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Introduction/ Importance of Study: Bug repository mining is a crucial research area in 
software engineering, analyzing software change trends, defect prediction, and evolution. It 
involves developing methods and tools for mining repositories, and providing essential data for 
bug management. 
Objective: The goal of this study is to analyze and synthesize recent trends in mining software 
bug repositories, providing valuable insights for future research and practical bug management. 
Novelty statement: Our research contributes novel insights into mining software repository 
techniques and approaches employed in specific tasks such as bug localization, triaging, and 
prediction, along with their limitations and possible future trends. 
Material and Method: This study presents a comprehensive survey that categorizes and 
synthesizes the current research within this field. This categorization is derived from an in-depth 
review of studies conducted over the past fifteen years, from 2010 to 2024. The survey is 
organized around three key dimensions: the test systems employed in bug repositories, the 
methodologies commonly used in this area of research, and the prevailing trends shaping the 
field. 
Results and Discussion: Our results highlighted the significance of artificial intelligence and 
machine learning integration in bug repository mining; which has revolutionized the software 
development process by enhancing the classification, prediction, and vulnerability detection of 
bugs.  
Concluding Remarks: This survey aims to provide a clear and detailed understanding of the 
evolution of bug repository mining, offering valuable insights for the ongoing advancement of 
software engineering. 
Keywords: Mining Software Repositories, Bug Localization, Bug Classification, Bug 
Estimation, Bug Triaging 
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Introduction: 
Software repository mining involves the extraction of valuable information from the 

historical records of software development and evolution, which are stored in software 
repositories. This practice supports various software engineering activities, including code 
analysis, bug detection, program comprehension, and architecture recovery. Over recent years, 
software repository mining has emerged as a prominent research field, with substantial efforts 
directed toward advancing the methodologies and tools used in this domain. Software 
repositories are extensive databases that store detailed information about source code changes, 
bug reports, and other specifications related to software projects. Among these, bug repositories 
are particularly crucial as they house comprehensive details about software bugs. These 
repositories play an integral role in the bug management process, encompassing activities such 
as bug localization, prediction, triaging, and analysis. 

Researchers in software engineering have employed diverse techniques and approaches 
to explore and analyze critical information stored in bug repositories. This information is 
instrumental for software engineers and testers in the development and maintenance of projects. 
In this paper, we examined the latest research trends in mining software bug repositories, the 
techniques employed, and the limitations associated with these approaches. Our analysis focuses 
on studies published over the past fifteen years, from 2010 to 2024. 
Objective of Study: 

The goal of this survey is to analyze and synthesize recent trends in mining software bug 
repositories, providing valuable insights for future research and practical bug management. 
Novelty Statement: 

This paper introduces several novel contributions, including an exploration of recent trends 
in bug repository mining, an examination of commonly used test systems for analyzing bug 
repository data, a comprehensive review of MSR techniques and approaches employed in tasks 
such as bug localization, triaging, and prediction along with their limitations, and a discussion 
on potential future trends in bug repository mining. The paper is organized as follows: Material 
and methods used in this study are explained along with the categorization of active research 
areas in bug repository mining, then a detailed survey of research contributions is provided, 
followed by discussion on research limitations and future trends. It then presents the results and 
discussion. Finally, the paper concludes with a summary. 

Material And Methods: 
This study presents a comprehensive survey of research conducted over the last 15 years, 

focusing on the test systems employed in bug repositories, the methodologies commonly used 
in this area of research, and the prevailing trends shaping the field. 
Selection Criteria: 

This review includes over 100 research papers focused on bug repositories, with the 
majority being presented at the MSR conference between 2010 and 2024. To ensure a 
comprehensive review, we have also incorporated papers from other prominent journals and 
conferences, including ICCDA, ICSE, IACC, RTITC, CIS, IEEE, CSAC, and the IEEE 
Transactions on Knowledge and Data Engineering as these are reputed and the most influential 
venues in the field, possessing high impact in this area of research. 
Categorization of Active Research Areas: 

The field of mining bug repositories has seen significant contributions from researchers. 
An analysis of the literature reveals that from 2010 to 2017, research predominantly focused on 
proposing new techniques for bug classification and prediction. During this period, much of the 
work was centered around bug categorization. In contrast, the years 2018 to 2024 have seen a 
shift in focus towards bug localization, resolution, and triaging. A year-wise categorization of 
active research areas in bug repository mining is illustrated in Figure 1. 



                                       International Journal of Innovations in Science & Technology 

Aug 2024|Vol 6 | Issue 3                                                                       Page |1251 

 
Figure 1. Year-wise Active Research Areas of Mining Bug Repositories 

Before presenting a detailed and comprehensive survey based on these categories, a brief 
definition of a bug, along with its categorization, is provided below: A bug is an error, failure, 
fault, or flaw in a computer program that causes it to produce unexpected and incorrect results 
or behave unpredictably. 

• Bug Localization: The process of identifying and locating the precise position of a bug 
within the code. This is often a challenging, time-consuming, and costly task. 

• Bug Classification: The categorization of bugs based on specific properties, such as 
severity, type, or priority. 

• Bug Estimation: A technique for assessing the likelihood of a bug's existence, typically 
by analyzing bug reports. Bugs may sometimes be introduced due to code changes. 

• Bug Resolution: The process of fixing or eliminating bugs. 
• Bug Triaging: The process of reviewing and prioritizing bug reports, often handled by 

a bug tracker or trigger. It involves ensuring the quality of bug reports and assigning 
them to the appropriate developer for resolution. 

An explicit view of research methodology is described in Figure 2.   

 
Figure 2. Flow Diagram of Methodology. 

Comprehensive Survey: 
This section presents an extensive survey that categorizes and summarizes the active 

research areas in mining software bug repositories over the last fifteen years. 
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Bug Localization: 
Bug localization has been a significant focus in software repository mining, with several 

methodologies proposed to enhance bug-tracking systems. For instance, some researchers [1] 
[2] have explored innovative approaches, such as utilizing Stack Overflow’s game mechanisms 
to improve bug tracking. In [3], three distinct methodologies were introduced for constructing 
statistical regression models aimed at forecasting software flaws and development efforts. The 
study in [4] [5] delved into the question of whether faults in real software systems are localizable, 
identifying specific locations of Android bugs within the architectural layers of the system's 
infrastructure. Researchers [6] [7] have developed algorithms to automatically detect and locate 
bugs, proposing methods to rank buggy files. Conversely, a search-based methodology for 
detecting duplicate bugs at BlackBerry was created by the authors in [8]. The correlation between 
the stability, encapsulation, and popularity of libraries was examined in [7]. Meanwhile, [9] 
introduced a Query Reformulation (QR) framework for bug localization, offering an innovative 
approach to this challenge. 

Further advancements include the introduction of a novel approach in [10] that scores 
each file directly against the current bug report, potentially eliminating the need for past code 
and reports. The study in [11] discussed the application of a Non-Dominant Sorting Genetic 
Algorithm (NSGA-II) combined with text mining techniques, which outperformed 
conventional techniques in bug localization. A unique method for LTL specification mining-
based bug localization in RTL systems was proposed in [12], where fine-grained assertions are 
extracted from RTL design to localize faults detected during full-system simulations. In [13], the 
author examined three generations of bug localization methods, introducing SCOR, a new 
technique that enhances bug localization in code files by combining semantic word vectors with 
term-term ordering relationships. Bug localization in web-based systems, specifically through 
mining crash reports, was addressed in [14], assessing the performance of various standards and 
methods in classifying crash reports and locating problematic files. 

Text mining and genetic algorithms were discussed in [15] for bug localization, with the 
multi-objective optimization algorithm SPEA II enhancing the localization process. A graph-
based neural model called BLoco was proposed in [16] for automated bug localization, targeting 
buggy source code files for given bug reports. Lastly, [17] introduced a pseudo-Siamese network 
with semantic guidance for bug localization, leveraging the semantic production of code data to 
learn and identify bugs. A comprehensive empirical investigation was conducted in [18] to 
understand the challenges in localizing bugs within deep learning systems, with findings 
suggesting that the effectiveness of localization techniques varies with bug type. 
Bug Classification / Prediction: 

Significant work has been done in the area of bug classification and prediction. For 
instance, the model constructed in [19] distinguishes duplicate bug reports from non-duplicates, 
facilitating the extraction of similar bug reports. Some researchers [20] have built models to 
predict bug complexity, while others [21] explored the feasibility of mining by comparing the 
predictive accuracy of five different classification algorithms. Statistical regression models, 
including local, global, and hybrid models, were developed in [3] to predict software defects and 
development efforts. The approach introduced in [22] identifies disguised impact vulnerabilities 
in bug databases using a text mining classifier. Clone genealogies were examined in [23] to 
investigate phenomena like mutation and migration, while [24] improved bug deduplication 
performance by incorporating domain knowledge about software processes and products. A 
defect model illustrating the relationship between bug-proneness and the strength of relations 
was proposed in [25], while [26] discussed the impact of misclassification of bugs on previous 
studies. Models for predicting blocking bugs and performance bugs were introduced in [27] and 
[28], respectively, with [29] proposing context-aware rank transformations for predictors. A 
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novel toolset named Exception-Miner was developed in [30] for analyzing Java exception stack 
traces, and [31] focused on mining Component Repositories for installation issues. 

Various probabilistic methods were presented in [32] for categorizing app evaluations, 
while [33] explored the correlation between pre-release problems and post-release 
vulnerabilities. Concurrency bugs in complex code bases were characterized in [34], and a multi-
stage approach for automating the prediction process was proposed in [35]. The use of a 
machine learning engine for categorizing issues was discussed in [36], and a bug classification 
model that filters out unnecessary information from bug reports was suggested in [37]. 
Advanced machine learning methods [38] were also employed for automated bug classification, 
as seen in [39], where convolutional neural networks (CNN) with L1 and L2 regularization were 
proposed. A transfer learning-based classification technique called PIFTNet was introduced in 
[40], integrating personal data with text features for improved categorization. A multi-view 
ordinal classification for predicting software bugs was proposed in [41], taking into account the 
inherent order of class labels. Automatic classification systems based on Word2Vec, LDA, and 
self-attention mechanisms were explored in [42]. A sentiment analysis and machine learning-
based technique for predicting bug priority was proposed in [43], and the use of explainable 
artificial intelligence (XAI) in bug classification was discussed in [44]. Deep learning techniques 
for bug bite classification were introduced in [45], with a hybrid method for classifying bugs in 
cloud computing applications proposed in [46]. A novel deep learning-based method for bug 
classification was also presented in [47]. 
Bug Estimation: 

Several tools and methodologies have been proposed for software bug estimation in 
recent years. For example, Rebug Detector, a tool for detecting related bugs using bug code 
features, was implemented in [48]. The estimation of software bugs from a repository was 
predicted in [49], while the relationship between defect density, download numbers, software 
size, and developer was explored in [50]. Bug-inducing modifications in the Android platform 
were extracted by associating bug reports with specific changes [51]. Trends in bug discussions 
and feature histories were analyzed in [52] [53], with the history of commits used for repository 
mining and estimation. A novel framework for automatically discovering genuine specifications 
from execution traces was presented in [54], while [55] examined the evolution of data races by 
analyzing committed code samples. 

The effects of conceptual concerns on code quality were studied in [56] [57], proposing 
a new approach to predict the time required to resolve bugs using machine learning. Entropy-
based techniques, including Shane entropy and Kapur entropy, were utilized in [58] to forecast 
the number of software flaws, while a bug risk estimation approach based on duplicate bug 
reports, software component priority levels, and bug-fix time forecasts was proposed in [59]. 
The severity of bugs was estimated using entropy-based machine learning algorithms in [60], 
and the assessment of bug severity through static analysis and source code metrics was discussed 
in [61]. The application of statistical analysis for comparing the performance of bug prediction 
and tracing models was presented in [62]. 
Bug Resolution: 

The quality of process data and the characteristics that affect the bug-fixing process were 
investigated in [63] [64], with an algorithm proposed for transferring bug reports to software 
fault cases. The role of bug repositories in uncovering details of the software verification process 
was analyzed in [65] [66], along with an examination of the necessity for additional patches and 
the common reasons behind incomplete fixes. A correlation between higher software 
maintainability and faster defect resolution was found in [67]. Essential non-committers were 
formally defined in [68], identifying bug resolution catalysts through a proposed approach. The 
process of finding, reporting, and fixing performance defects was examined in [69], while 
dormant and non-dormant bugs were compared in [70] based on fixing time, size, and the 
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identity of the fixer. A new approach for automatically extracting bug-fix patterns was proposed 
in [71], and the application of process mining for effective process management was discussed 
in [72]. 

A method for identifying modifications related to bug fixes was introduced in [73], while 
a large-scale study on bug fixes, focusing on patterns, replacements, deletions, and additions, 
was detailed in [74]. CLEVER, a method for detecting risky commits before they are merged 
into the central repository, was introduced in [75], while the correlation between programming 
languages and bug resolution attributes was analyzed in [76]. Workarounds in bug reports were 
empirically investigated in [77], with the majority of bug reports fixed as workarounds due to 
issues related to libraries, settings, and clients. In [78], processes for handling bugs to achieve 
efficient defect resolution were proposed, with a focus on how bug report vectorization and 
preprocessing influence assignment accuracy. A CNN-based method for categorizing bug 
reports as accepted or rejected was introduced in [79], demonstrating notable performance 
improvements compared to existing methods. Issue resolution times were predicted in [80], with 
a novel method for determining a bug reporter’s reputation based on interactions with bug 
tracking systems proposed. The identification and analysis of factors influencing issue resolution 
times in open-source repositories were discussed in [81], with two primary groups of categorical 
variables i.e., Author Factors and Time Factors, found to impact a bug’s lifecycle. A novel 
approach to enhance bug tracking and resolution by fusing Just-In-Time (JIT) tactics with 
machine learning was presented in [82]. For automation testing and bug resolution, some 
advanced machine learning algorithms were also proposed in [83] [84]. 
Bug Triaging: 

In [85], a two-phased location-based method was introduced, recommending bug report 
assignments based on the anticipated bug location. A novel method for suggesting assignees 
based on user behavior in bug tracking repositories was proposed in [86] [87], aiming to forecast 
developers with the appropriate expertise to address new bug reports. The Eclipse and Mozilla 
Defect Tracking Dataset, specifically curated to include only authentic problems and cover the 
entire bug-triage lifecycle, was introduced in [88]. The problem of developer prioritization was 
addressed in [89], where a model for prioritization was developed. Data and discussion related 
to bug life cycles were explored in [90], focusing on the likelihood of being reopened. The 
authors of [35] proposed a supervised learning approach to enhance bug triage in open-source 
projects, with the method presented in [91] significantly improving bug-triaging processes by 
using a cascade approach. Automated bug triaging, using deep learning techniques like RNNs 
and LSTMs, was discussed in [92], suggesting improvements in assignment accuracy. The 
integration of sentiment analysis with bug triage was explored in [93], proposing a sentiment-
aware approach to the assignment process. A machine-learning-based model for bug triage was 
presented in [76], focusing on categorizing bug reports to streamline the triage process. 
Automated systems for bug triage using unsupervised and semi-supervised learning techniques 
were discussed in [94], with findings suggesting improvements in accuracy and efficiency. 

The effect of assigning bug reports to experienced developers was analyzed in [95], with 
an automated system for optimizing bug triage processes introduced in [96]. Collaborative 
filtering techniques were employed in [97] for bug triage, and [98] proposed a method for 
reducing the time required to resolve bugs by using a hybrid model that incorporates bug report 
similarity and developer expertise. Finally, an empirical study on bug triage and assignment issues 
was presented in [99], exploring challenges and solutions in this area. In [51], the relationship 
between bug fixes and bugs that introduce new problems was explored, and the methodology 
in [87] proposed an evaluation framework for detecting related bugs. A machine-learning-based 
bug triage system was discussed in [100], while the proposed approach in [27] classifies app 
evaluations based on specific bugs, such as performance issues, offering a novel approach to 
bug report analysis. Studies in [101] proposed a technique for automating bug triage, while [37] 
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discussed a framework for efficiently identifying and resolving bugs by focusing on relevant 
information from bug reports. A novel method for categorizing app evaluations based on bug 
severity was proposed in [39], offering a fresh perspective on bug report analysis. The impact of 
user-generated bug reports on the software lifecycle was explored in [61], with findings 
suggesting that user-generated reports significantly impact bug resolution times. A machine-
learning-based approach for analyzing bug reports was proposed in [80], while the study in [96] 
focused on the impact of bug report vectorization and preprocessing on assignment accuracy. 

An empirical study on bug report analysis, focusing on the impact of report structure 
and content on resolution times, was presented in [98]. Findings suggest that well-structured 
and informative bug reports significantly reduce resolution times. A deep learning-based 
approach for analyzing bug reports was proposed in [45], focusing on categorizing bugs based 
on severity and priority levels. The study in [47] introduced a novel framework for analyzing bug 
reports in real-time, offering a new perspective on bug report analysis. In [65] [66], the support 
provided by bug repositories in discovering software verification process details was examined, 
with the study also exploring the need for supplementary patches and common causes of 
incomplete fixes. A novel approach for managing bug repositories was proposed in [67], 
focusing on improving the efficiency of bug tracking and resolution processes. The impact of 
bug repository management on software maintenance was explored in [68], with findings 
suggesting that effective management significantly reduces bug resolution times. A machine-
learning-based approach for managing bug repositories was proposed in [72], focusing on 
automating the bug triage process. A novel framework for managing bug repositories was 
introduced in [91], offering a new perspective on bug repository management. The study in [75] 
focused on the impact of bug repository management on software quality, with findings 
suggesting that well-managed repositories significantly improve software quality. A machine-
learning-based approach for managing bug repositories was proposed in [77], focusing on 
automating the bug triage process.  

The study in [94], introduced a novel framework for managing bug repositories, focusing 
on improving the efficiency of bug tracking and resolution processes. The impact of bug 
repository management on software maintenance was explored in [81], with findings suggesting 
that effective management significantly reduces bug resolution times. A machine-learning-based 
approach for managing bug repositories was proposed in [99], focusing on automating the bug 
triage process. For better bug repository management, Table 1 describes the summary of test 
systems based on each research area, along with their specifications. 

Table 1. Test Systems based on Research-Area 

Test System Research Area Open Source Language 

ASPECTJ Bug localization Yes Java 

Chrome Bug localization No Android 

Mozilla Firefox Bug localization, Bug 
classification/prediction, Bug 
estimation, Bug triaging 

Yes Android 

Launchpad Bug localization Yes Android 

Eclipse Bug localization, Bug 
classification/prediction, Bug 
estimation, Bug resolution, Bug triaging 

Yes Java 

SWT Bug localization Yes Java 

Zxing Bug localization Yes Java 

Tomcat Bug localization Yes Java 

Argo UML Bug localization Yes UML 
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OpenOffice Bug classification/prediction, Bug 
estimation 

Yes C++, Java 

FreeBSD Bug classification/prediction Yes C, Python, and 
Perl 

MySQL Bug classification/prediction Yes JavaFX 

CHINA 
Lucene 2.4 

Bug classification/prediction Yes Java 

NasaCoc Xalan 
2 

Bug classification/prediction Yes Java 

XML Bug classification/prediction, Bug 
estimation 

Yes C++, Python, and 
Perl 

Linux Bug classification/prediction Yes C, Python, and 
Perl 

NetBeans Bug classification/prediction Yes Java 

Chromium Bug classification/prediction, Bug 
resolution 

Yes Python 

Free Desktop Bug classification/prediction Yes Java, C# 

Source-Forge Bug classification/prediction Yes C++ 

Google-Code Bug classification/prediction Yes C++, Python 

Google Play Bug classification/prediction, Bug 
resolution 

No Java 

iOS (Apple) Bug classification/prediction No Swift 

Bugzilla Bug classification/prediction, Bug 
resolution 

Yes Perl 

Jboss Bug classification/prediction Yes Java 

Ant Bug classification/prediction Yes Java 

Lenya Bug classification/prediction Yes Python, Java 

TomCat5 Bug classification/prediction Yes Java 

Redhat Bug classification/prediction Yes Python 

OpenFOAM Bug classification/prediction Yes C++ 

Apache Bug classification/prediction, Bug 
estimation 

Yes C 

Lucene-Java Bug estimation Yes Java 

GNOME Bug estimation Yes C, C++, C#, 
XML, HTML, 
CSS, JavaScript, 
Vala, Python. 

JEDIT Bug estimation Yes Java 

COLUMBA Bug estimation Yes Java 

Groovy Bug resolution Yes Java 

CherryPy Bug resolution Yes Python 

FogBugz Bug resolution Yes Java, C# 

Jazz ALM Bug resolution Yes C, C++ 

RTC Bug resolution Yes C, C++ 

ATLAS 
Reconstruction 

Bug triaging Yes C++, Python 

UNICASE Bug triaging Yes Python 

NetBeans Bug triaging Yes Java 

Maemo Bug triaging Yes C, Python 
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According to the above-discussed literature, Table 2 offers a thorough analysis of the 
strategies and tactics used in the designated field of study. The research areas are represented by 
each row, while the various respective techniques or methodologies are represented by the 
columns.  

Table 2. Methods / Techniques used in specific Research-Area 

Research 
Area 

Techniques / Methodologies 

Machine 
Learning 

Statistical Information 
Retrieval / Social 
Network Analysis 

Natural 
Language 
Processing 

Bug 
localization 

Regression test 
suite, clustering, 
bug layer 
classification, 
bayesian belief 
networks  

Descriptive 
statistics, 
similarity 
metric, 
probabilistic 
score, lexical 
similarity score 

IR, bug reporters 
social network 
analysis, bug staring 
analysis 

Manual 
inspection 

Bug 
classificatio

n / 
prediction 

SVM, 0-R, 
decision tree, 
naive bayes, 
logistic regression, 
K-NN, random 
forest 

Cosine 
similarity, 
Jaccord 
similarity, TF-
IDF similarity 

IR, social network 
properties 

NLP techniques; 
text mining, 
sentiment 
analysis 
techniques 

Bug 
estimation 

Regression 
analysis, case base 
reasoning,  

Patches filters, 
source code 
filters, stack 
traces filters, 
enumeration 
filters 

Context selection, 
co-evolutionary 
graphs 

Text similarity,  

Bug 
resolution 

Maintainability 
model, 
classification, 
pattern finding 

Correlation 
matrix, hill 
climbing 
method 

Minimal essential 
graph, social 
network analysis 
techniques,  

Text similarity 

Bug triaging Classification, 
instance selection 
and feature 
selection, 
expectation 
maximization 

Statistical 
methods 

 User topics 
associations, the 
noun extraction 
process, the 
term weighting 
scheme 

Table 2 demonstrates which Information Retrieval (IR), Machine Learning (ML), Social 
Network Analysis (SNA), and Natural Language Processing (NLP) techniques greatly improve 
bug mining and deal with the complexity of contemporary software systems. These technologies 
speed up the software development process, enhance bug localization, and enable early defect 
identification. Although these approaches have many advantages, there are still difficulties in 
adjusting them to different software environments and making sure developers can understand 
them. 
Limitations And Future Trends: 
Limitations in Bug Localization: 

Bug localization continues to face significant challenges, primarily due to the scarcity of 
labeled training data essential for deep learning models. Traditional methods, although widely 
used, struggle with accuracy and time efficiency. Training robust bug localization models is 
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hindered by the arduous task of gathering substantial amounts of accurately labeled bug data, 
which is both time-consuming and difficult. Furthermore, the complexity of extensive 
codebases, limited tooling, and inadequate automated methods contribute to inaccurate results 
and context sensitivity issues. Human factors, such as developer experience and familiarity with 
the code, also play a role. These limitations can lead to prolonged debugging periods, lower 
software quality, resource exhaustion, and maintenance challenges, ultimately impacting the 
overall efficiency and effectiveness of software development projects. 
Limitations in Bug Classification and Prediction: 

Bug classification and prediction methodologies face limitations in enhancing text 
encoding vectors due to constraints in dataset size and quality. Additionally, existing techniques 
often overlook the diverse characteristics of bug reports, leading to inefficiencies in their 
classification. The manual construction of action vocabularies for bug report validation is further 
complicated by the variability in user-defined activities, affecting the overall validation process. 
Relying solely on the textual content of bug reports can result in inaccuracies, as the underlying 
intent of the report is not always fully considered. These limitations can lead to decreased 
effectiveness in problem detection, missed or overlooked bugs, misallocation of resources, and 
ultimately, compromised software quality and user experience. 
Limitations in Bug Estimation: 

In the realm of bug estimation, current techniques struggle with accurately predicting 
the severity of bugs. While code metrics such as Lines of Code (LOC) and FanOut are valuable 
for identifying faulty code, they fall short of accurately assessing the seriousness of errors. Static 
analysis tools like Spot Bugs and Infer, though commonly used, also exhibit limitations in 
predicting bugs and assigning appropriate severity labels. The impact of severe bugs, particularly 
those related to security, underscores the need for improved bug assessment approaches that 
account for varying severity levels. The study highlights the potential benefits of integrating code 
metrics with static analysis techniques to enhance the accuracy of severity estimation. These 
findings emphasize the ongoing challenges in accurately determining bug severity in software 
engineering, pointing to the necessity for more reliable and comprehensive prediction models. 
Limitations in Bug Resolution: 

Bug resolution processes are hampered by several challenges, including the influence of 
programming languages on the time and effort required to resolve issues, the uncertainty 
surrounding workarounds, and the overwhelming amount of search results and resources 
developers must sift through. Additionally, the increasing volume of daily bug reports adds to 
the workload of developers, making the resolution process more complex and time-consuming. 
These challenges highlight the need for more efficient and effective bug resolution strategies, 
which are critical for maintaining software quality and meeting project deadlines. 
Limitations in Bug Triaging: 

Bug triaging faces significant limitations, primarily due to the manual and time-
consuming nature of assigning bugs. This process is prone to inefficiencies, especially when 
handling a large volume of defect reports. Traditional bug assignment methods often overlook 
critical factors such as developer expertise, bug type, and resolution time, leading to higher costs 
and resource allocation challenges. To address these limitations, researchers have proposed 
innovative solutions such as machine learning-based recommender systems and explainable AI 
models for bug assignment. Tools like Bugs by have also been developed to automate bug 
analysis and improve triaging accuracy. These advancements aim to enhance the efficiency, 
accuracy, and transparency of bug triaging in software development projects. 
Future Trends: 

The future of bug repository mining is poised to leverage Mining Unstructured Data (MUD) 
techniques, which focus on the growing volume of unstructured data in issue trackers, 
versioning systems, and other repositories. Machine learning approaches [102] for pattern 
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recognition in software repositories are also expected to advance, offering new opportunities 
for knowledge discovery and decision-making systems within organizations. Additionally, the 
collaborative development of a heuristic repository, where researchers can share various 
heuristics for classifying software engineering artifacts, holds promise for improving 
classification accuracy. Finally, the application of social network analysis techniques [103] and 
heterogeneous graph-based models to automatically identify communities of software engineers 
with shared interests could lead to more effective collaboration and knowledge sharing in 
software projects. 
Results And Discussion: 

The findings of this study highlighted that the challenges identified in bug repository 
mining are closely aligned with broader trends in software engineering, particularly the shift 
towards DevOps and CI/CD pipelines. Nowadays number of organizations are adopting these 
methodologies, thus the need for effective bug tracking and resolution has become paramount. 
CI/CD pipelines automate the software delivery process, which necessitates efficient bug 
tracking to ensure quality. Bug repository mining can enhance this by identifying severe bugs 
early in the development cycle, thus improving the overall workflow. The study of embedded 
IoT systems shows that communities are actively discussing and solving CI/CD challenges, 
indicating a collaborative approach to bug resolution that aligns with DevOps principles [104]. 
Moreover, some tools like Garimpeiro help facilitate the analysis of CI/CD practices in 
repositories, helping teams understand the impact of their bug-fixing efforts on deployment 
efficiency [105]. Another finding is that the AI and ML integration in bug repository mining has 
revolutionized the software development process by enhancing the classification, prediction, 
and vulnerability detection of bugs. This is done by using advanced algorithms [106] and 
automated techniques [38], that analyze vast datasets, uncover hidden patterns, and overall 
improve software quality. 

Significant improvements were seen by using machine learning techniques for classifying 
bugs, for instance, a study [107] classified over 126,000 bugs into nine categories therefore 
achieving around a 29.73% increase in classifier performance compared to traditional methods. 
Also study at [108] also shows that deep learning models used for bug prediction have 
outperformed conventional classifiers in small datasets and have shown higher performance in 
predicting buggy classes, which majorly reduces the cost associated with error fixing later in the 
software lifecycle. As AI and ML continue to evolve, their application in software repository 
mining will likely expand, through offering new insights and improving decision-making 
processes in software development. 
Concluding Remarks:  

In this survey paper, we examined over 100 papers focused on mining bug repositories, 
identifying research trends, current limitations, and potential future directions in this field. The 
majority of the papers were selected from the MSR conference. Analyzing the contributions of 
these studies, we observed that the first eight years primarily focused on developing tools and 
techniques for bug prediction and fault detection. In contrast, the past seven years have seen 
increased attention to bug triaging, resolution, and classification. Over the entire 15-year period, 
bug classification and prediction have remained the most active and prominent areas in bug 
repository mining. This survey provides a comprehensive overview of the evolution of this field, 
serving as a valuable resource for researchers interested in mining bug repositories. It offers 
insights into recent research trends and highlights key techniques and methodologies across 
various areas of bug repository mining. This work is expected to aid future researchers in gaining 
a deeper understanding of the field and assist project managers in optimizing software 
development processes for improved efficiency and effectiveness. 
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