑖𝑛𝑒(𝑠)
=

−𝛽

𝛼 + 𝛽. 𝐶. 𝑠
 

 
(28) 

Equation (28) represents the closed-loop dynamics of the DC microgrid system in the 
Laplace domain. 
Proposed Distributive Architecture: 

This paper proposes an IoT-based distributive control architecture for the 
minimization of circulating current among parallel connected sources and ensuring voltage 
regulation in a DC microgrid. The proposed architecture is shown in Fig. 7. Each source 
controller communicates with the other source controller through an IoT communication link, 
and in this way, the value of the current shared by each source (per unit) is communicated to 
all the sources. Based on this knowledge, the controller of each source calculates the average 
current value shared by all the sources which is given in equation (29). 

𝑖𝑗
𝑎𝑣𝑔

=
∑ 𝑖𝑗

𝑝𝑢𝑛
𝑗=1

𝑛
 

 
(29) 

Here 𝑖𝑗
𝑝𝑢 Is the source-j current (in per unit)? As the load changes, the deterioration 

in voltage regulation is restored as the new values of current are communicated between the 
sources. A flow diagram of the complete process is shown in Figure. 8. 
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Figure 7 SMC with distributive architecture for parallel-connected DC microgrid. 

 
Figure 8 Complete Flow Diagram of the Methodology. 

Result and Discussion: 
The results from the MATLAB/Simulink simulations highlight the limitations of 

conventional PI control techniques in managing circulating currents and ensuring proper 
current sharing among sources. The system's efficiency is evaluated by first simulating a DC 
microgrid with only two sources with specifications given in Table 2 utilizing conventional PI-
based control methods, including voltage loop and cascaded voltage-current loop control, and 
results are summarized below. 
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Table 2 Parameters of DC microgrid 

Item Parameter Value 

Converter 1 Inductor, L1 110mH 

Capacitance, C1 500 µF 

Proportional Gain Kp1 10 

Integral Gain Ki1 0.1 

Converter 2 Inductor, L2 110 mH 

Capacitance, C2 500 µF 

Proportional Gain Kp2 10 

Integral Gain Ki2 0.1 

Cable 1 Resistance R1 0.25 Ω 

Cable 2 Resistance R2 1.25 Ω 

Load RL 22 Ω 

Input Voltage Vin 200 V 

Nominal Voltage Vout 120 V 

1. Voltage Loop PI Control: 

• Significant circulating currents (1.7A) arise due to uneven current distribution. 

• Converter 1 supplies 4.355A, while converter 2 provides only 0.972A, disrupting the 
load-sharing balance. 
2. Cascaded Voltage & Current PI Control: 

• Some improvement in circulating current reduction (1.6A), but still not ideal. 

• Converter 1 supplies 4.302A, while converter 2 contributes only 1.084A. 
The results mentioned above highlight that both methods fail to minimize circulating 

currents among sources. Additionally, a trade-off between current sharing and voltage 
regulation is observed, showing that traditional methods fail to optimize both simultaneously. 

To compare the performance of the proposed IoT-based distributive SM controller, 
the same DC microgrid is simulated utilizing the proposed method, and the results of the 
performance comparison are given below. 
Performance Comparison: 
1. PI-Based Voltage Control: 

• Circulating current: 1.7A (high). 

• Unequal sharing: 4.355A (Converter 1) vs. 0.972A (Converter 2). 
2. PI-Based Cascaded Voltage & Current Control: 

• Circulating current: 1.6A (slightly improved). 

• Unequal sharing: 4.302A (Converter 1) vs. 1.084A (Converter 2). 
3. Proposed IoT-Based SM Control: 

• Circulating current: 0.03941A (almost negligible). 

• Equal sharing: 2.721A (Converter 1) vs. 2.642A (Converter 2). 
The results validate that the proposed SM controller outperforms traditional PI-based 

methods by: 
1. Minimizing Circulating Currents – SM control reduces circulating currents to nearly zero. 
2. Ensuring Balanced Load Sharing – Both sources contribute proportionally. 
3. Maintaining Excellent Voltage Regulation – Stable operation even with variations in line 

resistance. 
Performance Comparison: 

Control Method Circulating Current Current Sharing Voltage Regulation 

PI Voltage Loop High (1.7A) Unbalanced Within Limits 

Cascaded PI Control Moderate (1.6A) Still Unbalanced Within Limits 
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Proposed SM Controller Minimal (0.03941A) Balanced Excellent 

Thus, the distributive SM controller is an efficient solution for mitigating circulating 
currents, improving current-sharing accuracy, and maintaining precise voltage regulation in 
DC microgrids. 
Conclusion: 

To address the ongoing energy crisis, RESs can be integrated into DC or AC 
microgrids based on specific requirements. DC microgrids hold significant promise due to 
their advantages, such as the absence of skin effect, reactive power complications, frequency 
synchronization issues, and lower inter-energy conversion losses. 

A critical challenge in DC microgrids is ensuring precise current sharing among 
parallel-connected Distributed Energy Resources (DERs). Variations in output voltage, 
converter currents, and cable resistances can lead to circulating currents, which degrade overall 
voltage regulation and system efficiency. 

To address this issue, this paper proposes an IoT-based distributive SM control 
architecture. The system's efficiency is evaluated by first simulating conventional PI-based 
control methods, including voltage loop and cascaded voltage-current loop control. The 
results highlight a trade-off between current sharing and voltage regulation, showing that 
traditional methods fail to optimize both simultaneously. 

In contrast, the proposed SM controller effectively minimizes circulating currents, 
ensures a proper current-sharing ratio, and maintains excellent voltage regulation. The results 
demonstrate the superiority of the proposed technique, making it a robust solution for 
enhancing stability and efficiency in DC microgrids. 
Limitations and Future Work: 

SM controller is a robust control technique that is used for variable structured systems. 
The limitation of the SM technique is the infinite frequency requirement, which is practically 
not possible. So, it produces chattering phenomena during the sliding surface. 

For recommendations in the future, there is a need to explore the SM techniques used 
for chattering reduction. Additionally, to implement SM controllers in hardware, modern high-
processing tools are recommended to be explored for the said application. 
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The rapid increase in atmospheric carbon dioxide (CO₂) due to industrialization and 
fossil fuel combustion has raised significant concerns about global warming. Carbon capture 
and storage (CCS) is a crucial technology for reducing greenhouse gas (GHG) emissions. This 
study presents the design of a mineral carbonation plant capable of sequestering 30 tons of 

CO₂ per day to produce magnesium carbonate (MgCO₃) using olivine as the feedstock. 

The process follows an ex-situ carbonation approach, where a mineral slurry reacts with CO₂ 
under controlled conditions. The plant design includes the development of key equipment 
such as a reactor, heat exchanger, and flash column, with a detailed process flow diagram 
(PFD) modeled in Aspen Plus. Material and energy balances ensure the operational feasibility 
of the system. 

With an effective conversion rate of 50%, the process accounts for realistic industrial 
limitations while maintaining reliability at scale. Heat recovery mechanisms, including a shell-
and-tube heat exchanger, improve energy efficiency by minimizing heat loss. Optimized 
equipment design ensures process scalability and aligns with performance criteria to meet 
sequestration targets and product quality standards. 

The reliance on olivine, an abundant and cost-effective silicate mineral, highlights the 
economic and environmental advantages of this approach. The findings contribute to 

advancing sustainable CCS technologies, offering a viable solution for CO₂ mitigation while 

producing valuable industrial products such as MgCO₃ and by-product SiO₂. 
Keywords: Mineral Carbonation; Olivine; Magnesium Carbonate; and Ex-Situ Carbonation.    
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Introduction: 

The global rise in CO₂ emissions from fossil fuel consumption is a major driver of 
climate change [1]. Addressing this challenge requires innovative carbon capture and storage 

(CCS) technologies. To stabilize atmospheric CO₂ at approximately 500 ppm by 2050, a broad 
portfolio of solutions is needed, with CCS recognized as a flagship technology for transitioning 
from a fossil fuel-based economy to a renewable-based one [2]. CCS encompasses various 

processes that capture CO₂ from power plants, cement factories, steel production, and natural 
gas treatment, preventing its release into the atmosphere [3]. All pathways to limiting global 

warming to 1.5°C rely on some form of CO₂ removal, with an estimated 190 Gt of CO₂ 
needing to be stored [4]. However, large-scale CCS deployment remains a challenge, requiring 
significant technological advancements. 

Among CCS methods, mineral carbonation has gained attention as a promising long-

term solution due to its ability to permanently store CO₂ in the form of stable carbonates. 
Unlike geological or ocean storage, which requires extensive monitoring and poses leakage 

risks, mineral carbonation mimics natural rock weathering, converting CO₂ into magnesium 
and calcium carbonates [5]. These carbonates can be used in industrial applications or safely 

stored. Studies identify olivine (Mg₂SiO₄) as a particularly effective mineral due to its high 
magnesium content, abundance, and fast reaction kinetics compared to other silicates. 

Despite its potential, large-scale mineral carbonation faces challenges, including high 

energy consumption, slow reaction kinetics due to passivation layer formation, and CO₂ 
supply chain constraints. Research has explored mechanical activation, acid leaching, and 
thermal pre-treatment to improve efficiency, but economic feasibility and process 
optimization remain key concerns. Additionally, while mineral carbonation has been 
extensively studied in industrial regions, its implementation in Pakistan remains 
underexplored. Given the presence of ultramafic rock deposits rich in olivine, Pakistan has 
significant potential for localized CCS solutions. 

This study aims to develop a scalable CO₂ sequestration process using locally available 
olivine, integrating material and energy balance considerations to enhance process efficiency. 
By addressing key technical and economic barriers, this research contributes to advancing 
sustainable CCS technologies for long-term climate mitigation. 
Novelty Statement: 

This study presents the design of a mineral carbonation plant capable of sequestering 

30 tons/day of CO₂, producing valuable industrial products such as magnesium carbonate 

(MgCO₃) and silica (SiO₂) while minimizing cost, energy consumption, and environmental 
impact. The proposed ex-situ carbonation process utilizes olivine with minimal pre-treatment, 
efficient heat recovery mechanisms, and precision-engineered equipment to enhance 
efficiency and sustainability. Unlike conventional methods, this system achieves a high 
sequestration rate while ensuring economic viability through the production of commercially 
valuable by-products. 
Sustainable Development Goals: 

This study aligns with the following United Nations Sustainable Development Goals 
(SDGs): 

• SDG 9: Industry, Innovation, and Infrastructure – by promoting advancements in 
carbon capture technology. 

• SDG 11: Sustainable Cities and Communities – by contributing to cleaner industrial 
processes and reduced emissions. 

• SDG 13: Climate Action – by mitigating CO₂ emissions through effective 
sequestration strategies. 
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Objectives of the Study: 

• Design a process flow for an aqueous olivine carbonation plant to sequester CO₂. 
• Calculate mass flow rates and analyze energy requirements for efficient process 
integration. 
• Design key equipment essential for the carbonation process. 

• Evaluate mineral carbonation as a practical and sustainable method for CO₂ 
sequestration. 
Literature Review: 

Carbon Capture and Storage (CCS) technology aims to prevent CO₂ emissions from 
entering the environment, thus reducing the carbon footprint. There are three major CCS 
methods: Geological Storage, Ocean Storage, and Mineral Carbonation[5]. 

1. Geological Storage involves injecting captured CO₂ into specific geological 
formations, such as coal-bed formations or depleted oil and gas reservoirs[6]. The rationale 

behind injecting CO₂ into these reservoirs is that the hydrogeological conditions that originally 

allowed hydrocarbons to accumulate also enable CO₂ to be stored. As long as the caprock 
remains intact (unexposed, undamaged, and not weakened by excessive pressure), it can trap 

CO₂ for thousands of years[7]. 

2. Ocean Storage refers to injecting CO₂ into deep ocean layers, either in liquid or 
gaseous form. The ocean, with a residence duration of several hundred years, acts as the largest 

accessible sink for CO₂[8]. The deep ocean's thermocline stratifies its layers, which slowly mix 

over time, facilitating CO₂ sequestration. At depths above 1500 meters, CO₂ can be injected 
as a liquid or trapped as hydrates, or it may dissolve in the water column[9]. 

3. Mineral Carbonation is a promising CCS technology in which CO₂ reacts with 

silicate minerals like olivine or serpentine to form stable carbonates such as MgCO₃ and 

CaCO₃[10]. This method not only sequesters CO₂ but also captures and utilizes it to produce 
valuable industrial products like magnesium carbonate, giving it an edge over other CCS 
methods[5]. 
In Pakistan, where rapid demographic growth and industrialization heavily depend on fossil 

fuel consumption, CO₂ emissions are becoming a growing environmental concern[11]. This 
highlights the urgent need for implementing CCS technologies. The objective of this study is 

to design a mineral carbonation plant that sequesters CO₂ emissions from fossil fuel 
combustion through the mineralization of olivine. It is found that when olivine reacts with 

water, a strong passivating layer forms, significantly trapping CO₂ from the atmosphere[12]. 
The focus of this study is to develop an efficient process that minimizes the need for pre-
treatment, particularly addressing the shedding of the passivation layer to make the 
carbonation process more economical. 
There are two primary types of mineral carbonation processes: In-situ and Ex-situ. 

• In-situ carbonation occurs naturally by injecting CO₂ into silicate-rich geological 
formations or alkaline aquifers, targeting minerals like peridotite and basalts[13]. 
• Ex-situ carbonation takes place in a controlled environment, typically in a chemical 
processing plant after the mineral has been mined. This process uses a slurry of minerals like 

olivine, which is then reacted with compressed CO₂ to form useful products like magnesium 
carbonate[14]. 

For this study, ex-situ carbonation is chosen because it allows for controlled conditions 
and efficient product generation. Olivine, an abundant and reactive silicate mineral, is used as 
the feedstock due to its cost-effectiveness and availability, especially in regions with ultramafic 
rock deposits, like Pakistan[15][16]. The olivine is mined and processed into slurry with water, 

and then exposed to compressed CO₂ in a reactor, forming MgCO₃ and SiO₂. The slurry 
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undergoes a series of separation and purification processes, with CO₂ being recycled and 
reused to maximize the efficiency of the process [14].s. 
Material and Methods: 

This section outlines the approach for CO₂ sequestration via mineral carbonation. It 
covers the following aspects: 

1. Process Overview: A step-by-step description of how CO₂ is captured and 
converted into stable carbonates through mineral carbonation. 
2. Raw Materials Required: Identification of essential raw materials, such as olivine 

(Mg₂SiO₄), water, and CO₂. Olivine is the primary feedstock due to its high reactivity and 
abundance, making it an economical choice for carbonation. 

3. Chemical Reactions: The carbonation reaction, where olivine reacts with CO₂ to 

form magnesium carbonate (MgCO₃) and silica (SiO₂).  
The simplified reaction is: 

2CO2 + Mg2SiO4 → 2MgCO3 + SiO2  (1) 

This exothermic reaction helps in CO₂ sequestration, converting it into stable minerals that 
can be utilized in industrial applications. 
4. Mass and Energy Balance: Detailed calculations of mass and energy flow within 
the carbonation plant to ensure efficient process integration. This analysis ensures that the 
plant operates within the desired parameters, optimizing the conversion and minimizing 
energy losses. 
5. Key Equipment Design: The design of essential equipment for the carbonation 
process, including: 
o Reactor Vessel: Where the carbonation reaction occurs. 
o Slurry Tank: For mixing olivine with water to form the slurry. 

o CO₂ Compressor: To pressurize the CO₂ for efficient reaction. 
o Separation Unit: For separating the solid magnesium carbonate and silica from the 
slurry. 

o Coolers and Gas Separators: To recover CO₂ and ensure its reusability in the 
system. 

Figure 1 below illustrates the process flow chart for the entire CO₂ sequestration process, 
showing the interconnection between these components and the overall process flow. 

 
Figure 1. Flow chart of the methodology 

Process Overview: 
The mineral carbonation process is an addition reaction between a mineral (olivine) 

and carbon dioxide, resulting in the formation of insoluble carbonates. This process utilizes 
naturally occurring silicates, and this study focuses specifically on olivine. In the reaction, 
olivine, also known as Magnesium Orthosilicate, reacts with compressed carbon dioxide to 
produce stable carbonates. The general carbonation reaction for olivine is given below: 

2CO2 + Mg2SiO4 → 2MgCO3 + SiO2 (1) 
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This reaction is exothermic and effectively sequesters CO₂ by converting it into solid 

magnesium carbonate (MgCO₃) and silica (SiO₂), which are environmentally stable 
compounds. 

This study focuses on the design of a mineral carbonation plant with a capacity to 

sequester 30 tons of CO₂ per day. The process is based on ex-situ carbonation, utilizing 
aqueous olivine as the feedstock. The method involves preparing a slurry of olivine, pre-

processing CO₂, reacting the slurry in a continuous stirred tank reactor (CSTR), and separating 
the final products. A process flow diagram (PFD) has been created to provide a clear 
understanding of the entire process. 
Raw Materials and Chemical Reaction: 

The raw materials used in this process are olivine (Mg₂SiO₄), water (used as the 
medium for slurry preparation), and an additive solution containing 1M sodium chloride 

(NaCl) and 0.64M sodium bicarbonate (NaHCO₃) to control the pH and reaction kinetics. 
The reactions involved in aqueous mineralization within a continuous stirred tank reactor 
(CSTR) are outlined below. 

CO2 + H2O → H2CO3 →𝐻+ + HCO3-(2) 

Mg2SiO4 + 4𝐻+ → 2𝑀𝑔+2+ SiO2 + 2H2O (3) 

𝑀𝑔+2 + HCO3 
- → MgCO3 + 𝐻+ (3) 

These reactions occur in the reactor within a temperature range of 150°C to 200°C 
and at pressures between 120 and 150 atm. In the first step, carbon dioxide reacts with water 

to produce hydrogen ions (H⁺) and bicarbonate ions (HCO₃⁻). In the second step, the olivine 

rock reacts with the hydrogen ions to produce magnesium ions (Mg²⁺), silica (SiO₂), and water. 
In the third step, magnesium ions react with bicarbonate ions to form solid magnesium 

carbonate (MgCO₃). 
Material Balance: 

Material balance calculations are performed based on the stoichiometric reactions 

involved in the olivine carbonation process. To form 1 ton of MgCO₃, 1.6 tons of olivine are 

required for every 1 ton of CO₂ reacted[14]. The process operates at a 50% conversion rate 
of olivine to reflect realistic conditions and efficiency. The plant is designed to sequester 30 

tons of CO₂ per day, equating to 1250 kg/hr of CO₂ sequestration. According to the principle 
of material balance, input equals output[17]. 

Figure 2 illustrates the mineral carbonation process of olivine in an aqueous solution, 
which can also be applied to other natural silicates and industrial residues, such as steel slag 
[18]. As shown in Figure 2, the olivine undergoes size reduction through crushing and milling 
to increase the surface area for the catalyzed reaction. The additives are recovered during solid 
filtration, facilitated by the fine particles of olivine[19]. 
Energy Balance: 

Energy balance calculations are performed to optimize the thermal and mechanical 
efficiency of the process. To improve the thermal and mechanical aspects of the procedure, 
energy balances were computed. The energy released is calculated using the energy balance 
equation: 

Q=mCΔT 
Where Q is the heat energy, mmm is the mass, C is the specific heat capacity, and ΔT 

is the temperature change[20]. 
The heat capacity for slurry tank preparation can be calculated using the following 

formula: 
Q=mCΔT 

Where: 
• Q is the heat energy required (Joules), 
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• mmm is the mass of the slurry (kg), 
• C is the specific heat capacity of the slurry (J/kg·°C), 
• ΔT is the temperature change (°C). 

This formula calculates the amount of heat required to raise the temperature of the 
slurry in the tank by a certain amount. 

CPmix =  ( 
𝑚𝑀𝑔2𝑆𝑖𝑂4

𝑚𝑚𝑖𝑥
 ) 𝐶𝑝𝑀𝑔2𝑆𝑖𝑂4

 + ( 
𝑚𝐻2𝑂

𝑚𝑚𝑖𝑥
 ) 𝐶𝑝𝐻2𝑂 +( 

𝑚𝑁𝑎𝑐𝑙

𝑚𝑚𝑖𝑥
 ) 𝐶𝑝𝑁𝑎𝐶𝑙 +  ( 

𝑚𝑁𝑎𝐻𝐶𝑂3

𝑚𝑚𝑖𝑥
 ) 𝐶𝑝𝑁𝑎𝐻𝐶𝑂3  

[20] 
For energy recovery in the shell-and-tube heat exchanger, the same formula for heat capacity 
is used, but with adjustments for the different values of mass input and output. The formula 

remains: 
Q=mCΔT 

Where: 
• Q is the heat energy recovered (Joules), 
• mmm is the mass of the fluid (effluent) passing through the heat exchanger (kg), 
• C is the specific heat capacity of the effluent (J/kg·°C), 
• ΔT is the temperature change (°C) between the inlet and outlet of the heat 
exchanger. 
For the heat exchanger: 
• m, changes depending on the flow rate of the effluent, 
• C depends on the composition and properties of the effluent fluid, 
• ΔT is the difference between the temperature of the effluent when it enters and exits 
the heat exchanger. 
By using this equation, the amount of thermal energy that can be recovered and reused in the 
process can be calculated. This helps in optimizing the energy efficiency and reducing overall 
thermal energy consumption. 

 
Figure 2. Process flow diagram (PFD) of Mineral carbonation of olivine in aqueous solution 

created on Aspen Plus. 
Key Equipment Designing: 

To calculate the power and volume for the major equipment in the mineral 
carbonation plant, the following formulas are used for the Continuous Stirred Tank Reactor 
(CSTR), flash separator, and heat exchanger: 



                                 International Journal of Innovations in Science & Technology 

March 2025|Special Issue UOG                                                             Page |294 

1. Power for CSTR: 
The power required for the CSTR is calculated using the formula: 

P=KTNr3Da5 [21]ρ  
Where: 
o P is the power required (W), 
o K is a constant specific to the reactor design, 
o T is the temperature of the system (°C), 
o Nr is the Reynolds number, a dimensionless number that characterizes the flow 
regime inside the reactor, 
o Da is the characteristic length (diameter or similar) of the reactor (m), 
o ρ is the density of the fluid inside the reactor (kg/m³). 
This formula helps calculate the power needed to agitate the slurry and maintain the required 
reaction conditions inside the CSTR. 
2. Volume for CSTR: 
The volume of the CSTR is calculated using the formula: 

V = 
𝐹𝑎 × 𝑋

−𝑟𝑎
  

Where: 
o V is the volume of the CSTR (m³), 
o Fa is the molar flow rate of the reactant (mol/s), 
o X is the conversion rate (dimensionless), 
o ra is the rate of reaction (mol/s·m³). 

This equation helps determine the required reactor volume based on the molar flow 
rate, conversion efficiency, and reaction rate [22]. 

Both formulas are essential for the design and optimization of the CSTR, ensuring that 
it operates efficiently and at the required power and volume levels for the carbonation process. 

Here are the formulas and the explanation for the heat exchanger and flash separator 
design calculations: 
Heat Exchanger Design: 

The formula for the design calculation of a heat exchanger is: 

1

𝑈𝑜
 = 

1

ℎ𝑠
+  

1

ℎ𝑜𝑑
+ 𝐷𝑜 ×  

ln⁡(
𝑃𝑜

𝑃𝑖𝑛
)

2𝑘𝑤
+

𝐷𝑜

𝐷𝑖𝑛
(
1

ℎ𝑖𝑑
+

1

ℎ𝑖
) 

Where: 
• Uo is the overall heat transfer coefficient (W/m²·K), 
• hs is the heat transfer coefficient on the hot side (W/m²·K), 
• hod is the heat transfer coefficient on the outer side of the tube (W/m²·K), 
• Do is the outer diameter of the tube (m), 
• Po and Pin are the outlet and inlet pressures (Pa), 
• kw  is the thermal conductivity of the material (W/m·K), 
• Din is the inner diameter of the tube (m), 
• hid is the heat transfer coefficient inside the tube (W/m²·K), 
• hi is the heat transfer coefficient inside the tube (W/m²·K). 

This formula is used to determine the overall heat transfer coefficient, which is a key 
parameter in designing the heat exchanger to recover and optimize the thermal energy within 
the system [23]. 
Flash Separator Design: 
1. Vapor Velocity (Vt): 
The vapor velocity is calculated using the formula: 

Vt = k√
𝑝𝑙−𝑝𝑣

𝑝𝑣
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Where: 
o Vt is the vapor velocity (m/s), 
o K is a constant, 
o pl is the density of the liquid phase (kg/m³), 
o pv is the density of the vapor phase (kg/m³). 

This formula helps calculate the velocity of the vapor in the separator, which is crucial 
for sizing and designing the flash separator [24]. 
2. L/D Ratio: 

The L/D ratio (Length/Diameter ratio) is calculated to determine if using the flash 
separator for the plant is feasible. If the L/D ratio is too high, it could indicate that the 
separator is not effective for the required conditions. 
3. Volumetric Flowrate for Liquid and Vapors (Q): 

The volumetric flowrate for liquid and vapor phases is calculated using the formula: 

Q = 
𝑊

𝑝
 

Where: 
o Q is the volumetric flowrate (m³/s), 
o W is the mass flowrate (kg/s), 
o  is the density (kg/m³). 

This equation is used to calculate the volumetric flow rates for both liquid and vapor 
phases, which is essential for sizing the flash separator and ensuring its operation is within the 
required specifications [25]. 
These formulas are integral to the design and optimization of the heat exchanger and flash 
separator, helping to ensure that the processes within the mineral carbonation plant are 
efficient, effective, and meet operational requirements. 
Result and discussion 

Table 1. Overall Material Balance 

Input Output 

Mg2SiO4 Kg/hr  Kg/hr 

Water 2000 MgCO3 1199.9 

NaCl 10700.04 SiO2 428.571 

NaHCO3 328.67 Mg2SiO4 999.9 

CO2 304.6 CO2 622.616 

 1250 Water 10700.04 

  NaCl 328.67 

Total  NaHCO3 304.603 

Mg2SiO4 14583.3 Total 14583.3 

Carbon Sequestration Efficiency and Products.  
The mineral carbonation plant designed for this study is capable of sequestering 30 

tons of CO₂ per day using olivine as the feedstock. The process involves the conversion of 

CO₂ and magnesium orthosilicate (olivine) into stable magnesium carbonate (MgCO₃) as the 

primary product and silica dioxide (SiO₂) as a by-product. This reaction pathway contributes 

to CO₂ sequestration while producing valuable industrial products that can be utilized in 
various industries. The design focuses on efficiency, minimal pre-treatment, and sustainability. 

Table 1 presents the overall material balance calculations for each piece of equipment 
shown in Figure 2. According to the material balance, for every hour of operation, 

approximately 1199.9 kg of MgCO₃ and 428.571 kg of SiO₂ are produced. The majority of 

the product, MgCO₃, has significant industrial applications such as in fertilizers, concrete raw 
materials, and as a filler in the paint and paper industries. 
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The 50% conversion rate, accounting for realistic operational limitations, aligns the 
process with industrial-scale practices and ensures efficiency. The process also achieves 
material balance, as evidenced by the results in Table 1, confirming the system's reliability for 
real-world applications. 

The recovery of additives via solid filtration highlights the sustainability of the process, 
minimizing waste generation. Additionally, the use of sieving mechanisms to separate fine 
silicate and carbonate particles ensures the high purity and quality of the final products, further 
supporting the feasibility and effectiveness of the mineral carbonation plant design. 
Energy Optimization and Thermal Efficiency: 

 
Figure 3. Graphical representation of energy released in each process of the plant 

Energy optimization is a crucial aspect of plant design to ensure efficiency and 
sustainability. In this design: 
• The mixing energy for olivine particles in the ball mill is calculated to be 2.3 kW, which 
represents the energy required to break down the olivine to an optimal size for reaction. 
• The Continuous Stirred Tank Reactor (CSTR), where the carbonation reaction 
takes place, released 55.55 kW of thermal energy during the process. This thermal energy is a 
result of the exothermic nature of the carbonation reaction. 
• To recover this thermal energy, a shell-and-tube heat exchanger is incorporated into 
the design. This heat exchanger facilitates the efficient transfer of heat from the reactor 
effluent to other parts of the process. It achieved an exchanged heat value of 1175 kW, 
improving the overall thermal efficiency of the system by recycling the heat and reducing the 
energy required for heating the incoming fluids. 

These energy optimization measures contribute to the overall energy efficiency of the 
plant, enhancing its sustainability and economic feasibility. 
4o mini 
The heat exchanger’s design, with a heat transfer area of 68.7 m², is pivotal in ensuring effective 
energy utilization within the mineral carbonation plant. This large surface area enables optimal 
heat exchange, allowing the system to recover and reuse thermal energy efficiently, thereby 
significantly reducing operational costs. 

Figure 3 illustrates the energy release at each stage of the plant, with the heat exchanger 
showing a higher thermal energy release compared to other processes. This highlights the 
critical role of the heat exchanger in recovering and reusing heat from the carbonation 
reaction, which is vital for minimizing energy consumption. 

The calculated thermal efficiencies further demonstrate that the plant is designed to 
operate under energy-conserving conditions, ensuring reduced energy demand across the 
system. This approach is particularly valuable in regions like Pakistan, where energy constraints 
often limit industrial growth and sustainability. 
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By focusing on energy recovery and minimizing consumption, this plant design not 
only supports economic feasibility but also aligns with sustainable practices, ensuring that the 
system can operate efficiently in energy-limited environments. 
Process Optimization Through Equipment Design: 
The three major equipment specifications are meticulously designed to ensure continuous, 
efficient operation of the mineral carbonation plant. Each component is optimized for its 
specific function within the overall system. 
1. CSTR (Continuous Stirred Tank Reactor): 
o Volume: 1.62 m³ 
o Power Requirement: 254.318 kW 
o The CSTR plays a crucial role in the mixing and reaction of CO2 with aqueous 
olivine slurry. This large volume ensures the efficient processing of the required CO2 flow and 
slurry. The power requirement reflects the energy needed to maintain continuous mixing and 
facilitate optimal reaction conditions. 
2. Shell-and-Tube Heat Exchanger: 
o Designed for efficient heat recovery, the shell-and-tube heat exchanger 
transfers thermal energy from the reaction effluent to the incoming fluid, lowering overall 
energy consumption and reducing operating costs. 
3. Flash Separator: 
o The stainless-steel construction ensures durability and resistance to corrosion, 
effectively separating the liquid and gaseous phases after the reaction. This component is 
critical for ensuring the purity of the products and maximizing the separation efficiency, which 
is essential for the high-quality output of magnesium carbonate (MgCO3). 

The detailed equipment specification sheets for each major component emphasize the 
importance of design optimization, ensuring that the plant operates efficiently while 
minimizing waste and energy consumption. 

Table 2. CSTR Equipment specification sheet 

Equipment specification sheet 

Type of equipment Continuous stirred tank reactor (CSTR) 

Function Reacting CO2 & Mg2SiO4 to produce MgCO3 

No. of units 

Conversion 
1 

50% 

Operating temperature 185oC 

Operating pressure 139bar 
 

Design Information 

CSTR Dimensions Volume = 1.62 m3 

Diameter = 1.112 m 

Height = 1.668 m 

Depth of liquid = 1.112 m 

Length of impeller = 0.278 m 

Power Requirement 254.318 kW 

Heat transfer area 39.62 m2 

Material of 
construction 

Carbon steel 

Table 2 includes the CSTR equipment sheet specification, showcasing key components 
and the material selection for each part. Additionally, it highlights the heat transfer area, which 
is integral to the thermal efficiency of the CSTR design. This ensures the reactor operates 
effectively, maintaining optimal conditions for the carbonation process. 
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4o mini 
Table 3. Shell & Tube Heat Exchanger Equipment specification sheet 

Equipment specification sheet 

Type of machine Type of machine 

Function Function 

Operating pressure Operating pressure 

Operating condition Operating condition 

LMTD LMTD 

Design Information 

Heat Transfer Area Heat Transfer Area 

Tube Length Tube Length 

Tube area per pass Tube area per pass 

Shell bundle diameter Shell bundle diameter 

Crossflow area Crossflow area 

Volumetric flowrate Volumetric flowrate 

Overall heat transfer coefficient Overall heat transfer coefficient 

Material of Construction Material of Construction 

Table 3 provides the shell & tube heat exchanger equipment specification sheet, detailing its 
key components and operational parameters: 
• LMTD (Log Mean Temperature Difference): The LMTD value of 11.47°C 
indicates the effectiveness of heat transfer between two process streams, steam 6 and steam 
10 (as depicted in Figure 2). A higher LMTD indicates efficient heat transfer, which enhances 
the thermal recovery efficiency of the heat exchanger. 
• Heat Transfer Efficiency: The heat exchanger operates by transferring heat 
between the two streams. The higher temperature fluid in the tube side improves heat transfer, 
which contributes to increased thermal efficiency of the overall process. This is crucial for 
reducing energy consumption, thereby minimizing operational costs. 
• Material of Construction: Carbon steel is selected for the heat exchanger due to its 
durability and ability to withstand high temperatures encountered in the process. Its resistance 
to corrosion and robustness in extreme conditions ensure reliable, long-term operation. 
• Industrial Applicability: The shell & tube heat exchanger is a widely used design 
due to its adaptability to a variety of industrial applications. Its high heat transfer rate and 
efficiency make it a suitable choice for processes that require effective thermal management, 
such as in the mineral carbonation plant design. 
This detailed specification emphasizes the energy-efficient design and cost-effectiveness of the 
system, ensuring optimized thermal management and sustainable operation. 
4o mini 

Table 4. Flash Separator Equipment specification sheet 

Equipment specification sheet 

Type of machine Type of machine 

Function Function 

The mass flowrate of liquid The mass flowrate of liquid 

The mass flowrate of vapors The mass flowrate of vapors 

Vapor Velocity Vapor Velocity 

Volumetric flowrate(liquid) Volumetric flowrate(liquid) 

Volumetric flowrate (vapors) Volumetric flowrate (vapors) 

Vessel diameter Vessel diameter 

Liquid depth Liquid depth 

Height of vapor space Height of vapor space 
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Flooding height Flooding height 

Mist extractor clearance Mist extractor clearance 

L/D ratio L/D ratio 

Wall thickness Wall thickness 

Material of construction Material of construction 

Table 4 presents the flash separator equipment specification sheet, outlining key design 
parameters and operational considerations: 
• L/D Ratio: The L/D value (Length/Diameter ratio) is less than 5.5, indicating that 
the use of the flash separator is appropriate for the plant’s design. A low L/D ratio indicates 
that the separator is well-suited for efficient phase separation (liquid and vapor) under 
operating conditions, ensuring effective separation and maximizing efficiency. 
• Separation Efficiency: The flash separator's ability to efficiently separate the liquid 
and gaseous phases is demonstrated by the low L/D ratio, which ensures the desired 
separation of phases with minimal energy loss. 
• Material of Construction: Stainless steel is chosen for the flash separator due to its 
compatibility with the materials involved (such as CO2, water, and olivine slurry), along with 
its durability. Stainless steel's resistance to corrosion and its ability to withstand the high-
pressure conditions typical of separators ensure longevity and reliability in the plant. 

This specification confirms the flash separator's effectiveness in maintaining 
separation efficiency and ensures long-term performance under harsh operating conditions. 
Discussion: 

The findings of this study highlight the viability and scalability of mineral carbonation 

using olivine for CO₂ sequestration, offering significant environmental and economic benefits. 
The key takeaways are: 

• CO₂ Conversion: The designed process, capable of sequestering 30 tons of CO₂ per 

day, converts CO₂ into magnesium carbonate (MgCO₃) and silica dioxide (SiO₂). Both by-
products have notable industrial applications, strengthening the process's commercial viability. 
• Industrial Applications: 

o MgCO₃: This compound has multiple uses, including as a fertilizer, concrete raw 
material, and filler in paints and paper. In particular, its low-carbon properties make it valuable 

in concrete applications, contributing to CO₂ reduction in the construction industry. 

o SiO₂: This by-product is utilized in glass manufacturing and as a precursor for silicon 
semiconductor production, with applications in fields such as rice hull-derived silicon. 
• Energy Efficiency: The integration of heat recovery systems within the plant design 
improves energy efficiency, thereby reducing both costs and environmental impact. The 
thermal recovery in the process contributes significantly to operational cost reduction. 
• Engineering and Material Selection: Given the high-pressure (139 bar) and high-
temperature (185°C) conditions required for carbonation, carbon steel is selected for the 
reactor's construction due to its structural durability and corrosion resistance. This material 
choice is critical for large-scale deployment. However, future research may explore alternative 
materials or coatings to enhance reactor lifespan and operational efficiency. 

• CO₂ Capture and Transport: While the study focuses on the carbonation process, 

it highlights the importance of optimizing the capture and transport of CO₂. Utilizing waste 

CO₂ from industrial processes (e.g., flue gases) instead of relying on pure CO₂ streams could 
significantly improve the economics of the process. 

In conclusion, this study underscores the dual-purpose nature of mineral carbonation, 

addressing both CO₂ reduction and the growing demand for sustainable industrial materials. 
The economic potential of the reaction by-products and the energy efficiency improvements 
make this technology a promising solution for carbon capture and utilization. Further research 
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and optimization of CO₂ capture and reactor materials will enhance the commercial feasibility 
and long-term viability of the process. 
Sustainability and Economic Impact: 

The dependence on olivine, an abundant and cost-effective silicate mineral, 
underscores the economic and environmental advantages of this mineral carbonation process. 
Key points include: 
• Local Feedstock Availability: In Pakistan, the presence of ultramafic rocks, such as 
peridot, offers a local and cost-effective feedstock source. This reduces the need for imported 
materials, further enhancing the process's economic feasibility. 

• Product Recovery and Income Generation: The recovery of MgCO₃ (magnesium 

carbonate) and SiO₂ (silica dioxide) creates opportunities for income generation, contributing 
to covering operational costs and improving economic sustainability. These by-products have 
significant industrial applications, including in fertilizer production, concrete manufacturing, 
and paint and paper industries. 
• Reaction Enhancement: The use of additive solutions, such as sodium chloride 

(NaCl) and sodium bicarbonate (NaHCO₃), improves reaction kinetics, optimizing the 
carbonation process while keeping it simple and cost-effective. This approach balances 
operational efficiency with minimal complexity. 
• Climate Change Mitigation: This process is aligned with global efforts to mitigate 

climate change, particularly by addressing CO₂ emissions from fossil fuel consumption. By 

converting CO₂ into stable carbonates, it provides a scalable and economically viable solution 
to carbon capture and storage (CCS) technologies. 
• Industrial Growth and Sustainable Development: The plant design supports 
Pakistan’s industrial growth by utilizing local feedstocks and reducing carbon emissions. It 
offers a pathway for sustainable development by integrating carbon sequestration with 
industrial applications, reducing the country's carbon footprint while fostering eco-friendly 
industries. 

Overall, the mineral carbonation process offers a sustainable solution for CO₂ 
sequestration, with economic benefits derived from by-product recovery and local resource 
use, aligning with Pakistan’s goals for industrial growth and climate action. 
Process limitations: 

Mineral carbonation presents a promising and sustainable solution for CO₂ 
sequestration, particularly due to its ability to form stable carbonates like magnesium carbonate 

(MgCO₃), which reduces the risk of CO₂ being released back into the atmosphere. However, 
several process limitations hinder its large-scale implementation: 
1. Passivation Layer Formation: 
o The presence of silica-rich layers on the surface of olivine minerals creates a 
passivation layer, which slows down the carbonation process. This layer restricts the effective 

surface area available for the reaction, reducing the efficiency of CO₂ sequestration and 
requiring more time for the process to complete. 
2. Slow Reaction Kinetics: 
o The dissolution kinetics of olivine, influenced by weakly acidic conditions, are 
relatively slow. This leads to slow reaction rates and limits the overall effectiveness of the 
carbonation process. The formation of the passivation layer also contributes to these slow 

reaction kinetics, as it obstructs the mineral's ability to react efficiently with CO₂. 
3. High Operational Costs: 
o Energy-intensive nature: The mineral carbonation process requires high 
temperatures and pressures, increasing the energy demand. 
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o Mining and Pre-treatment Costs: The extraction, grinding, and pre-treatment of 
silicate minerals, such as olivine, add to the overall cost of the process. 
o These high operational costs are one of the major barriers to large-scale 
commercialization, making it economically challenging to implement the process on a wide 
scale. 

In summary, while mineral carbonation offers a durable solution for CO₂ 
sequestration, addressing the slow reaction kinetics, passivation layer formation, and high 
operational costs are essential for improving its economic viability and achieving large-scale 
commercial deployment. 
Conclusion: 

The motivation for this study lies in the urgent need to reduce CO₂ emissions and 

simultaneously produce magnesium carbonate (MgCO₃), a valuable product. The conceptual 
design of this process focuses on developing a cost-effective and environmentally friendly 

solution. As fossil fuel consumption continues to rise, so do CO₂ emissions, necessitating the 
need for effective carbon capture and sequestration (CCS) technologies. 
Key aspects of the study include: 

1. Ex-situ Mineral Carbonation: This process captures and stores CO₂ through 

carbonation, offering a practical method for CO₂ sequestration. 
2. Process Flow Diagram (PFD): A PFD has been created to visualize the working 
of the entire plant, helping to understand the sequence and integration of processes involved 

in CO₂ capture and MgCO₃ production. 
3. Material and Energy Balance: These balances have been applied to ensure that the 
plant operates efficiently. The energy balance indicates that although the process is energy-
intensive, heat recovery mechanisms are in place, utilizing recycled streams and process 
streams for heat exchange, thereby optimizing energy use. 
4. Product and By-product Applications: 

o Magnesium Carbonate (MgCO₃): This valuable product can be used in several 
industrial applications, such as fireproofing, concrete production, dusting powders, 
toothpaste, and fire extinguishers. 

o Silica Dioxide (SiO₂): The by-product can be used in glass manufacturing, as food 
additives, and in other industrial processes. 

5. Economic Viability: Both the main product (MgCO₃) and by-product (SiO₂) have 
high market value, which supports the economic feasibility of the process. They can be easily 
sold, contributing to cost recovery and enhancing the financial sustainability of the project. 

6. Practical Implications: The project not only addresses the CO₂ emissions issue but 
also contributes to sustainability and the development of renewable energy solutions. The 
study translates theoretical knowledge into practical applications, providing valuable insights 
into process engineering and plant design. 
In conclusion, this project is a significant step towards sustainable development, offering a 

feasible solution to CO₂ sequestration while also creating valuable industrial products. 
Challenges and Future Perspectives: Although the results are encouraging, some challenges 
need to be overcome to enable large-scale deployment. The passivation layer created through 
the carbonation reaction is a major challenge, as it lowers reaction efficiency. This work 
emphasizes the need for a process design that minimizes or eliminates pre-treatment 
activation. Additional research is also needed for the optimization of reaction kinetics and 
enhancing additive recovery processes. Lower energy requirements are needed to reduce the 
high-cost value. The aim of the study is ex-situ carbonation, which provides controlled 
conditions, giving constant results. Whereas, the in-situ method might offer an alternative for 
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certain applications, especially in areas with applicable geological formations. Investigating 
hybrid approaches that give the benefits of both methods might discover innovative solutions. 
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entiment analysis, a part of data mining, uses Natural Language Processing (NLP) to 
understand how people feel about certain topics or individuals. It focuses on the context 
and polarity of information, measuring public opinions from unstructured sources like 

social networks and healthcare websites. By extracting useful insights from this unstructured 
data, healthcare professionals can improve patient care, make accurate diagnoses, and provide 
personalized treatments. Machine learning (ML) plays a key role in this process. ML techniques 
like logistic regression, decision trees, and Naive Bayes have proven effective in tasks such as 
sentiment analysis and named entity recognition in medical data. The goal of ML is to create 
algorithms that enhance data processing and decision-making by identifying patterns that 
might be overlooked by humans. In this study, we compare the performance of three common 
ML models—(a) Logistic Regression, (b) Decision Tree, and (c) Naive Bayes—for sentiment 
analysis on medical image captions. The Radiology Objects in Context (ROCO) multimodal 
image and caption dataset was used for this NLP task. Caption pre-processing is done using 
filtering methods to improve text quality, followed by sentiment classification using pre-
trained ML models. This comparison sheds light on the effectiveness of these algorithms in 
performing sentiment analysis in clinical settings. 
Keywords: Sentiment Analysis; Machine Learning, Natural Language Processing, Confusion 
Matrix. 
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Introduction: 
Electronic Health Records (EHRs) are widely used worldwide and provide valuable 

resources for research, improving healthcare quality and population management. As the 
number of EHRs continues to grow rapidly, effective data analysis methods become 
increasingly important. Narrative reports, which are the core components of EHR systems, 
provide detailed information about patients' conditions, reasons for treatment, and doctor-
patient interactions [1]. These details are often too complex for structured tables, requiring 
advanced techniques for analysis. 

Natural Language Processing (NLP) has proven effective in processing the text data 
extracted from EHR systems. It helps extract key information, such as medications and 
diagnoses, typically in the form of single words or short phrases. However, NLP still faces 
challenges in extracting more complex information, such as understanding the relationship 
between illnesses and symptoms, resolving ambiguity in medical terminology, or analyzing 
emotional tones over multiple sentences [2]. This is where machine learning (ML), a subfield 
of AI, becomes crucial. 

ML uses data-driven algorithms to improve computer performance in tasks like 
decision-making and pattern recognition. ML models can identify trends and patterns that 
humans might miss when analyzing historical data. In healthcare, ML has facilitated 
communication between medical professionals and computer scientists, especially through 
data mining [3]. Data mining extracts valuable insights from large datasets, reducing the need 
for costly and invasive medical procedures while improving efficiency and cost-effectiveness 
[4]. For instance, data mining can help detect high-risk patients and identify key factors 
associated with positive or negative health outcomes, without relying solely on invasive 
procedures like X-rays, blood tests, or angiograms. 

In healthcare, there is a need to perform sentiment analysis on multimodal clinical data 
to gain meaningful insights from text-image pairs. This can help determine the best sentiment 
analysis techniques, improve interpretability, and assist decision-making. It is valuable to 
compare and contrast different machine-learning models for these tasks. 
The use of data mining and machine learning in disease identification and prediction has 
increased in recent years. Their complexity and application have significantly reduced medical 
errors and improved diagnostic accuracy. Among the most widely used models for these tasks 
are logistic regression, decision trees, and Naïve Bayes classifiers. 
Logistic Regression: Logistic Regression (LR) is a statistical model used for categorical 
outcomes, such as binary classifications (e.g., yes/no, true/false). It estimates the probability 
of an event occurring based on a linear combination of explanatory variables. Its flexibility 
comes from the minimal assumptions it makes about these variables, making it a useful tool 
for healthcare predictions [5]. 
Naïve Bayes: The Naïve Bayes (NB) classifier uses Bayes' theorem to calculate the probability 
that data belongs to a specific category. It assumes that the features are independent, which 
simplifies calculations and allows for efficient predictions. Despite this "naïve" assumption, it 
often provides strong performance in real-world applications [6]. 
Decision Trees:  
Decision Trees (DT) are commonly used for both classification and regression tasks. They 
divide data into smaller subsets based on feature values, with decisions represented as nodes 
and outcomes as branches. This clear structure makes Decision Trees particularly useful in 
healthcare, where understanding the reasoning behind predictions is crucial [7]. In this study, 
we compare the performance of three machine learning models—Logistic Regression, 
Decision Trees, and Naïve Bayes—in analyzing text data from Electronic Health Records 
(EHRs). Our goal is to identify key diagnostic factors and evaluate the accuracy of these 
models in predicting the need for medical interventions [8]. The results aim to enhance 
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healthcare practices by leveraging ML's ability to support informed and effective decision-
making. 

The Unified Modelling Language (UML) system facilitates interoperability among 
different medical terminologies by linking concepts from various databases, providing an 
integrated view of medical information. The dataset consists of 8,179 image captions, with 
11,154 unique tokens (features) representing the vocabulary. The longest caption contains 133 
words, with an average length of about 99.64 words. This dense dataset includes both images 
and text. 

This paper explores Neural Image Captioning (NIC) and its applications in radiology, 
specifically focusing on sentiment analysis of multimodal medical text data. While previous 
studies have focused on generating textual descriptions from medical images, this research 
examines the emotional and subjective aspects of medical texts, such as medical reports, 
captions, and EHRs. The study adopts a comparative and experimental approach, evaluating 
several machine learning algorithms for sentiment analysis in the medical domain. By 
addressing sentiment analysis, a relatively under-researched area in medical AI, this work fills 
a gap in understanding the emotional and subjective dimensions of medical texts. By using 
multimodal inputs and comparing traditional and advanced machine learning techniques, the 
study offers valuable insights and benchmarks for improving sentiment analysis methods in 
clinical applications. This unique focus not only complements existing research but also 
provides new perspectives and practical implications for medical AI. 

 
Figure 1. EHR Health Care Application 

Objectives of the Study: 
The primary objectives of this study are: 
1. To use the Radiology Objects in Context (ROCO) dataset to explore multimodal 
image data and corresponding text descriptions. The goal is to process and standardize the 
image captions using Natural Language Processing (NLP) tasks to improve data quality for 
subsequent sentiment analysis. 
2. To perform sentiment analysis on the captions of medical images, categorizing them 
into three classes: positive, negative, and neutral. The study uses the VADER sentiment 
analysis model to label the data and assess sentiment based on the compound sentiment score 
derived from individual word sentiment scores. 
3. To apply the TF-IDF technique to convert textual data into numerical representations, 
aiding in the identification of significant terms and enhancing machine learning model 
performance. 
4. To evaluate the performance of different machine learning models (Logistic 
Regression, Decision Tree, and Naïve Bayes) in classifying sentiment in medical image 
captions. This includes testing each model’s accuracy, precision, recall, and F1 score, focusing 
on comparing their ability to classify the three sentiment categories. 
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5. To use confusion matrices and standard evaluation metrics such as accuracy, precision, 
recall, and F1 score to measure the efficiency of the models and ensure proper sentiment 
classification in medical image captions. 
Material and Methods: 

This cross-sectional study used the Radiology Objects in Context (ROCO) dataset, 
which contains a large-scale multimodal image collection. The images in this dataset are 
sourced from the PubMed "Central Open Access FTP" mirror, making them publicly 
accessible and suitable for broad research applications. The images are categorized into two 
types: non-compound and radiological, based on their identification. In addition to the images, 
the ROCO dataset includes rich metadata, such as Unified Modelling Language (UML) 
semantic types, UMLS Concepts Unique Identifiers (CUIs), and image caption keywords [9]. 
This metadata enhances the understanding of image captions and their relevance in medical 
text, facilitating the integration of structured medical entities. The approach allows for the 
comparison and evaluation of machine learning models for sentiment analysis of medical 
captions, improving the comprehension of health data. 

 
Figure 2. Methodology Flow Diagram 

NLP Tasks: 
The captions of the images in the dataset are pre-processed through a series of Natural 

Language Processing (NLP) tasks to standardize the data and remove textual noise, preparing 
it for further analysis. The dataset consists of two main columns: 
• ID Column: This uniquely identifies each record in the dataset. 
• Description Column: This contains the caption or text description for each image. 
The Description Column is extracted and further processed for pre-processing [10]. 
The primary goal of the pre-processing strategies was to standardize the text and remove 
unnecessary or irrelevant elements, referred to as "textual noise." The key pre-processing steps 
included: 
• Character Removal: All characters except letters, numbers, and spaces were 
removed (e.g., "coronal view" remains as "coronal view"). 
• Case Folding [11]: The text was converted to lowercase to ensure uniformity (e.g., 
"Axial MRI" was converted to "axial MRI"). 
Punctuation Removal:  
Punctuation marks were removed (e.g., "Damus–Kaye–Stansel" became "damuskayestansel"). 
URL Removal: Any URLs within the captions were eliminated. Additionally, stop words 
(such as "is," "the," and "and") that do not contribute significantly to the meaning of sentiment 
analysis were removed from the data. 

To further improve the data's quality for analysis, two key text normalization 
techniques were applied: 
• Stemming: This method simplified words to their most basic forms (e.g., "running" 
became "run"). 
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• Lemmatization: This technique was applied to ensure that words were reduced to 
their fundamental or dictionary form (e.g., "better" became "good") [12]. 
VADER Model for Data Labelling:  

The valence-aware dictionary and Sentiment Reasoner (VADER) model was 
employed for the initial labeling of the text in terms of sentiment categories (positive, negative, 
or neutral). VADER is a rule-based algorithm that assigns sentiment scores to text using a pre-
built sentiment lexicon [13]. The model evaluates sentiment on a scale from -1 to 1, where: 
• -1 indicates a strong negative sentiment. 
• 0 indicates a neutral sentiment. 
• 1 indicates a strong positive sentiment. 
The sentiment score (S) is calculated using the following equation: 

S=∑i=1n(wi⋅si)S = \sum_{i=1}^{n} (w_i \cdot s_i)S=i=1∑n(wi⋅si) 
Where: 
• wiw_iwi is the weight of the i-th word. 
• sis_isi is the sentiment score of the i-th word in the lexicon. 
• nnn is the number of words in the text. 

∑Sentiment Score of Individual Words

√∑Squared Sentiment Score of Individual Words
 

The sentiment score for each word is assigned based on a sentiment lexicon. The sum 
of the sentiment scores gives an aggregated score for the entire text. 
• The sentiment is considered positive if the compound score is greater than 0.05. 
• The sentiment is considered negative if the compound score is lower than -0.05. 
• The sentiment is considered neutral if the compound score falls within the range of 
-0.05 to 0.05. 

 
Figure 3. Word Cloud Sentiments 

VADER enhances sentiment analysis by considering context at the word level using 
booster and negation words. For example, in the phrase "very happy," the word "very" acts as 
a booster to amplify the positive sentiment. Similarly, negation words such as "not" in "not 
happy" flip the sentiment polarity. This ability to modify sentiment based on contextual 
modifiers allows VADER to capture a more nuanced sense of sentiment in text. In this 
research, sentiment analysis is conducted in three classes: positive, negative, and neutral, with 
the sentiment classification determined by the compound score. The compound score is an 
aggregated score calculated by adding up the weighted sentiment scores of words in the text. 
This score is then mapped to one of the three sentiment categories, as shown in Table 1. 
Vectorization: 

Text data is modeled using the TF-IDF (Term Frequency-Inverse Document 
Frequency) technique, which is widely used to convert textual features into numerical ones. 
This method helps assess the importance of a word in a document relative to the overall corpus 
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by scaling the frequency of the word within the document against how often it occurs across 
all texts [14]. 
• Term Frequency (TF): The occurrence of a word ii in a given document dd, which 
indicates how often a specific word appears in a document. 
• Inverse Document Frequency (IDF): Measures the word's relevance across the 
entire corpus by calculating the logarithm of the ratio of the total number of documents in the 
corpus NN to the number of documents NiN_i that contain the word ii. This is used to 
calculate the word's significance. 
The mathematical formulation for TF-IDF is: 

TFIDF(i,d)=TF(i,d)×log⁡(NNi)TFIDF(i, d) = TF(i, d) \times \log 
\left(\frac{N}{N_i}\right) 

Where: 
• f(i,d)f(i, d) is the frequency of the word ii in document dd. 
• NN is the total number of documents in the corpus. 
• NiN_i is the number of documents that include the word ii. 

By applying the TF-IDF method, the term frequency is multiplied by the inverse 
document frequency to highlight words that are specific to a document and reduce the 
influence of common words across the corpus. This approach ensures that words that appear 
frequently in a document but are rare across the corpus are given higher importance in the 
feature matrix. The TF-IDF method enables the system to emphasize unique words in each 
document while reducing the weight of generic terms that appear frequently across the entire 
corpus. 

Table 1. Classification of Medical Imaging Based on Compound Score 

 Compound Score Class 

Abdomen computed tomography like 
cholecystocutan fistula track 

0.3612 Positive 

axial mri coron view 
coron plain computed tomography 
images show multiple large tumor 
masses edge enhanced inside the 
abdomen cavity liver 

0 
-0.3818 

Neutral 
Negative 

TF-IDF (i, d ) = f (𝑖 ,d) ⋅ log (N   /  𝑛𝑖)…………………. (1) 

Machine Learning Models: In this study, we utilized three machine learning (ML) models: 
Logistic Regression (LR), Decision Tree (DT), and Naïve Bayes (NB). These models were 
chosen for their proven effectiveness in text data analysis and sentiment classification tasks. 
Algorithm 1: Logistic Regression (LR) was used in this study because the response variable 
was binary (true or false). LR is a type of generalized linear model (GLM) that is particularly 
popular in medical research due to its interpretability. It reports odds rather than risks, making 
the outcomes easier to understand. LR is simple and applicable in clinical settings. The logistic 
regression model is expressed by the logit function, as shown in Equation 2: 

Logit(p)=log⁡(p1−p)=β0+β1X1+β2X2+⋯+βnXn\text{Logit}(p) = \log \left(\frac{p}{1-
p}\right) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \cdots + \beta_n 

X_nLogit(p)=log(1−pp)=β0+β1X1+β2X2+⋯+βnXn 
Where: 
• ppp is the probability of the event occurring. 
• β0\beta_0β0 is the intercept. 
• β1,β2,…,βn\beta_1, \beta_2, \dots, \beta_nβ1,β2,…,βn are the coefficients of the 
predictor variables X1,X2,…,XnX_1, X_2, \dots, X_nX1,X2,…,Xn. 

𝑙𝑜(𝑝) = 𝑙𝑛 (p/1-p) =𝖺 +𝛽𝑥……………(2) 
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In logistic regression, ppp represents the probability of success at a given value of xxx. 
The rate of change in ppp is determined by the coefficient β\betaβ. 
• When β>0\beta > 0β>0, ppp increases as xxx grows larger. 
• When β<0\beta < 0β<0, ppp decreases as xxx increases. 

The value of ppp when β=0\beta = 0β=0 is represented as aaa, which is the baseline 
probability of success, i.e., the probability of success when there is no influence from the 
predictors (i.e., when x=0x = 0x=0). 
This relationship can be expressed as: 

p=11+e−(β0+β1x)p = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x)}}p=1+e−(β0+β1x)1 
Where: 
• ppp is the probability of success. 
• β0\beta_0β0 is the intercept (value of ppp when x=0x = 0x=0). 
• β1\beta_1β1 is the coefficient for the predictor xxx. 

 
Figure 4. Logistic Regression Work 

Algorithm 2: Decision Trees (DT) are widely used in predictive analytics due to their 
simplicity and effectiveness. They are powerful classifiers that work by splitting the data into 
subsets based on decision rules. The rules are represented in a tree-like structure, where each 
node corresponds to a decision point, and the leaf nodes represent the outcomes. These 
outcomes could be numerical values for regression tasks or class labels for classification tasks. 

The main advantage of Decision Trees is their interpretability. The tree structure can 
be easily converted into understandable IF-THEN rules, making them accessible to non-
technical stakeholders. The algorithm recursively divides the data into smaller subsets based 
on the most important features until it reaches the leaf nodes, at which point predictions are 
made. Each internal node in the tree represents a test or decision based on a specific feature, 
and the tree structure is recursive, enabling the model to learn complex patterns from the data. 
Algorithm 3: Naïve Bayes (NB) is a probabilistic classifier based on Bayes' Theorem, a 
fundamental concept in probability theory. The core idea behind Naïve Bayes is the 
assumption of independence between the features, which simplifies the computation of 
conditional probabilities. Bayes' Theorem is used to "invert" conditional probabilities, allowing 
the model to update the probability of a class given the observed features. 
Bayes' Theorem is expressed by the following formula: 

P(C∣X)=P(X∣C)P(C)P(X)P(C | X) = \frac{P(X | C) P(C)}{P(X)}P(C∣X)=P(X)P(X∣C)P(C) 
Where: 

• P(C∣X)P(C | X)P(C∣X) is the posterior probability of class CCC given the features 
XXX. 

• P(X∣C)P(X | C)P(X∣C) is the likelihood of observing the features XXX given class 
CCC. 
• P(C)P(C)P(C) is the prior probability of class CCC. 
• P(X)P(X)P(X) is the probability of observing the features XXX, which serves as a 
normalizing constant. 
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The "naïve" assumption is that the features X1,X2,…,XnX_1, X_2, \dots, X_nX1,X2
,…,Xn are independent given the class CCC. This simplifies the computation of the likelihood 

P(X∣C)P(X | C)P(X∣C) as: 

P(X∣C)=P(X1∣C)P(X2∣C)…P(Xn∣C)P(X | C) = P(X_1 | C) P(X_2 | C) \dots P(X_n | 

C)P(X∣C)=P(X1∣C)P(X2∣C)…P(Xn∣C) 
This simplification makes Naïve Bayes efficient and effective, particularly for large 

datasets and text classification tasks. 
P(X/Y) = P (X and Y)/P(X)…………………(3) 

Result and Comparison: 
The classification and evaluation process in this study involved using a confusion 

matrix to assess the performance of machine learning models. Below is a summary of the 
confusion matrix components and how they were used for evaluation: 
Confusion Matrix Categories: 
• True Negative (TN): Correctly predicted Negative cases. 
• True Positive (TP): Correctly predicted Positive cases. 
• False Positive (FP): Negative cases incorrectly predicted as Positive. 
• False Negative (FN): Positive cases incorrectly predicted as Negative. 
Evaluation Metrics: 
• Accuracy: Measures overall correctness of the model. 
Accuracy=TP+TNTP+TN+FP+FN\text {Accuracy} = \frac {TP + TN} {TP + TN + FP 
+ FN} Accuracy=TP+TN+FP+FNTP+TN  
• Precision: Measures how many of the predicted positive cases are actually positive. 
Precision=TPTP+FP\text {Precision} = \frac {TP} {TP + FP} Precision=TP+FPTP  
• Recall (Sensitivity): Measures how many of the actual positive cases were correctly 
identified. 
Recall=TPTP+FN\text {Recall} = \frac {TP} {TP + FN} Recall=TP+FNTP  
• F1 Score: The harmonic means of Precision and Recall, offering a balance between 
the two. 
F1 Score=2×Precision×RecallPrecision+Recall\text {F1 Score} = 2 \times \frac {Precision 
\times Recall} {Precision + Recall} F1 Score=2×Precision+RecallPrecision×Recall  
Results Summary for Logistic Regression: 
• Accuracy: 91%, showing strong performance in overall classification. 
• Negative Class: The model excels in identifying Negative cases with 96% precision 
but struggles with recall (74%), meaning some Negative cases are missed. 
• Positive Class: The model shows high precision (92%) but lower recall (64%), 
indicating difficulty detecting Positive cases. 
• Neutral Class: The model performs excellently with 90% precision and 99% recall 
due to its large sample size, making it easier for the model to identify. 
• Macro Average: Precision is 92%, but recall drops to 79%, indicating issues with 
minority class detection. 
• Weighted Average: Matches the overall accuracy of the model, highlighting the 
dominance of the Neutral class. 

This evaluation demonstrates the model's strength in predicting Neutral cases and a 
need for improvement in detecting Positive cases, especially in terms of recall. 

Table 2. LR Classification Report 

 Precision Recall F1 Score Support 95% CI 

Negative 0.96 0.74 0.83 553 - 

Neutral 0.90 0.99 0.94 2305 - 

Positive 0.92 0.64 0.75 414 - 
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Accuracy - - 0.91 3272 - 

Macro Average 0.92 0.79 0.84 3272 - 

LR Confidence Interval - - - - (89%, 91%) 

Weighted Average 0.91 0.91 0.90 3272 1 

The Decision Tree model evaluation reveals several key insights: 
Key Points: 
• Overall Accuracy: 76% – driven mainly by the strong performance in the Neutral 
class. 
Class-wise Performance: 
• Neutral Class: 
o Precision: 75% 
o Recall: 100% 
o F1 Score: 0.85 
o Interpretation: The model excels at identifying Neutral cases with perfect recall, 
ensuring all Neutral cases are detected. The slight drop in precision suggests some 
misclassification of other classes as Neutral. 
• Negative Class: 
o Recall: 39% 
o F1 Score: 0.54 
o Interpretation: The model has significant difficulty detecting Negative cases. It 
misses many Negative instances (low recall), leading to a low F1 score, which reflects poor 
overall performance in this class. 
• Positive Class: 
o Precision, Recall, F1 Score: Zero for all 
o Interpretation: The model completely fails to detect Positive cases, assigning all such 
instances to other classes, likely Neutral. This is a critical failure for the model. 
Macro and Weighted Averages: 
• Weighted Average: 
o Precision: 0.67 
o Recall: 0.76 
o F1 Score: 0.68 
o Interpretation: The weighted average shows the model's better performance on the 
Neutral class, which holds the largest proportion of the dataset. 
• Macro Average: 
o Precision: 0.55 
o Recall: 0.46 
o F1 Score: 0.47 
o Interpretation: The macro averages highlight the model's poor overall performance 
across all classes, especially in detecting Negative and Positive cases. 
Description: The Decision Tree model's strength lies in identifying Neutral instances, but it 
faces significant challenges in detecting Negative and Positive cases. The imbalance in the 
dataset and poor performance on minority classes (Negative and Positive) contribute to the 
discrepancy between weighted and macro averages. The model's inability to detect Positive 
occurrences is a major shortcoming. 

Table 1. DT Classification Report 

 Precision Recall F1 Score Support 95% CI 

Negative 0.90 0.39 0.54 535 - 

Neutral 0.75 1.0 0.85 2271 - 

Positive 0.0 0.0 0.0 466 - 
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Accuracy - - 0.76 3272 - 

Macro Average 0.55 0.46 0.47 3272 - 

DT Confidence Interval - - - - (77%,79%) 

Weighted Average 0.67 0.76 0.68 3272 - 

The Naïve Bayes classifier evaluation highlights the following findings: 
Key Points: 
• Overall Accuracy: 71%, driven by the model's strong performance in classifying 
Neutral cases. 
Class-wise Performance: 
• Neutral Class: 
o Precision: 71% 
o Recall: 100% 
o F1 Score: 0.83 
o Interpretation: The model performs very well in identifying Neutral cases, with 
perfect recall (detecting all Neutral instances). Precision is slightly lower, suggesting some 
misclassification of non-Neutral cases as Neutral. 
• Negative Class: 
o Precision: 75% 
o Recall: 2% 
o F1 Score: 0.05 
o Interpretation: The model struggles drastically with the Negative class, with very 
low recall indicating that it misses almost all Negative instances. Despite high precision, the 
overall F1 score remains poor, reflecting the inability to detect Negative cases. 
• Positive Class: 
o Precision: 100% 
o Recall: 10% 
o F1 Score: 0.02 
o Interpretation: The model has perfect precision for Positive cases, meaning it 
correctly classifies every Positive instance it detects. However, the low recall (only detecting 
10% of Positive instances) results in a very poor F1 score, indicating significant limitations in 
detecting Positive cases. 
Macro and Weighted Averages: 
• Macro Average: 
o Precision: 0.82 
o Recall: 0.34 
o F1 Score: 0.30 
o Interpretation: The macro averages highlight the disparity in performance across 
the different classes. Despite good precision for some classes, the recall and F1 scores are 
quite low, especially for Negative and Positive classes. 
• Weighted Average: 
o Precision: 0.76 
o Recall: 0.71 
o F1 Score: 0.60 
o Interpretation: The weighted average, influenced by the dominant Neutral class, 
shows better performance than the macro average, but still reflects the imbalance in class 
prediction performance. 
Description: The Naïve Bayes classifier excels in identifying Neutral instances but fails to 
perform well in detecting Negative and Positive cases. The Neutral class dominates the 
model's predictions, which leads to significant disparities in performance across classes. The 
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imbalance in recall and F1 scores for the Negative and Positive classes is a critical issue, 
indicating that the model struggles to generalize to these minority classes. 

Table 2. NB Classification Report 

 Precision Recall F1 Score Support 95% CI 

Negative 0.75 0.39 0.54 535 - 

Neutral 0.71 1.0 0.83 1156 - 

Positive 1.0 0.1 0.02 238 - 

Accuracy - - 0.71 1636 - 

Macro Average 0.82 0.34 0.30 1636 - 

NB Confidence Interval - - - - (70%,74%) 

Weighted Average 0.76 0.71 0.60 1636 - 

The performance comparison between the three models reveals some significant differences: 
Logistic Regression (LR): 
• Accuracy: 91% 
• Strengths: The LR model is robust across all classes, providing balanced precision, 
recall, and F1 scores. It excels at classifying both the Neutral and the minority classes (Negative 
and Positive), though with some trade-offs: 
o Neutral Class: Excellent precision and recall. 
o Negative Class: High precision but lower recall. 
o Positive Class: High precision but lower recall. 
• Conclusion: LR is the most balanced model in this study, providing reliable results 
across all classes, especially with Neutral cases, while slightly underperforming in recall for 
Negative and Positive classes. 
Decision Tree (DT): 
• Accuracy: 76% 
• Strengths: The DT model performs very well for the Neutral class, achieving 100% 
recall and an F1-score of 0.85. However: 
o Neutral Class: Strong performance with 100% recall and good precision. 
o Negative Class: Struggles with only 39% recall and F1-score of 0.54, indicating 
poor detection of Negative cases. 
o Positive Class: Completely fails to detect Positive cases, with all metrics (precision, 
recall, F1) at zero. 
Description: The Decision Tree model is heavily biased towards the Neutral class, making it 
less effective for the Negative and Positive categories. While it's very effective with the Neutral 
class, it struggles to identify Negative and Positive sentiment accurately. 
Naïve Bayes (NB): 
• Accuracy: 71% 
• Strengths: The NB classifier is highly biased towards the Neutral class, similar to 
the Decision Tree: 
o Neutral Class: Strong performance with 100% recall and F1-score of 0.83. 
o Negative Class: Poor performance with an F1-score of 0.05, 2% recall, and 75% 
precision, showing the model's struggle to detect Negative cases. 
o Positive Class: The Precision for Positive is 100%, but it fails at recall (10%) and 
F1-score (0.02), making it ineffective for Positive class predictions. 
Description: The Naïve Bayes classifier is also biased towards the Neutral class, with poor 
recall and F1-score for both Negative and Positive sentiment. Its extreme bias towards Neutral 
results in a lack of generalization for other sentiment classes. 
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Summary: 
• Best Model: Logistic Regression provides the most balanced and reliable 
performance across all classes, making it the best model for this task. 
• Weakest Models: Both Decision Tree and Naïve Bayes show strong bias towards 
Neutral, struggling to detect Negative and Positive sentiment effectively, especially in the case 
of Naïve Bayes, which has extreme performance disparity across the classes. 
• Recommendation: While Logistic Regression performs well overall, further 
refinement or adjustment of class weights in Decision Tree and Naïve Bayes could improve 
their handling of the minority classes. 
Discussion: 

This study assessed the performance of logistic regression, decision trees, and Naive 
Bayes algorithms for sentiment analysis on the ROCO dataset, a medically annotated caption 
corpus. While all three models demonstrated functional capability in processing and classifying 
sentiment from medical text, their performance varies in terms of accuracy, computational 
complexity, and interpretability. These findings not only support prior research but also extend 
the conversation by applying these methods specifically to a clinical multimodal dataset. 
Logistic regression, known for its robustness in handling linearly separable data, performed 
effectively in this context. Previous research, such as the work by Yadav and Vishwakarma 
(2020), emphasized its efficiency in binary sentiment classification, especially in domains where 
textual cues are subtle and require clear boundary definitions. Our results confirm this trend, 
indicating that logistic regression is a strong baseline for classifying sentiment in relatively 
structured medical captions. 

Naive Bayes, despite its assumption of feature independence, provided comparable 
performance, aligning with prior findings by Singh et al. (2018), who reported its utility in 
biomedical text mining where simplicity and speed are favored over complexity. However, in 
this study, its performance was slightly weaker than logistic regression, particularly due to the 
nuanced nature of medical language where word dependencies (e.g., "no evidence of disease") 
significantly influence sentiment orientation. 
Decision trees excelled in model interpretability, offering clear rule-based pathways for 
sentiment determination. This supports the argument made by Holzinger et al. (2017), who 
emphasized the necessity of explainable models in healthcare AI to promote trust among 
clinicians. Nonetheless, our findings also reflect the known limitation of decision trees: 
susceptibility to overfitting, particularly in smaller datasets or when the data contains noise — 
both of which are common in medical corpora. 

Compared to more recent approaches such as support vector machines (SVMs), 
random forests, or transformer-based models like BERT, which have shown higher accuracy 
in general sentiment tasks (e.g., Lee et al., 2020), the models used in this study are less 
sophisticated but still relevant due to their interpretability and low computational cost. Unlike 
deep learning models, which require extensive training and tuning, traditional models like 
those studied here are more accessible for integration in constrained clinical environments. 

Importantly, this study contributes to a growing body of work advocating for the 
inclusion of sentiment and subjective interpretation in medical texts — a direction less 
explored than entity recognition or document classification. It extends prior findings (e.g., 
Denecke, 2015) by demonstrating that even relatively simple models can extract meaningful 
sentiment from multimodal data, thus supporting improved patient care, emotional 
assessment, and communication in healthcare. 
Conclusion: 

This study evaluated and compared the performance of logistic regression, decision 
trees, and Naive Bayes algorithms for sentiment analysis in the multimodal medical domain 
using the ROCO dataset. The results reveal that each algorithm offers distinct advantages and 
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trade-offs, with logistic regression excelling in linear modeling, Naive Bayes offering 
computational simplicity, and decision trees providing interpretability. 

By applying these models to the sentiment classification of image captions in a clinical 
context, this study bridges a research gap in understanding the subjective and emotional 
aspects of medical text, an area often overlooked in AI-driven healthcare research. The 
findings suggest that even conventional machine learning models, when properly tuned and 
evaluated, can yield actionable insights in the healthcare domain. 

Future research could explore hybrid and deep learning approaches to further enhance 
accuracy, adaptability, and contextual understanding. Moreover, integrating multimodal fusion 
techniques and emotional intelligence in AI systems may play a pivotal role in improving 
patient-centered care. Ultimately, this research supports the integration of sentiment analysis 
into clinical decision-making, paving the way for more empathetic, informed, and personalized 
healthcare services. 
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he CT scan provides useful information but has limitations in detecting subtle patterns. 
Machine learning models enhance cancer detection by extracting features, reducing 
errors, and enabling early-stage diagnosis. Unlike earlier studies that focused on single 

models, this paper compares three models: CNN, RF, and SVM. A total of 995 CT images 
were resized to 128x128 pixels, representing both healthy individuals and patients across the 
full range of lung cancer types. Using a feature hierarchy, CNN achieved a 96% validation 
accuracy, and RF reached 95%, showing robustness. However, SVM with an RBF kernel 
optimization outperformed the others, achieving over 98% accuracy with superior alignment 
of hyperplanes, particularly in detecting fine malignant patterns. The key metrics used in this 
study were sensitivity, specificity, and AUC, all of which showed a low false positive rate for 
early lung cancer detection, bridging theoretical accuracy and clinical practicality. Data volume 
and processing resources remain significant challenges for applying machine learning in early 
lung cancer diagnosis. To address these issues, we suggest hybrid architectures (e.g., CNN-
SVM) that combine hierarchical feature learning and hyperplane optimization. These findings 
could pave the way for AI-based clinical approaches, improving patient diagnosis and 
treatment. 
Keywords: Lung Cancer Detection, Machine Learning Models, Ct Scan Image Analysis, 
Diagnostic Accuracy, Confusion Matrix 
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Introduction: 
Background: 

Medical imaging has transformed healthcare by enabling the diagnosis, monitoring, 
and treatment of various health conditions without surgery. Technologies like CT scans, MRIs, 
and X-rays have become more advanced, leading to more accurate medical diagnoses. Lung 
cancer remains one of the leading causes of cancer-related deaths worldwide, but early and 
precise detection through imaging greatly improves outcomes. However, despite these 
advancements, interpreting medical images manually still takes time and can lead to errors due 
to human limitations [1]. 

The approach to analyzing medical imaging data has been revolutionized. Machine 
learning, a branch of artificial intelligence, handles large volumes of data, identifies subtle 
patterns, and makes accurate predictions through its powerful processing capabilities and 
intelligent algorithms [2]. 

Deep learning, a subset of machine learning, is especially effective in analyzing images. 
Its advanced methods have proven highly useful in identifying diseases, particularly lung 
cancer, turning machine learning into a powerful tool for medical diagnostics [3], [4]. 
Objectives and Novelty: 

The main goals of this study are three: (1) to compare how well three machine learning 
models—CNN, RF, and SVM—can detect lung cancer from CT scans; (2) to enhance the 
methods used to identify features and classify results to help with early diagnosis and lower 
false positives; and (3) to carefully evaluate real-world issues (like dataset size and computing 
needs) when using AI-based diagnostics in hospitals. 

This research offers three key contributions: First, unlike previous studies focusing on 
single-model approaches, we demonstrate that the SVM with RBF kernel outperforms CNN 
and RF in accuracy (98% compared to 96% and 95%, respectively), particularly in identifying 
subtle malignant patterns. Second, we confirm the clinical relevance of these models by 
evaluating sensitivity (for early detection) and specificity (for minimizing false positives), 
helping bridge the gap between theoretical performance and practical use. Third, we advocate 
for hybrid approaches (e.g., CNN-SVM) to combine hierarchical feature learning with 
hyperplane optimization—an underexplored direction in current literature. 
Importance of AI in Clinical Settings: 

The scalability of artificial intelligence (AI) models allows them to be used across a 
wide range of medical institutions, including those with limited resources, making quality 
diagnoses more accessible [5]. The integration of AI into clinical workflows has significantly 
improved both diagnostic and therapeutic processes—particularly in lung cancer, where early 
detection is vital for effective treatment. AI brings major advantages by increasing the accuracy 
and efficiency of medical procedures. One key benefit is its ability to detect hidden issues, such 
as lung nodules, by analyzing chest X-rays (CXRs) [6], [7]. These early detections lead to 
quicker treatments and better patient outcomes. 

AI models also support real-time analysis, especially during surgery, enabling surgeons 
to make better decisions throughout the operation and enhancing surgical precision. In feature 
extraction, AI reduces human error and provides consistent, repeatable results—essential for 
reliable diagnosis. By automating routine diagnostic tasks, AI not only eases the workload on 
healthcare workers but also cuts costs and frees up resources for more advanced treatments 
[8], [9]. 
Deep Learning in Medical Imaging: 

Deep learning has brought a revolution to the field of medical imaging, showing 
remarkable accuracy in disease detection and diagnosis. Convolutional Neural Networks 
(CNNs), a type of deep learning model, have proven highly effective for analyzing 2D medical 
images such as CT scans and X-rays. Unlike traditional machine learning models that rely 
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heavily on hand-crafted features, CNNs automatically extract hierarchical features from raw 
image data. This reduces the need for manual feature engineering and simplifies the diagnostic 
process. 

CNNs have shown strong performance in detecting lung cancer, as they excel at 
identifying complex patterns in medical images, making them valuable for distinguishing 
between malignant and benign tumors. Advanced CNN architectures like ResNet and 
Efficient Net have further improved performance, expanding their use across a wide range of 
medical imaging applications [10], [11]. 

 
Figure 1. Flow chart of the Machine 

The effectiveness of deep learning is evident in its growing use for delivering more 
accurate and timely medical diagnoses. The future of deep learning in transforming medical 
imaging lies in its ability to handle large datasets and adapt to the changing needs of healthcare. 
The following section presents a comparative analysis of machine learning models, 
highlighting the growing impact of AI in lung cancer diagnosis (as shown in Figure 1) [12], 
[13]. 
Methodology: 
Dataset: 

The dataset used in this study consists of 995 CT scan images obtained from Kaggle 
[14]. These images were collected over three months and represent a diverse group, including 
both healthy individuals and lung cancer patients at different stages. Each image was 
preprocessed and resized to 128 × 128 pixels (as shown in Figure 2) to standardize the input 
size and ensure compatibility with machine learning models [15]. To enhance variability and 
improve model generalization, data augmentation techniques such as rotation, flipping, and 
zooming were applied. Additional preprocessing steps for improving image quality and 
consistency included noise reduction using Butterworth filtering and normalization [16], [17]. 

 

Figure 2. One set of CT scan images (samples) from the training dataset 
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Machine Learning Models: 
Convolutional Neural Network (CNN): 

  

(a) (b) 

Figure 3. (a) CNN Training and validation accuracy, (b) CNN Training and validation loss 
As shown in Figure 3 (a) and (b), Convolutional Neural Networks (CNNs) have 

proven highly effective for image processing tasks. In this study, the CNN architecture 
consisted of multiple convolutional layers with ReLU activation functions, followed by max-
pooling layers to reduce dimensionality [10]. The fully connected layers then used the extracted 
features to classify images as malignant or non-cancerous. 

Figure 4 illustrates the CNN architecture used for image classification. It includes 
convolutional layers with 32, 64, and 128 filters to extract image features, along with 
MaxPooling layers to downsample the feature maps. A flattened layer converts the 3D features 
into a 1D vector, which is then passed to a Dense layer. Dropout is applied to prevent 
overfitting. The final output layer uses the softmax function to classify images into three 
probability classes. The model was trained using categorical cross-entropy loss and optimized 
with the Adam optimizer over 10 epochs. Dropout regularization helped prevent overfitting, 
and the model achieved a validation accuracy of 96% during training [18]. 
Random Forest (RF): 

Random Forest (RF), an ensemble machine learning method, was selected for its 
adaptability and ability to handle complex data patterns. Key hyperparameters—such as tree 
depth (optimized to 15), number of trees (n_estimators = 200), and minimum samples per 
leaf (set to 5)—were fine-tuned using grid search cross-validation to balance the bias-variance 
trade-off. During training, the RF model built multiple decision trees, each using a randomly 
selected subset of features. The final classification was based on a majority vote from all trees 
[19]. This approach proved robust against noise and resistant to overfitting, achieving 95% 
accuracy as shown in Figure 5 (a) and (b). Additionally, the model provided feature importance 
rankings, highlighting the most influential image features for lung cancer diagnosis [20]. 

 
Figure 4. CNN architecture for image classification 
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(a) (b) 

Figure 5. (a) Random Forest accuracy, (b) Random Forest loss 
Support Vector Machine (SVM): 

The Support Vector Machine (SVM) model achieved the highest accuracy—98%—as 
shown in Figures 6 (a) and (b). Hyperparameter tuning involved selecting the optimal kernel 
(RBF vs. linear or polynomial, validated through 5-fold cross-validation) and adjusting the 
regularization parameter (C = 1.0) to maximize margin separation. The SVM used a Radial 
Basis Function (RBF) kernel to transform the input data into a high-dimensional space, 
allowing effective separation of classes using a maximum-margin hyperplane. 

To optimize performance, grid search and cross-validation were used to fine-tune the 
kernel parameters and regularization coefficient, thereby improving the model’s generalization 
ability [21]. Despite its higher computational cost, the SVM model accurately classified CT 
scans as malignant or non-cancerous [22]. 

  
(a) (b) 

Figure 6. (a) Support Vector Machine accuracy, (b) Support Vector Machine loss 
Evaluation Metrics: 

Model performance was evaluated using key metrics, including accuracy, sensitivity, 
specificity, and area under the curve (AUC). Sensitivity measures the model’s ability to 
correctly identify positive cases, which is especially important for early-stage cancer detection. 
Specificity reflects the model’s ability to correctly identify non-cancerous cases and minimize 
false positives [23]. 

The AUC provided an overall performance measure across different threshold levels. 
Additionally, confusion matrices were used to illustrate the distribution of true positives, true 
negatives, false positives, and false negatives for each model [24]. 
Training and Validation: 

The dataset was divided into three sets: training, validation, and test, with a 70:15:15 
split. The CNN models were trained using mini-batch gradient descent, while the RF and SVM 
models utilized stratified k-fold cross-validation to ensure balanced class representation. To 
enhance the robustness of the training set, data augmentation techniques, such as random 
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rotations and flips, were applied. Model training was performed on a high-performance 
computer system with GPUs, significantly reducing computation time. 
Comparison of Techniques: 

 
Figure 7. Confusion matrix of Random Forest Model 

 
Figure 8. Confusion matrix of CNN Model 

The analysis highlighted the strengths and weaknesses of each model. CNN excelled 
at automatic feature extraction, making it scalable to larger datasets. RF provided insights into 
feature importance, enhancing interpretability, though it slightly reduced accuracy. SVM, with 
its ability to create complex decision boundaries, achieved the highest accuracy, but at a higher 
computational cost. The complementary nature of these models underscores the potential of 
ensemble methods to improve diagnostic accuracy. This study uses a variety of machine 
learning algorithms to demonstrate the feasibility of automated lung cancer detection, 
emphasizing the importance of tailored approaches to address specific diagnostic challenges. 

 
Figure 7. Confusion matrix of the SVM Model 
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Results and Discussion: 
Comparative Analysis of Model Performance: 

This study utilized CT scan images to assess the effectiveness of three machine 
learning models—CNN, RF, and SVM—in detecting lung cancer. The results presented in the 
table below highlight the advantages and limitations of each approach. 

Table 1 Performance comparison of ML models used 

Model Accuracy Standard Deviation 95% Confidence Interval (CI) 

CNN 96 ±0.8 [95.2–96.8] 

Random Forest 95 ±1.2 [93.8–96.2] 

SVM 98 ±0.5 [97.5–98.5] 

The SVM model achieved the highest accuracy (98%, SD = ±0.5, 95% CI [97.5–98.5]), 
demonstrating its ability to differentiate between complex classes using a maximum-margin 
hyperplane. The narrow confidence interval underscores its reliability in clinical applications. 
The model's key strength was in early cancer detection, while its high specificity helped 
minimize false positive diagnoses. The CNN model, on the other hand, showed a very high 
sensitivity for early-stage lung cancer (96% accuracy, SD = ±0.8, 95% CI [95.2–96.8]). The 
SVM model also had the highest specificity, resulting in the fewest false positives and the 
lowest diagnostic errors overall. The Random Forest model provided a balanced performance 
but was slightly lower in both sensitivity (95%, SD = ±1.2, 95% CI [93.8–96.2]) and specificity 
compared to the CNN and SVM models. 
Performance Metrics: 

In addition to accuracy, metrics like sensitivity, specificity, and AUC were also analyzed 
for model evaluation. To ensure transparency, variability measures (SD and CI) were included 
for all metrics (see Table 1). Sensitivity was identified as the key factor for early cancer 
detection, while specificity played a crucial role in reducing false-positive diagnoses. The CNN 
model demonstrated very high sensitivity for early-stage lung cancer and also performed 
strongly in terms of AUC. 

The SVM model had the highest specificity, resulting in the fewest false positives and 
the lowest diagnostic errors overall. The Random Forest model provided a balanced 
performance but was slightly lower in both sensitivity and specificity compared to CNN and 
SVM. The confusion matrices further revealed that SVM achieved the best precision and recall 
scores, reinforcing its reliability in both accurate detection and minimizing false positives. 
Challenges and Limitations: 
1. Dataset Size: The dataset consists of 995 images. While diverse, its size is too small to 
effectively train highly complex models. Increasing the dataset size is necessary for better 
generalizability and to reduce overfitting. The reported confidence intervals (e.g., SVMs [97.5–
98.5]) help address this by quantifying uncertainty [15]. 
2. Computational Resources: Training deep learning models, such as CNNs, typically 
requires significant computational power, which may be challenging in resource-constrained 
settings. The SVM model’s lower standard deviation (±0.5) and greater computational 
efficiency make it more practical for deployment in such environments [11]. 
3. Variability in Medical Imaging: Variations in equipment and imaging protocols across 
different institutions introduce variability, which can impact the performance of a given model 
[16], [20]. 
4. Model Interpretability: Both CNN and SVM models demonstrated high diagnostic 
accuracy. The confidence intervals (e.g., CNN’s [95.2–96.8]) provide clinicians with a statistical 
safety margin for decision-making. However, since these models are black-box techniques, 
their decision-making process is not transparent, which can be a significant limitation in 
clinical settings, where interpretability is crucial for diagnosing and managing diseases [23], 
[24]. 
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Discussion: 
The study highlights how machine learning has revolutionized lung cancer diagnostics. 

The SVM model delivers competitive performance with high accuracy (98%, CI [97.5–98.5]) 
and low variability (SD = ±0.5), making it reliable for clinical practice, particularly for highly 
accurate class-level task definitions. This aligns with Chen et al. (2022), who reported 96% 
accuracy for SVM in lung nodule classification using a similar RBF kernel. However, our 
model’s higher accuracy (98%) likely results from optimized hyperparameter tuning and a 
more diverse training dataset [25]. 

The CNN model achieves 96% accuracy, surpassing the 94.5% reported by [26] for 
3D CNNs in early-stage lung cancer detection. This improvement is likely due to our use of 
advanced preprocessing techniques to enhance CT scan contrast [27]. However, our results 
are marginally lower than the 97.2% achieved by [28] using hybrid CNN-Transformer 
architectures, suggesting potential for further architectural improvements [29]. 

For Random Forest, our model's 95% accuracy outperforms [30], which achieved 93% 
on a smaller dataset but falls short of the 96.8% reported by [31] using feature-engineered RF 
ensembles. This discrepancy underscores the impact of feature selection strategies on 
ensemble performance. 

A 2023 meta-analysis by [32], noted that SVM and CNN models in lung cancer 
detection typically achieve 94–97% accuracy. Our results (SVM: 98%, CNN: 96%) place us at 
the higher end of this range, likely due to rigorous cross-validation and dataset balancing [33]. 

Despite the high performance of these models, challenges such as computational 
demands and scalability must be addressed with efficient implementations [21]. The CNN's 
adaptability and scalability make it well-suited for real-time applications and integration into 
existing diagnostic workflows. Its ability to support large datasets and automate feature 
extraction underscores the scalability of AI-based diagnostics across healthcare systems [10]. 

Although Random Forest is slightly less accurate, it offers valuable insights into feature 
importance, helping clinicians understand which parts of images contribute most to 
predictions. Our RF model’s feature importance rankings align with [34], who identified 
texture and speculation as key predictors in CT-based diagnosis [35]. This makes RF useful in 
validating AI models for clinical practice and emphasizes the need for combining multiple 
models for improved diagnostic accuracy [19]. 

To advance AI in lung cancer diagnosis, hybrid models that combine CNN, SVM, and 
RF should be explored for their complementary strengths. However, addressing dataset 
variability issues and computational requirements remains crucial for making AI models more 
practical and widely applicable [15], [11]. 
Future Directions: 

Hybrid models hold great promise for improving lung cancer diagnosis by combining 
the strengths of CNNs, SVMs, and Random Forests. CNNs excel at feature extraction [10], 
SVMs are known for their high classification accuracy [21], and Random Forests provide 
valuable interpretability [36]. By integrating these strengths, hybrid systems can be both 
efficient and clinically informative. 

The use of hybrid quantum architectures could also address scaling and computational 
challenges, providing solutions to enhance performance [37]. Additionally, data augmentation 
techniques are crucial for developing more reliable AI models, as they increase dataset 
variability and help with model training [17]. Future studies should focus on large, 
heterogeneous datasets that include diverse imaging modalities and populations. Generative 
Adversarial Networks (GANs), for instance, can generate synthetic data to further enhance 
model variability [38]. 

Standardizing and accelerating AI development through shared collaborative 
resources will play a vital role in advancing AI applications [26]. Real-time AI-based in-vivo 
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diagnostics could revolutionize clinical workflows, enabling in-line analysis of imaging data 
[28]. Lightweight models deployed on edge devices can assist radiologists by highlighting 
critical areas or prioritizing urgent cases [30]. 

The adoption of AI in healthcare will be facilitated by improved usability and the 
integration of explainable AI (XAI) methods [32], which will help build trust among clinicians. 
Lastly, ethical considerations, such as data privacy, algorithmic bias, and regulatory 
compliance, must be addressed to ensure responsible AI use in healthcare. Ongoing 
collaboration among technologists, clinicians, and policymakers will be essential in developing 
trustworthy and ethically sound AI systems [34]. 
Conclusion: 

This study demonstrates the potential of machine learning algorithms in the 
localization of lung cancer from CT scan datasets. The comparison of CNN, SVM, and RF 
models highlights the unique strengths of each. The SVM model achieved the highest 
performance accuracy (98%), while the CNN model excelled in scalability and efficiency with 
large datasets. These models reveal complementary functions, with the possibility of 
combining them through ensemble methods to further enhance diagnostic accuracy. 

The paper underscores the importance and potential of automated lung cancer 
diagnosis, focusing on the challenges these diagnostic methods address. By leveraging the 
inherent strengths of each algorithm, future advancements in machine learning could 
significantly improve the accuracy and reliability of lung cancer diagnosis, ultimately leading 
to better patient outcomes and more effective healthcare solutions. 
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