
 International Journal of Innovations in Science & Technology

Aug 2024|Vol 6 | Issue 3 Page |1249

A Review Based on Active Research Areas in Mining Software
Bug Repositories: Limitations and Possible Future Trends

Fatima Waseem1*, Farah Haneef1, Muhammad Nouman Noor2, Aisha Khalid3, Hina Rashid1,
Qudsia Yousaf1

1Software Engineering Dept. CUST Islamabad, Pakistan
2AI and Data Science Dept. FAST National University, Pakistan
3Computer Science Dept. NUML, Islamabad, Pakistan
*Corresponding author: fatima.waseem@cust.edu.pk
Citation|Waseem. F, Haneef. F, Noor. M. N, Khalid. A, Rashid. H, Yousaf. Q, “A Review
Based on Active Research Areas in Mining Software Bug Repositories: Limitations and Possible
Future Trends”, IJIST, Vol. 6 Issue. 3 pp 1249-1266, Aug 2024
Received| Aug 2, 2024 Revised| Aug 23, 2024 Accepted| Aug 24, 2024 Published| Aug 25,
2024.

Introduction/ Importance of Study: Bug repository mining is a crucial research area in
software engineering, analyzing software change trends, defect prediction, and evolution. It
involves developing methods and tools for mining repositories, and providing essential data for
bug management.
Objective: The goal of this study is to analyze and synthesize recent trends in mining software
bug repositories, providing valuable insights for future research and practical bug management.
Novelty statement: Our research contributes novel insights into mining software repository
techniques and approaches employed in specific tasks such as bug localization, triaging, and
prediction, along with their limitations and possible future trends.
Material and Method: This study presents a comprehensive survey that categorizes and
synthesizes the current research within this field. This categorization is derived from an in-depth
review of studies conducted over the past fifteen years, from 2010 to 2024. The survey is
organized around three key dimensions: the test systems employed in bug repositories, the
methodologies commonly used in this area of research, and the prevailing trends shaping the
field.
Results and Discussion: Our results highlighted the significance of artificial intelligence and
machine learning integration in bug repository mining; which has revolutionized the software
development process by enhancing the classification, prediction, and vulnerability detection of
bugs.
Concluding Remarks: This survey aims to provide a clear and detailed understanding of the
evolution of bug repository mining, offering valuable insights for the ongoing advancement of
software engineering.
Keywords: Mining Software Repositories, Bug Localization, Bug Classification, Bug
Estimation, Bug Triaging

mailto:fatima.waseem@cust.edu.pk

 International Journal of Innovations in Science & Technology

Aug 2024|Vol 6 | Issue 3 Page |1250

Introduction:
Software repository mining involves the extraction of valuable information from the

historical records of software development and evolution, which are stored in software
repositories. This practice supports various software engineering activities, including code
analysis, bug detection, program comprehension, and architecture recovery. Over recent years,
software repository mining has emerged as a prominent research field, with substantial efforts
directed toward advancing the methodologies and tools used in this domain. Software
repositories are extensive databases that store detailed information about source code changes,
bug reports, and other specifications related to software projects. Among these, bug repositories
are particularly crucial as they house comprehensive details about software bugs. These
repositories play an integral role in the bug management process, encompassing activities such
as bug localization, prediction, triaging, and analysis.

Researchers in software engineering have employed diverse techniques and approaches
to explore and analyze critical information stored in bug repositories. This information is
instrumental for software engineers and testers in the development and maintenance of projects.
In this paper, we examined the latest research trends in mining software bug repositories, the
techniques employed, and the limitations associated with these approaches. Our analysis focuses
on studies published over the past fifteen years, from 2010 to 2024.
Objective of Study:

The goal of this survey is to analyze and synthesize recent trends in mining software bug
repositories, providing valuable insights for future research and practical bug management.
Novelty Statement:

This paper introduces several novel contributions, including an exploration of recent trends
in bug repository mining, an examination of commonly used test systems for analyzing bug
repository data, a comprehensive review of MSR techniques and approaches employed in tasks
such as bug localization, triaging, and prediction along with their limitations, and a discussion
on potential future trends in bug repository mining. The paper is organized as follows: Material
and methods used in this study are explained along with the categorization of active research
areas in bug repository mining, then a detailed survey of research contributions is provided,
followed by discussion on research limitations and future trends. It then presents the results and
discussion. Finally, the paper concludes with a summary.

Material And Methods:
This study presents a comprehensive survey of research conducted over the last 15 years,

focusing on the test systems employed in bug repositories, the methodologies commonly used
in this area of research, and the prevailing trends shaping the field.
Selection Criteria:

This review includes over 100 research papers focused on bug repositories, with the
majority being presented at the MSR conference between 2010 and 2024. To ensure a
comprehensive review, we have also incorporated papers from other prominent journals and
conferences, including ICCDA, ICSE, IACC, RTITC, CIS, IEEE, CSAC, and the IEEE
Transactions on Knowledge and Data Engineering as these are reputed and the most influential
venues in the field, possessing high impact in this area of research.
Categorization of Active Research Areas:

The field of mining bug repositories has seen significant contributions from researchers.
An analysis of the literature reveals that from 2010 to 2017, research predominantly focused on
proposing new techniques for bug classification and prediction. During this period, much of the
work was centered around bug categorization. In contrast, the years 2018 to 2024 have seen a
shift in focus towards bug localization, resolution, and triaging. A year-wise categorization of
active research areas in bug repository mining is illustrated in Figure 1.

 International Journal of Innovations in Science & Technology

Aug 2024|Vol 6 | Issue 3 Page |1251

Figure 1. Year-wise Active Research Areas of Mining Bug Repositories

Before presenting a detailed and comprehensive survey based on these categories, a brief
definition of a bug, along with its categorization, is provided below: A bug is an error, failure,
fault, or flaw in a computer program that causes it to produce unexpected and incorrect results
or behave unpredictably.

• Bug Localization: The process of identifying and locating the precise position of a bug
within the code. This is often a challenging, time-consuming, and costly task.

• Bug Classification: The categorization of bugs based on specific properties, such as
severity, type, or priority.

• Bug Estimation: A technique for assessing the likelihood of a bug's existence, typically
by analyzing bug reports. Bugs may sometimes be introduced due to code changes.

• Bug Resolution: The process of fixing or eliminating bugs.
• Bug Triaging: The process of reviewing and prioritizing bug reports, often handled by

a bug tracker or trigger. It involves ensuring the quality of bug reports and assigning
them to the appropriate developer for resolution.

An explicit view of research methodology is described in Figure 2.

Figure 2. Flow Diagram of Methodology.

Comprehensive Survey:
This section presents an extensive survey that categorizes and summarizes the active

research areas in mining software bug repositories over the last fifteen years.

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

R
es

ea
rc

h
 A

re
a

Year

Year-Wise Active Research Areas

Bug Classification Bug Prediction Bug Resolution

Bug Localization Bug Triaging Beg Estimation

 International Journal of Innovations in Science & Technology

Aug 2024|Vol 6 | Issue 3 Page |1252

Bug Localization:
Bug localization has been a significant focus in software repository mining, with several

methodologies proposed to enhance bug-tracking systems. For instance, some researchers [1]
[2] have explored innovative approaches, such as utilizing Stack Overflow’s game mechanisms
to improve bug tracking. In [3], three distinct methodologies were introduced for constructing
statistical regression models aimed at forecasting software flaws and development efforts. The
study in [4] [5] delved into the question of whether faults in real software systems are localizable,
identifying specific locations of Android bugs within the architectural layers of the system's
infrastructure. Researchers [6] [7] have developed algorithms to automatically detect and locate
bugs, proposing methods to rank buggy files. Conversely, a search-based methodology for
detecting duplicate bugs at BlackBerry was created by the authors in [8]. The correlation between
the stability, encapsulation, and popularity of libraries was examined in [7]. Meanwhile, [9]
introduced a Query Reformulation (QR) framework for bug localization, offering an innovative
approach to this challenge.

Further advancements include the introduction of a novel approach in [10] that scores
each file directly against the current bug report, potentially eliminating the need for past code
and reports. The study in [11] discussed the application of a Non-Dominant Sorting Genetic
Algorithm (NSGA-II) combined with text mining techniques, which outperformed
conventional techniques in bug localization. A unique method for LTL specification mining-
based bug localization in RTL systems was proposed in [12], where fine-grained assertions are
extracted from RTL design to localize faults detected during full-system simulations. In [13], the
author examined three generations of bug localization methods, introducing SCOR, a new
technique that enhances bug localization in code files by combining semantic word vectors with
term-term ordering relationships. Bug localization in web-based systems, specifically through
mining crash reports, was addressed in [14], assessing the performance of various standards and
methods in classifying crash reports and locating problematic files.

Text mining and genetic algorithms were discussed in [15] for bug localization, with the
multi-objective optimization algorithm SPEA II enhancing the localization process. A graph-
based neural model called BLoco was proposed in [16] for automated bug localization, targeting
buggy source code files for given bug reports. Lastly, [17] introduced a pseudo-Siamese network
with semantic guidance for bug localization, leveraging the semantic production of code data to
learn and identify bugs. A comprehensive empirical investigation was conducted in [18] to
understand the challenges in localizing bugs within deep learning systems, with findings
suggesting that the effectiveness of localization techniques varies with bug type.
Bug Classification / Prediction:

Significant work has been done in the area of bug classification and prediction. For
instance, the model constructed in [19] distinguishes duplicate bug reports from non-duplicates,
facilitating the extraction of similar bug reports. Some researchers [20] have built models to
predict bug complexity, while others [21] explored the feasibility of mining by comparing the
predictive accuracy of five different classification algorithms. Statistical regression models,
including local, global, and hybrid models, were developed in [3] to predict software defects and
development efforts. The approach introduced in [22] identifies disguised impact vulnerabilities
in bug databases using a text mining classifier. Clone genealogies were examined in [23] to
investigate phenomena like mutation and migration, while [24] improved bug deduplication
performance by incorporating domain knowledge about software processes and products. A
defect model illustrating the relationship between bug-proneness and the strength of relations
was proposed in [25], while [26] discussed the impact of misclassification of bugs on previous
studies. Models for predicting blocking bugs and performance bugs were introduced in [27] and
[28], respectively, with [29] proposing context-aware rank transformations for predictors. A

 International Journal of Innovations in Science & Technology

Aug 2024|Vol 6 | Issue 3 Page |1253

novel toolset named Exception-Miner was developed in [30] for analyzing Java exception stack
traces, and [31] focused on mining Component Repositories for installation issues.

Various probabilistic methods were presented in [32] for categorizing app evaluations,
while [33] explored the correlation between pre-release problems and post-release
vulnerabilities. Concurrency bugs in complex code bases were characterized in [34], and a multi-
stage approach for automating the prediction process was proposed in [35]. The use of a
machine learning engine for categorizing issues was discussed in [36], and a bug classification
model that filters out unnecessary information from bug reports was suggested in [37].
Advanced machine learning methods [38] were also employed for automated bug classification,
as seen in [39], where convolutional neural networks (CNN) with L1 and L2 regularization were
proposed. A transfer learning-based classification technique called PIFTNet was introduced in
[40], integrating personal data with text features for improved categorization. A multi-view
ordinal classification for predicting software bugs was proposed in [41], taking into account the
inherent order of class labels. Automatic classification systems based on Word2Vec, LDA, and
self-attention mechanisms were explored in [42]. A sentiment analysis and machine learning-
based technique for predicting bug priority was proposed in [43], and the use of explainable
artificial intelligence (XAI) in bug classification was discussed in [44]. Deep learning techniques
for bug bite classification were introduced in [45], with a hybrid method for classifying bugs in
cloud computing applications proposed in [46]. A novel deep learning-based method for bug
classification was also presented in [47].
Bug Estimation:

Several tools and methodologies have been proposed for software bug estimation in
recent years. For example, Rebug Detector, a tool for detecting related bugs using bug code
features, was implemented in [48]. The estimation of software bugs from a repository was
predicted in [49], while the relationship between defect density, download numbers, software
size, and developer was explored in [50]. Bug-inducing modifications in the Android platform
were extracted by associating bug reports with specific changes [51]. Trends in bug discussions
and feature histories were analyzed in [52] [53], with the history of commits used for repository
mining and estimation. A novel framework for automatically discovering genuine specifications
from execution traces was presented in [54], while [55] examined the evolution of data races by
analyzing committed code samples.

The effects of conceptual concerns on code quality were studied in [56] [57], proposing
a new approach to predict the time required to resolve bugs using machine learning. Entropy-
based techniques, including Shane entropy and Kapur entropy, were utilized in [58] to forecast
the number of software flaws, while a bug risk estimation approach based on duplicate bug
reports, software component priority levels, and bug-fix time forecasts was proposed in [59].
The severity of bugs was estimated using entropy-based machine learning algorithms in [60],
and the assessment of bug severity through static analysis and source code metrics was discussed
in [61]. The application of statistical analysis for comparing the performance of bug prediction
and tracing models was presented in [62].
Bug Resolution:

The quality of process data and the characteristics that affect the bug-fixing process were
investigated in [63] [64], with an algorithm proposed for transferring bug reports to software
fault cases. The role of bug repositories in uncovering details of the software verification process
was analyzed in [65] [66], along with an examination of the necessity for additional patches and
the common reasons behind incomplete fixes. A correlation between higher software
maintainability and faster defect resolution was found in [67]. Essential non-committers were
formally defined in [68], identifying bug resolution catalysts through a proposed approach. The
process of finding, reporting, and fixing performance defects was examined in [69], while
dormant and non-dormant bugs were compared in [70] based on fixing time, size, and the

 International Journal of Innovations in Science & Technology

Aug 2024|Vol 6 | Issue 3 Page |1254

identity of the fixer. A new approach for automatically extracting bug-fix patterns was proposed
in [71], and the application of process mining for effective process management was discussed
in [72].

A method for identifying modifications related to bug fixes was introduced in [73], while
a large-scale study on bug fixes, focusing on patterns, replacements, deletions, and additions,
was detailed in [74]. CLEVER, a method for detecting risky commits before they are merged
into the central repository, was introduced in [75], while the correlation between programming
languages and bug resolution attributes was analyzed in [76]. Workarounds in bug reports were
empirically investigated in [77], with the majority of bug reports fixed as workarounds due to
issues related to libraries, settings, and clients. In [78], processes for handling bugs to achieve
efficient defect resolution were proposed, with a focus on how bug report vectorization and
preprocessing influence assignment accuracy. A CNN-based method for categorizing bug
reports as accepted or rejected was introduced in [79], demonstrating notable performance
improvements compared to existing methods. Issue resolution times were predicted in [80], with
a novel method for determining a bug reporter’s reputation based on interactions with bug
tracking systems proposed. The identification and analysis of factors influencing issue resolution
times in open-source repositories were discussed in [81], with two primary groups of categorical
variables i.e., Author Factors and Time Factors, found to impact a bug’s lifecycle. A novel
approach to enhance bug tracking and resolution by fusing Just-In-Time (JIT) tactics with
machine learning was presented in [82]. For automation testing and bug resolution, some
advanced machine learning algorithms were also proposed in [83] [84].
Bug Triaging:

In [85], a two-phased location-based method was introduced, recommending bug report
assignments based on the anticipated bug location. A novel method for suggesting assignees
based on user behavior in bug tracking repositories was proposed in [86] [87], aiming to forecast
developers with the appropriate expertise to address new bug reports. The Eclipse and Mozilla
Defect Tracking Dataset, specifically curated to include only authentic problems and cover the
entire bug-triage lifecycle, was introduced in [88]. The problem of developer prioritization was
addressed in [89], where a model for prioritization was developed. Data and discussion related
to bug life cycles were explored in [90], focusing on the likelihood of being reopened. The
authors of [35] proposed a supervised learning approach to enhance bug triage in open-source
projects, with the method presented in [91] significantly improving bug-triaging processes by
using a cascade approach. Automated bug triaging, using deep learning techniques like RNNs
and LSTMs, was discussed in [92], suggesting improvements in assignment accuracy. The
integration of sentiment analysis with bug triage was explored in [93], proposing a sentiment-
aware approach to the assignment process. A machine-learning-based model for bug triage was
presented in [76], focusing on categorizing bug reports to streamline the triage process.
Automated systems for bug triage using unsupervised and semi-supervised learning techniques
were discussed in [94], with findings suggesting improvements in accuracy and efficiency.

The effect of assigning bug reports to experienced developers was analyzed in [95], with
an automated system for optimizing bug triage processes introduced in [96]. Collaborative
filtering techniques were employed in [97] for bug triage, and [98] proposed a method for
reducing the time required to resolve bugs by using a hybrid model that incorporates bug report
similarity and developer expertise. Finally, an empirical study on bug triage and assignment issues
was presented in [99], exploring challenges and solutions in this area. In [51], the relationship
between bug fixes and bugs that introduce new problems was explored, and the methodology
in [87] proposed an evaluation framework for detecting related bugs. A machine-learning-based
bug triage system was discussed in [100], while the proposed approach in [27] classifies app
evaluations based on specific bugs, such as performance issues, offering a novel approach to
bug report analysis. Studies in [101] proposed a technique for automating bug triage, while [37]

 International Journal of Innovations in Science & Technology

Aug 2024|Vol 6 | Issue 3 Page |1255

discussed a framework for efficiently identifying and resolving bugs by focusing on relevant
information from bug reports. A novel method for categorizing app evaluations based on bug
severity was proposed in [39], offering a fresh perspective on bug report analysis. The impact of
user-generated bug reports on the software lifecycle was explored in [61], with findings
suggesting that user-generated reports significantly impact bug resolution times. A machine-
learning-based approach for analyzing bug reports was proposed in [80], while the study in [96]
focused on the impact of bug report vectorization and preprocessing on assignment accuracy.

An empirical study on bug report analysis, focusing on the impact of report structure
and content on resolution times, was presented in [98]. Findings suggest that well-structured
and informative bug reports significantly reduce resolution times. A deep learning-based
approach for analyzing bug reports was proposed in [45], focusing on categorizing bugs based
on severity and priority levels. The study in [47] introduced a novel framework for analyzing bug
reports in real-time, offering a new perspective on bug report analysis. In [65] [66], the support
provided by bug repositories in discovering software verification process details was examined,
with the study also exploring the need for supplementary patches and common causes of
incomplete fixes. A novel approach for managing bug repositories was proposed in [67],
focusing on improving the efficiency of bug tracking and resolution processes. The impact of
bug repository management on software maintenance was explored in [68], with findings
suggesting that effective management significantly reduces bug resolution times. A machine-
learning-based approach for managing bug repositories was proposed in [72], focusing on
automating the bug triage process. A novel framework for managing bug repositories was
introduced in [91], offering a new perspective on bug repository management. The study in [75]
focused on the impact of bug repository management on software quality, with findings
suggesting that well-managed repositories significantly improve software quality. A machine-
learning-based approach for managing bug repositories was proposed in [77], focusing on
automating the bug triage process.

The study in [94], introduced a novel framework for managing bug repositories, focusing
on improving the efficiency of bug tracking and resolution processes. The impact of bug
repository management on software maintenance was explored in [81], with findings suggesting
that effective management significantly reduces bug resolution times. A machine-learning-based
approach for managing bug repositories was proposed in [99], focusing on automating the bug
triage process. For better bug repository management, Table 1 describes the summary of test
systems based on each research area, along with their specifications.

Table 1. Test Systems based on Research-Area

Test System Research Area Open Source Language

ASPECTJ Bug localization Yes Java

Chrome Bug localization No Android

Mozilla Firefox Bug localization, Bug
classification/prediction, Bug
estimation, Bug triaging

Yes Android

Launchpad Bug localization Yes Android

Eclipse Bug localization, Bug
classification/prediction, Bug
estimation, Bug resolution, Bug triaging

Yes Java

SWT Bug localization Yes Java

Zxing Bug localization Yes Java

Tomcat Bug localization Yes Java

Argo UML Bug localization Yes UML

 International Journal of Innovations in Science & Technology

Aug 2024|Vol 6 | Issue 3 Page |1256

OpenOffice Bug classification/prediction, Bug
estimation

Yes C++, Java

FreeBSD Bug classification/prediction Yes C, Python, and
Perl

MySQL Bug classification/prediction Yes JavaFX

CHINA
Lucene 2.4

Bug classification/prediction Yes Java

NasaCoc Xalan
2

Bug classification/prediction Yes Java

XML Bug classification/prediction, Bug
estimation

Yes C++, Python, and
Perl

Linux Bug classification/prediction Yes C, Python, and
Perl

NetBeans Bug classification/prediction Yes Java

Chromium Bug classification/prediction, Bug
resolution

Yes Python

Free Desktop Bug classification/prediction Yes Java, C#

Source-Forge Bug classification/prediction Yes C++

Google-Code Bug classification/prediction Yes C++, Python

Google Play Bug classification/prediction, Bug
resolution

No Java

iOS (Apple) Bug classification/prediction No Swift

Bugzilla Bug classification/prediction, Bug
resolution

Yes Perl

Jboss Bug classification/prediction Yes Java

Ant Bug classification/prediction Yes Java

Lenya Bug classification/prediction Yes Python, Java

TomCat5 Bug classification/prediction Yes Java

Redhat Bug classification/prediction Yes Python

OpenFOAM Bug classification/prediction Yes C++

Apache Bug classification/prediction, Bug
estimation

Yes C

Lucene-Java Bug estimation Yes Java

GNOME Bug estimation Yes C, C++, C#,
XML, HTML,
CSS, JavaScript,
Vala, Python.

JEDIT Bug estimation Yes Java

COLUMBA Bug estimation Yes Java

Groovy Bug resolution Yes Java

CherryPy Bug resolution Yes Python

FogBugz Bug resolution Yes Java, C#

Jazz ALM Bug resolution Yes C, C++

RTC Bug resolution Yes C, C++

ATLAS
Reconstruction

Bug triaging Yes C++, Python

UNICASE Bug triaging Yes Python

NetBeans Bug triaging Yes Java

Maemo Bug triaging Yes C, Python

 International Journal of Innovations in Science & Technology

Aug 2024|Vol 6 | Issue 3 Page |1257

According to the above-discussed literature, Table 2 offers a thorough analysis of the
strategies and tactics used in the designated field of study. The research areas are represented by
each row, while the various respective techniques or methodologies are represented by the
columns.

Table 2. Methods / Techniques used in specific Research-Area

Research
Area

Techniques / Methodologies

Machine
Learning

Statistical Information
Retrieval / Social
Network Analysis

Natural
Language
Processing

Bug
localization

Regression test
suite, clustering,
bug layer
classification,
bayesian belief
networks

Descriptive
statistics,
similarity
metric,
probabilistic
score, lexical
similarity score

IR, bug reporters
social network
analysis, bug staring
analysis

Manual
inspection

Bug
classificatio

n /
prediction

SVM, 0-R,
decision tree,
naive bayes,
logistic regression,
K-NN, random
forest

Cosine
similarity,
Jaccord
similarity, TF-
IDF similarity

IR, social network
properties

NLP techniques;
text mining,
sentiment
analysis
techniques

Bug
estimation

Regression
analysis, case base
reasoning,

Patches filters,
source code
filters, stack
traces filters,
enumeration
filters

Context selection,
co-evolutionary
graphs

Text similarity,

Bug
resolution

Maintainability
model,
classification,
pattern finding

Correlation
matrix, hill
climbing
method

Minimal essential
graph, social
network analysis
techniques,

Text similarity

Bug triaging Classification,
instance selection
and feature
selection,
expectation
maximization

Statistical
methods

 User topics
associations, the
noun extraction
process, the
term weighting
scheme

Table 2 demonstrates which Information Retrieval (IR), Machine Learning (ML), Social
Network Analysis (SNA), and Natural Language Processing (NLP) techniques greatly improve
bug mining and deal with the complexity of contemporary software systems. These technologies
speed up the software development process, enhance bug localization, and enable early defect
identification. Although these approaches have many advantages, there are still difficulties in
adjusting them to different software environments and making sure developers can understand
them.
Limitations And Future Trends:
Limitations in Bug Localization:

Bug localization continues to face significant challenges, primarily due to the scarcity of
labeled training data essential for deep learning models. Traditional methods, although widely
used, struggle with accuracy and time efficiency. Training robust bug localization models is

 International Journal of Innovations in Science & Technology

Aug 2024|Vol 6 | Issue 3 Page |1258

hindered by the arduous task of gathering substantial amounts of accurately labeled bug data,
which is both time-consuming and difficult. Furthermore, the complexity of extensive
codebases, limited tooling, and inadequate automated methods contribute to inaccurate results
and context sensitivity issues. Human factors, such as developer experience and familiarity with
the code, also play a role. These limitations can lead to prolonged debugging periods, lower
software quality, resource exhaustion, and maintenance challenges, ultimately impacting the
overall efficiency and effectiveness of software development projects.
Limitations in Bug Classification and Prediction:

Bug classification and prediction methodologies face limitations in enhancing text
encoding vectors due to constraints in dataset size and quality. Additionally, existing techniques
often overlook the diverse characteristics of bug reports, leading to inefficiencies in their
classification. The manual construction of action vocabularies for bug report validation is further
complicated by the variability in user-defined activities, affecting the overall validation process.
Relying solely on the textual content of bug reports can result in inaccuracies, as the underlying
intent of the report is not always fully considered. These limitations can lead to decreased
effectiveness in problem detection, missed or overlooked bugs, misallocation of resources, and
ultimately, compromised software quality and user experience.
Limitations in Bug Estimation:

In the realm of bug estimation, current techniques struggle with accurately predicting
the severity of bugs. While code metrics such as Lines of Code (LOC) and FanOut are valuable
for identifying faulty code, they fall short of accurately assessing the seriousness of errors. Static
analysis tools like Spot Bugs and Infer, though commonly used, also exhibit limitations in
predicting bugs and assigning appropriate severity labels. The impact of severe bugs, particularly
those related to security, underscores the need for improved bug assessment approaches that
account for varying severity levels. The study highlights the potential benefits of integrating code
metrics with static analysis techniques to enhance the accuracy of severity estimation. These
findings emphasize the ongoing challenges in accurately determining bug severity in software
engineering, pointing to the necessity for more reliable and comprehensive prediction models.
Limitations in Bug Resolution:

Bug resolution processes are hampered by several challenges, including the influence of
programming languages on the time and effort required to resolve issues, the uncertainty
surrounding workarounds, and the overwhelming amount of search results and resources
developers must sift through. Additionally, the increasing volume of daily bug reports adds to
the workload of developers, making the resolution process more complex and time-consuming.
These challenges highlight the need for more efficient and effective bug resolution strategies,
which are critical for maintaining software quality and meeting project deadlines.
Limitations in Bug Triaging:

Bug triaging faces significant limitations, primarily due to the manual and time-
consuming nature of assigning bugs. This process is prone to inefficiencies, especially when
handling a large volume of defect reports. Traditional bug assignment methods often overlook
critical factors such as developer expertise, bug type, and resolution time, leading to higher costs
and resource allocation challenges. To address these limitations, researchers have proposed
innovative solutions such as machine learning-based recommender systems and explainable AI
models for bug assignment. Tools like Bugs by have also been developed to automate bug
analysis and improve triaging accuracy. These advancements aim to enhance the efficiency,
accuracy, and transparency of bug triaging in software development projects.
Future Trends:

The future of bug repository mining is poised to leverage Mining Unstructured Data (MUD)
techniques, which focus on the growing volume of unstructured data in issue trackers,
versioning systems, and other repositories. Machine learning approaches [102] for pattern

 International Journal of Innovations in Science & Technology

Aug 2024|Vol 6 | Issue 3 Page |1259

recognition in software repositories are also expected to advance, offering new opportunities
for knowledge discovery and decision-making systems within organizations. Additionally, the
collaborative development of a heuristic repository, where researchers can share various
heuristics for classifying software engineering artifacts, holds promise for improving
classification accuracy. Finally, the application of social network analysis techniques [103] and
heterogeneous graph-based models to automatically identify communities of software engineers
with shared interests could lead to more effective collaboration and knowledge sharing in
software projects.
Results And Discussion:

The findings of this study highlighted that the challenges identified in bug repository
mining are closely aligned with broader trends in software engineering, particularly the shift
towards DevOps and CI/CD pipelines. Nowadays number of organizations are adopting these
methodologies, thus the need for effective bug tracking and resolution has become paramount.
CI/CD pipelines automate the software delivery process, which necessitates efficient bug
tracking to ensure quality. Bug repository mining can enhance this by identifying severe bugs
early in the development cycle, thus improving the overall workflow. The study of embedded
IoT systems shows that communities are actively discussing and solving CI/CD challenges,
indicating a collaborative approach to bug resolution that aligns with DevOps principles [104].
Moreover, some tools like Garimpeiro help facilitate the analysis of CI/CD practices in
repositories, helping teams understand the impact of their bug-fixing efforts on deployment
efficiency [105]. Another finding is that the AI and ML integration in bug repository mining has
revolutionized the software development process by enhancing the classification, prediction,
and vulnerability detection of bugs. This is done by using advanced algorithms [106] and
automated techniques [38], that analyze vast datasets, uncover hidden patterns, and overall
improve software quality.

Significant improvements were seen by using machine learning techniques for classifying
bugs, for instance, a study [107] classified over 126,000 bugs into nine categories therefore
achieving around a 29.73% increase in classifier performance compared to traditional methods.
Also study at [108] also shows that deep learning models used for bug prediction have
outperformed conventional classifiers in small datasets and have shown higher performance in
predicting buggy classes, which majorly reduces the cost associated with error fixing later in the
software lifecycle. As AI and ML continue to evolve, their application in software repository
mining will likely expand, through offering new insights and improving decision-making
processes in software development.
Concluding Remarks:

In this survey paper, we examined over 100 papers focused on mining bug repositories,
identifying research trends, current limitations, and potential future directions in this field. The
majority of the papers were selected from the MSR conference. Analyzing the contributions of
these studies, we observed that the first eight years primarily focused on developing tools and
techniques for bug prediction and fault detection. In contrast, the past seven years have seen
increased attention to bug triaging, resolution, and classification. Over the entire 15-year period,
bug classification and prediction have remained the most active and prominent areas in bug
repository mining. This survey provides a comprehensive overview of the evolution of this field,
serving as a valuable resource for researchers interested in mining bug repositories. It offers
insights into recent research trends and highlights key techniques and methodologies across
various areas of bug repository mining. This work is expected to aid future researchers in gaining
a deeper understanding of the field and assist project managers in optimizing software
development processes for improved efficiency and effectiveness.

 International Journal of Innovations in Science & Technology

Aug 2024|Vol 6 | Issue 3 Page |1260

References:
[1] R. Lotufo, L. Passos, and K. Czarnecki, “Towards improving bug tracking systems with

game mechanisms,” IEEE Int. Work. Conf. Min. Softw. Repos., pp. 2–11, 2012, doi:
10.1109/MSR.2012.6224293.

[2] B. Sisman and A. C. Kak, “Incorporating version histories in Information Retrieval
based bug localization,” IEEE Int. Work. Conf. Min. Softw. Repos., pp. 50–59, 2012,
doi: 10.1109/MSR.2012.6224299.

[3] N. Bettenburg, M. Nagappan, and A. E. Hassan, “Think locally, act globally: Improving
defect and effort prediction models,” IEEE Int. Work. Conf. Min. Softw. Repos., pp.
60–69, 2012, doi: 10.1109/MSR.2012.6224300.

[4] Lucia, F. Thung, D. Lo, and L. Jiang, “Are faults localizable?,” IEEE Int. Work. Conf.
Min. Softw. Repos., pp. 74–77, 2012, doi: 10.1109/MSR.2012.6224302.

[5] V. Guana, F. Rocha, A. Hindle, and E. Stroulia, “Do the stars align? Multidimensional
analysis of Android’s layered architecture,” IEEE Int. Work. Conf. Min. Softw. Repos.,
pp. 124–127, 2012, doi: 10.1109/MSR.2012.6224269.

[6] A. Breckel, “Error mining: Bug detection through comparison with large code
databases,” IEEE Int. Work. Conf. Min. Softw. Repos., pp. 175–178, 2012, doi:
10.1109/MSR.2012.6224278.

[7] S. Wang, F. Khomh, and Y. Zou, “Improving bug localization using correlations in crash
reports,” IEEE Int. Work. Conf. Min. Softw. Repos., pp. 247–256, 2013, doi:
10.1109/MSR.2013.6624036.

[8] M. Amoui, N. Kaushik, A. Al-Dabbagh, L. Tahvildari, S. Li, and W. Liu, “Search-based
duplicate defect detection: An industrial experience,” IEEE Int. Work. Conf. Min.
Softw. Repos., pp. 173–182, 2013, doi: 10.1109/MSR.2013.6624025.

[9] B. Sisman and A. C. Kak, “Assisting code search with automatic query reformulation
for bug localization,” IEEE Int. Work. Conf. Min. Softw. Repos., pp. 309–318, 2013,
doi: 10.1109/MSR.2013.6624044.

[10] “Locating Bugs without Looking Back | IEEE Conference Publication | IEEE
Xplore.” Accessed: Aug. 28, 2024. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/7832908

[11] R. Malhotra, S. Aggarwal, R. Girdhar, and R. Chugh, “Bug localization in software using
NSGA-II,” ISCAIE 2018 - 2018 IEEE Symp. Comput. Appl. Ind. Electron., pp. 428–
433, Jul. 2018, doi: 10.1109/ISCAIE.2018.8405511.

[12] V. Iyer, D. Kim, B. Nikolic, and S. A. Seshia, “RTL bug localization through LTL
specification mining (WIP),” MEMOCODE 2019 - 17th ACM-IEEE Int. Conf. Form.
Methods Model. Syst. Des., Oct. 2019, doi: 10.1145/3359986.3361202.

[13] S. A. Akbar, “Source Code Search for Automatic Bug Localization,” Theses Diss.
Available from ProQuest, Jan. 2020, Accessed: Aug. 28, 2024. [Online]. Available:
https://docs.lib.purdue.edu/dissertations/AAI30504782

[14] M. Medeiros, U. Kulesza, R. Bonifacio, E. Adachi, and R. Coelho, “Improving Bug
Localization by Mining Crash Reports: An Industrial Study,” Proc. - 2020 IEEE Int.
Conf. Softw. Maint. Evol. ICSME 2020, pp. 766–775, Sep. 2020, doi:
10.1109/ICSME46990.2020.00086.

[15] A. Sood et al., “Bug Localization Using Multi-objective Approach and Information
Retrieval,” Adv. Intell. Syst. Comput., vol. 1165, pp. 709–723, 2021, doi: 10.1007/978-
981-15-5113-0_58.

[16] Z. Zhu, H. Tong, Y. Wang, and Y. Li, “Enhancing bug localization with bug report
decomposition and code hierarchical network,” Knowledge-Based Syst., vol. 248, p.
108741, Jul. 2022, doi: 10.1016/J.KNOSYS.2022.108741.

[17] Y. Zhao, X. Li, Y. Li, Y. Zhang, W. Qi, and J. Song, “Bug localization with semantic

 International Journal of Innovations in Science & Technology

Aug 2024|Vol 6 | Issue 3 Page |1261

guidance using pseudo-Siamese network,” SPIE, vol. 12721, p. 127210A, Jun. 2023, doi:
10.1117/12.2683291.

[18] S. Jahan, M. B. Shah, and M. M. Rahman, “Towards Understanding the Challenges of
Bug Localization in Deep Learning Systems,” Feb. 2024, Accessed: Aug. 28, 2024.
[Online]. Available: https://arxiv.org/abs/2402.01021v1

[19] C. Sun, D. Lo, X. Wang, J. Jiang, and S. C. Khoo, “A discriminative model approach for
accurate duplicate bug report retrieval,” Proc. - Int. Conf. Softw. Eng., vol. 1, pp. 45–
54, 2010, doi: 10.1145/1806799.1806811.

[20] N. K. Nagwani and A. Bhansali, “A data mining model to predict software bug
complexity using bug estimation and clustering,” ITC 2010 - 2010 Int. Conf. Recent
Trends Information, Telecommun. Comput., pp. 13–17, 2010, doi:
10.1109/ITC.2010.56.

[21] G. Bougie, C. Treude, D. M. German, and M. A. Storey, “A comparative exploration of
FreeBSD bug lifetimes,” Proc. - Int. Conf. Softw. Eng., pp. 106–109, 2010, doi:
10.1109/MSR.2010.5463291.

[22] D. Wijayasekara, M. Manic, J. L. Wright, and M. McQueen, “Mining bug databases for
unidentified software vulnerabilities,” Int. Conf. Hum. Syst. Interact. HSI, pp. 89–96,
2012, doi: 10.1109/HSI.2012.22.

[23] S. Xie, F. Khomh, and Y. Zou, “An empirical study of the fault-proneness of clone
mutation and clone migration,” IEEE Int. Work. Conf. Min. Softw. Repos., pp. 149–
158, 2013, doi: 10.1109/MSR.2013.6624022.

[24] A. Alipour, A. Hindle, and E. Stroulia, “A contextual approach towards more accurate
duplicate bug report detection,” IEEE Int. Work. Conf. Min. Softw. Repos., pp. 183–
192, 2013, doi: 10.1109/MSR.2013.6624026.

[25] W. Hu and K. Wong, “Using Citation Influence to Predict Software Defects”.
[26] K. Herzig, S. Just, and A. Zeller, “It’s not a bug, it’s a feature: How misclassification

impacts bug prediction,” Proc. - Int. Conf. Softw. Eng., pp. 392–401, 2013, doi:
10.1109/ICSE.2013.6606585.

[27] H. Valdivia-Garcia, E. Shihab, and M. Nagappan, “Characterizing and predicting
blocking bugs in open source projects,” J. Syst. Softw., vol. 143, pp. 44–58, Sep. 2018,
doi: 10.1016/J.JSS.2018.03.053.

[28] Y. Liu, C. Xu, and S. C. Cheung, “Characterizing and detecting performance bugs for
smartphone applications,” Proc. - Int. Conf. Softw. Eng., no. 1, pp. 1013–1024, May
2014, doi: 10.1145/2568225.2568229.

[29] F. Zhang, A. Mockus, I. Keivanloo, and Y. Zou, “Towards building a universal defect
prediction model,” 11th Work. Conf. Min. Softw. Repos. MSR 2014 - Proc., pp. 182–
191, May 2014, doi: 10.1145/2597073.2597078.

[30] R. Coelho, L. Almeida, G. Gousios, and A. Van Deursen, “Unveiling exception handling
bug hazards in android based on GitHub and Google code issues,” IEEE Int. Work.
Conf. Min. Softw. Repos., vol. 2015-August, pp. 134–145, Aug. 2015, doi:
10.1109/MSR.2015.20.

[31] P. Abate, R. Di Cosmo, L. Gesbert, F. Le Fessant, R. Treinen, and S. Zacchiroli, “Mining
component repositories for installability issues,” IEEE Int. Work. Conf. Min. Softw.
Repos., vol. 2015-August, pp. 24–33, Aug. 2015, doi: 10.1109/MSR.2015.10.

[32] W. Maalej and H. Nabil, “Bug report, feature request, or simply praise? On automatically
classifying app reviews,” 2015 IEEE 23rd Int. Requir. Eng. Conf. RE 2015 - Proc., pp.
116–125, Nov. 2015, doi: 10.1109/RE.2015.7320414.

[33] F. Camilo, A. Meneely, and M. Nagappan, “Do bugs foreshadow vulnerabilities? A study
of the chromium project,” IEEE Int. Work. Conf. Min. Softw. Repos., vol. 2015-
August, pp. 269–279, Aug. 2015, doi: 10.1109/MSR.2015.32.

 International Journal of Innovations in Science & Technology

Aug 2024|Vol 6 | Issue 3 Page |1262

[34] P. Ciancarini, F. Poggi, D. Rossi, and A. Sillitti, “Mining Concurrency Bugs”, Accessed:
Aug. 27, 2024. [Online]. Available: https://bz.apache.org/bugzilla/

[35] J. Xuan et al., “Towards effective bug triage with software data reduction techniques,”
IEEE Trans. Knowl. Data Eng., vol. 27, no. 1, pp. 264–280, Jan. 2015, doi:
10.1109/TKDE.2014.2324590.

[36] “U.S. Patent and Trademark Office | U.S. Department of Commerce.” Accessed: Aug.
28, 2024. [Online]. Available: https://www.commerce.gov/bureaus-and-offices/uspto

[37] F. Fang, J. Wu, Y. Li, X. Ye, W. Aljedaani, and M. W. Mkaouer, “On the classification
of bug reports to improve bug localization,” Soft Comput., vol. 25, no. 11, pp. 7307–
7323, Jun. 2021, doi: 10.1007/S00500-021-05689-2/METRICS.

[38] M. N. Noor, T. A. Khan, F. Haneef, and M. I. Ramay, “Machine Learning Model to
Predict Automated Testing Adoption,” https://services.igi-
global.com/resolvedoi/resolve.aspx?doi=10.4018/IJSI.293268, vol. 10, no. 1, pp. 1–15,
Jan. 1AD, doi: 10.4018/IJSI.293268.

[39] O. Koksal and C. E. Ozturk, “A Survey on Machine Learning-based Automated
Software Bug Report Classification,” ISMSIT 2022 - 6th Int. Symp. Multidiscip. Stud.
Innov. Technol. Proc., pp. 635–640, 2022, doi: 10.1109/ISMSIT56059.2022.9932822.

[40] L. Zhifang, W. Kun, Z. Qi, L. Shengzong, Z. Yan, and H. Jianbiao, “Classification of
open source software bug report based on transfer learning,” Expert Syst., vol. 41, no.
5, p. e13184, May 2024, doi: 10.1111/EXSY.13184.

[41] P. Yildirim Taser, “A novel multi-view ordinal classification approach for software bug
prediction,” Expert Syst., vol. 39, no. 7, p. e13044, Aug. 2022, doi:
10.1111/EXSY.13044.

[42] Y. Tang, H. Zhou, and H. Su, “Automatic Classification of Software Bug Reports Based
on LDA and Word2Vec,” 2022 2nd Int. Conf. Comput. Sci. Electron. Inf. Eng. Intell.
Control Technol. CEI 2022, pp. 491–495, 2022, doi: 10.1109/CEI57409.2022.9950207.

[43] A. Singh, P. K. Kapur, and V. B. Singh, “Developing classifiers by considering sentiment
analysis of reported bugs for priority prediction,” Int. J. Syst. Assur. Eng. Manag., vol.
15, no. 5, pp. 1888–1899, May 2024, doi: 10.1007/S13198-023-02199-2/METRICS.

[44] L. Chmielowski and M. Kucharzak, “Impact of Software Bug Report Preprocessing and
Vectorization on Bug Assignment Accuracy,” Lect. Notes Networks Syst., vol. 255, pp.
153–162, 2022, doi: 10.1007/978-3-030-81523-3_15.

[45] B. Ilijoski et al., “Deep Learning Methods for Bug Bite Classification: An End-to-End
System,” Appl. Sci. 2023, Vol. 13, Page 5187, vol. 13, no. 8, p. 5187, Apr. 2023, doi:
10.3390/APP13085187.

[46] N. Tabassum, A. Namoun, T. Alyas, A. Tufail, M. Taqi, and K. H. Kim, “Classification
of Bugs in Cloud Computing Applications Using Machine Learning Techniques,” Appl.
Sci. 2023, Vol. 13, Page 2880, vol. 13, no. 5, p. 2880, Feb. 2023, doi:
10.3390/APP13052880.

[47] J. P. Meher, S. Biswas, and R. Mall, “Deep learning-based software bug classification,”
Inf. Softw. Technol., vol. 166, p. 107350, Feb. 2024, doi:
10.1016/J.INFSOF.2023.107350.

[48] D. Wang, M. Lin, H. Zhang, and H. Hu, “Detect related bugs from source code using
bug information,” Proc. - Int. Comput. Softw. Appl. Conf., pp. 228–237, 2010, doi:
10.1109/COMPSAC.2010.27.

[49] N. K. Nagwani and S. Verma, “Predictive data mining model for software bug
estimation using average weighted similarity,” 2010 IEEE 2nd Int. Adv. Comput. Conf.
IACC 2010, pp. 373–378, 2010, doi: 10.1109/IADCC.2010.5422923.

[50] C. Rahmani and D. Khazanchi, “A study on defect density of open source software,”
Proc. - 9th IEEE/ACIS Int. Conf. Comput. Inf. Sci. ICIS 2010, pp. 679–683, 2010, doi:

 International Journal of Innovations in Science & Technology

Aug 2024|Vol 6 | Issue 3 Page |1263

10.1109/ICIS.2010.11.
[51] M. Asaduzzaman, M. C. Bullock, C. K. Roy, and K. A. Schneider, “Bug introducing

changes: A case study with Android,” IEEE Int. Work. Conf. Min. Softw. Repos., pp.
116–119, 2012, doi: 10.1109/MSR.2012.6224267.

[52] L. Martie, V. K. Palepu, H. Sajnani, and C. Lopes, “Trendy bugs: Topic trends in the
Android bug reports,” IEEE Int. Work. Conf. Min. Softw. Repos., pp. 120–123, 2012,
doi: 10.1109/MSR.2012.6224268.

[53] M. Steff and B. Russo, “Co-evolution of logical couplings and commits for defect
estimation,” IEEE Int. Work. Conf. Min. Softw. Repos., pp. 213–216, 2012, doi:
10.1109/MSR.2012.6224283.

[54] A. C. Nguyen and S. C. Khoo, “Discovering complete API rules with mutation testing,”
IEEE Int. Work. Conf. Min. Softw. Repos., pp. 151–160, 2012, doi:
10.1109/MSR.2012.6224275.

[55] C. Sadowski, J. Yi, and S. Kim, “The evolution of data races,” IEEE Int. Work. Conf.
Min. Softw. Repos., pp. 171–174, 2012, doi: 10.1109/MSR.2012.6224277.

[56] T. H. Chen, S. W. Thomas, M. Nagappan, and A. E. Hassan, “Explaining software
defects using topic models,” IEEE Int. Work. Conf. Min. Softw. Repos., pp. 189–198,
2012, doi: 10.1109/MSR.2012.6224280.

[57] R. Sawarkar, N. K. Nagwani, and S. Kumar, “Predicting Bug Estimation Time for Newly
Reported Bug Using Machine Learning Algorithms,” 2019 IEEE 5th Int. Conf.
Converg. Technol. I2CT 2019, Mar. 2019, doi: 10.1109/I2CT45611.2019.9033749.

[58] A. Munde, “Envisaging Bugs by Means of Entropy Measures,” Smart Innov. Syst.
Technol., vol. 196, pp. 149–156, 2021, doi: 10.1007/978-981-15-7062-9_15.

[59] H. Mahfoodh and Q. Obediat, “Software Risk Estimation through Bug Reports Analysis
and Bug-fix Time Predictions,” 2020 Int. Conf. Innov. Intell. Informatics, Comput.
Technol. 3ICT 2020, Dec. 2020, doi: 10.1109/3ICT51146.2020.9312003.

[60] M. Kumari, U. K. Singh, and M. Sharma, “Entropy Based Machine Learning Models for
Software Bug Severity Assessment in Cross Project Context,” Lect. Notes Comput. Sci.
(including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 12254
LNCS, pp. 939–953, 2020, doi: 10.1007/978-3-030-58817-5_66.

[61] E. Mashhadi, S. Chowdhury, S. Modaberi, H. Hemmati, and G. Uddin, “An Empirical
Study on Bug Severity Estimation using Source Code Metrics and Static Analysis,” Jun.
2022, doi: 10.1016/j.jss.2024.112179.

[62] D. Tambe and L. Ragha, “Analysis of Software Bug Prediction and Tracing Models from
a Statistical Perspective Using Machine Learning,” 2022 2nd Int. Conf. Intell. Technol.
CONIT 2022, 2022, doi: 10.1109/CONIT55038.2022.9848385.

[63] A. Bachmann and A. Bernstein, “When process data quality affects the number of bugs:
Correlations in software engineering datasets,” Proc. - Int. Conf. Softw. Eng., pp. 62–
71, 2010, doi: 10.1109/MSR.2010.5463286.

[64] Y. Liu and K. Ben, “Knowledge representation of software faults based on open bug
repository,” 2010 Int. Conf. Comput. Des. Appl. ICCDA 2010, vol. 2, 2010, doi:
10.1109/ICCDA.2010.5541110.

[65] R. Souza and C. Chavez, “Characterizing verification of bug fixes in two open source
IDEs,” IEEE Int. Work. Conf. Min. Softw. Repos., pp. 70–73, 2012, doi:
10.1109/MSR.2012.6224301.

[66] J. Park, M. Kim, B. Ray, and D.-H. Bae, “An Empirical Study of Supplementary Bug
Fixes”, Accessed: Aug. 27, 2024. [Online]. Available: http://cvs2svn.tigris.org/

[67] A. Issabayeva, A. Nugroho, and J. Visser, “Issue handling performance in proprietary
software projects,” IEEE Int. Work. Conf. Min. Softw. Repos., pp. 209–212, 2012, doi:
10.1109/MSR.2012.6224282.

 International Journal of Innovations in Science & Technology

Aug 2024|Vol 6 | Issue 3 Page |1264

[68] S. Mani, S. Nagar, D. Mukherjee, R. Narayanam, V. S. Sinha, and A. A. Nanavati, “Bug
resolution catalysts: Identifying essential non-committers from bug repositories,” 2013
10th IEEE Work. Conf. Min. Softw. Repos. (MSR 2013), pp. 193–202, May 2013, doi:
10.1109/MSR.2013.6624027.

[69] A. Nistor, T. Jiang, and L. Tan, “Discovering, reporting, and fixing performance bugs,”
IEEE Int. Work. Conf. Min. Softw. Repos., pp. 237–246, 2013, doi:
10.1109/MSR.2013.6624035.

[70] T. H. Chen, M. Nagappan, E. Shihab, and A. E. Hassan, “An empirical study of dormant
bugs,” 11th Work. Conf. Min. Softw. Repos. MSR 2014 - Proc., pp. 82–91, May 2014,
doi: 10.1145/2597073.2597108.

[71] H. Osman, M. Lungu, and O. Nierstrasz, “Mining frequent bug-fix code changes,” 2014
Softw. Evol. Week - IEEE Conf. Softw. Maintenance, Reengineering, Reverse Eng.
CSMR-WCRE 2014 - Proc., pp. 343–347, 2014, doi: 10.1109/CSMR-
WCRE.2014.6747191.

[72] M. Gupta, A. Sureka, and S. Padmanabhuni, “Process mining multiple repositories for
software defect resolution from control and organizational perspective,” 11th Work.
Conf. Min. Softw. Repos. MSR 2014 - Proc., pp. 122–131, May 2014, doi:
10.1145/2597073.2597081.

[73] H. Oumarou, N. Anquetil, A. Etien, S. Ducasse, and K. D. Taiwe, “Identifying the Exact
Bug Fixing Actions,” Proc. - 7th Int. Work. Empir. Softw. Eng. Pract. IWESEP 2016,
pp. 51–56, May 2016, doi: 10.1109/IWESEP.2016.13.

[74] “A Deeper Look into Bug Fixes: Patterns, Replacements, Deletions, and Additions |
IEEE Conference Publication | IEEE Xplore.” Accessed: Aug. 28, 2024. [Online].
Available: https://ieeexplore.ieee.org/document/7832938

[75] “CLEVER: Combining Code Metrics with Clone Detection for Just-in-Time Fault
Prevention and Resolution in Large Industrial Projects | IEEE Conference Publication
| IEEE Xplore.” Accessed: Aug. 28, 2024. [Online]. Available:
https://ieeexplore.ieee.org/document/8595198

[76] J. M. Zhang et al., “A Study of Bug Resolution Characteristics in Popular Programming
Languages,” IEEE Trans. Softw. Eng., vol. 47, no. 12, pp. 2684–2697, Dec. 2021, doi:
10.1109/TSE.2019.2961897.

[77] “The Symptom, Cause and Repair of Workaround | IEEE Conference Publication |
IEEE Xplore.” Accessed: Aug. 28, 2024. [Online]. Available:
https://ieeexplore.ieee.org/document/9286099

[78] L. Chmielowski, M. Kucharzak, and R. Burduk, “APPLICATION OF
EXPLAINABLE ARTIFICIAL INTELLIGENCE IN SOFTWARE BUG
CLASSIFICATION,” Inform. Autom. Pomiary w Gospod. i Ochr. Środowiska, vol. 13,
no. 1, pp. 14–17, Mar. 2023, doi: 10.35784/IAPGOS.3396.

[79] M. A. Arshad and H. Zhiqiu, “Using CNN to Predict the Resolution Status of Bug
Reports,” J. Phys. Conf. Ser., vol. 1828, no. 1, p. 012106, Feb. 2021, doi: 10.1088/1742-
6596/1828/1/012106.

[80] M. K. Yucel and A. Tosun, “Measuring Bug Reporter’s Reputation and Its Effect on
Bug Resolution Time Prediction,” Proc. - 7th Int. Conf. Comput. Sci. Eng. UBMK 2022,
pp. 110–115, 2022, doi: 10.1109/UBMK55850.2022.9919454.

[81] E. Eiroa-Lledo, R. H. Ali, G. Pinto, J. Anderson, and E. Linstead, “Large-Scale
Identification and Analysis of Factors Impacting Simple Bug Resolution Times in Open
Source Software Repositories,” Appl. Sci. 2023, Vol. 13, Page 3150, vol. 13, no. 5, p.
3150, Feb. 2023, doi: 10.3390/APP13053150.

[82] “Machine Learning and Just-in-Time Strategies for Effective Bug Tracking in Software
Development | International Journal of Intelligent Systems and Applications in

 International Journal of Innovations in Science & Technology

Aug 2024|Vol 6 | Issue 3 Page |1265

Engineering.” Accessed: Aug. 28, 2024. [Online]. Available:
https://ijisae.org/index.php/IJISAE/article/view/4013

[83] F. Haneef and M. A. Sindhu, “DLIQ: A Deterministic Finite Automaton Learning
Algorithm through Inverse Queries,” Inf. Technol. Control, vol. 51, no. 4, pp. 611–624,
Dec. 2022, doi: 10.5755/J01.ITC.51.4.31394.

[84] F. Haneef and M. A. Sindhu, “IDLIQ: An Incremental Deterministic Finite Automaton
Learning Algorithm Through Inverse Queries for Regular Grammar Inference,”
https://home.liebertpub.com/big, May 2023, doi: 10.1089/BIG.2022.0158.

[85] R. Shokripour, J. Anvik, Z. M. Kasirun, and S. Zamani, “Why so complicated? Simple
term filtering and weighting for location-based bug report assignment
recommendation,” IEEE Int. Work. Conf. Min. Softw. Repos., pp. 2–11, 2013, doi:
10.1109/MSR.2013.6623997.

[86] H. Naguib, N. Narayan, B. Brügge, and D. Helal, “Bug report assignee recommendation
using activity profiles,” IEEE Int. Work. Conf. Min. Softw. Repos., pp. 22–30, 2013,
doi: 10.1109/MSR.2013.6623999.

[87] “(PDF) Efficient Bug Triaging Using Text Mining.” Accessed: Aug. 27, 2024. [Online].
Available:
https://www.researchgate.net/publication/235911086_Efficient_Bug_Triaging_Using
_Text_Mining

[88] A. Lamkanfi, J. Pérez, and S. Demeyer, “The eclipse and mozilla defect tracking dataset:
A genuine dataset for mining bug information,” IEEE Int. Work. Conf. Min. Softw.
Repos., pp. 203–206, 2013, doi: 10.1109/MSR.2013.6624028.

[89] J. Xuan, H. Jiang, Z. Ren, and W. Zou, “Developer prioritization in bug repositories,”
Proc. - Int. Conf. Softw. Eng., pp. 25–35, 2012, doi: 10.1109/ICSE.2012.6227209.

[90] M. E. Joorabchi, M. Mirzaaghaei, and A. Mesbah, “Works for me! characterizing non-
reproducible bug reports,” 11th Work. Conf. Min. Softw. Repos. MSR 2014 - Proc., pp.
62–71, May 2014, doi: 10.1145/2597073.2597098.

[91] C. A. Thompson, G. C. Murphy, M. Palyart, and M. Gašparič, “How Software
developers use work breakdown relationships in issue repositories,” Proc. - 13th Work.
Conf. Min. Softw. Repos. MSR 2016, pp. 281–285, May 2016, doi:
10.1145/2901739.2901779.

[92] Tamanna and O. P. Sangwan, “Review of text mining techniques for software bug
localization,” Proc. 9th Int. Conf. Cloud Comput. Data Sci. Eng. Conflu. 2019, pp. 208–
211, Jan. 2019, doi: 10.1109/CONFLUENCE.2019.8776959.

[93] A. Chauhan and R. Kumar, “Bug Severity Classification Using Semantic Feature with
Convolution Neural Network,” Adv. Intell. Syst. Comput., vol. 1025, pp. 327–335, 2019,
doi: 10.1007/978-981-32-9515-5_31.

[94] S. Panthaplackel, J. J. Li, M. Gligoric, and R. J. Mooney, “Learning to Describe Solutions
for Bug Reports Based on Developer Discussions,” Proc. Annu. Meet. Assoc. Comput.
Linguist., pp. 2935–2952, 2022, doi: 10.18653/V1/2022.FINDINGS-ACL.231.

[95] “GitHub - HadiJahanshahi/ADPTriage: ADPTriage: Approximate Dynamic
Programming for Bug Triage.” Accessed: Aug. 28, 2024. [Online]. Available:
https://github.com/HadiJahanshahi/ADPTriage

[96] R. R. Panda and N. K. Nagwani, “An Improved Software Bug Triaging Approach Based
on Topic Modeling and Fuzzy Logic,” Lect. Notes Networks Syst., vol. 479, pp. 337–
346, 2023, doi: 10.1007/978-981-19-3148-2_29.

[97] Y. Liu, X. Qi, J. Zhang, H. Li, X. Ge, and J. Ai, “Automatic Bug Triaging via Deep
Reinforcement Learning,” Appl. Sci. 2022, Vol. 12, Page 3565, vol. 12, no. 7, p. 3565,
Mar. 2022, doi: 10.3390/APP12073565.

[98] J. Jang and G. Yang, “A Bug Triage Technique Using Developer-Based Feature

 International Journal of Innovations in Science & Technology

Aug 2024|Vol 6 | Issue 3 Page |1266

Selection and CNN-LSTM Algorithm,” Appl. Sci. 2022, Vol. 12, Page 9358, vol. 12, no.
18, p. 9358, Sep. 2022, doi: 10.3390/APP12189358.

[99] H. Dong, H. Ren, J. Shi, Y. Xie, and X. Hu, “Neighborhood contrastive learning-based
graph neural network for bug triaging,” Sci. Comput. Program., vol. 235, p. 103093, Jul.
2024, doi: 10.1016/J.SCICO.2024.103093.

[100] S. Raemaekers, G. F. Nane, A. Van Deursen, and J. Visser, “Testing principles, current
practices, and effects of change localization,” IEEE Int. Work. Conf. Min. Softw.
Repos., pp. 257–266, 2013, doi: 10.1109/MSR.2013.6624037.

[101] & S. Hart, G. W., Kern Jr, E. C., “F. C. (1989). U.S. Patent No. 4,858,141. Washington,
DC: U.S. Patent and Trademark Office.”.

[102] F. Haneef, “Review of Automaton Learning Algorithms with Polynomial Complexity -
- Completely Solved Examples,” Apr. 2024, Accessed: Aug. 28, 2024. [Online].
Available: https://arxiv.org/abs/2404.11096v1

[103] “(PDF) A Review on Big Data and Social Network Analytics Techniques.” Accessed:
Aug. 28, 2024. [Online]. Available:
https://www.researchgate.net/publication/342144889_A_Review_on_Big_Data_and
_Social_Network_Analytics_Techniques

[104] I. M. Pereira, T. G. de Senna Carneiro, and E. Figueiredo, “Exploring the Ci/Cd Pipeline
in Floss Repositories of Embedded Iot Systems”, doi: 10.2139/SSRN.4529908.

[105] G. A. Destro and B. B. N. De França, “Mining Software Repositories for the
Characterization of Continuous Integration and Delivery,” ACM Int. Conf. Proceeding
Ser., pp. 664–669, Oct. 2020, doi: 10.1145/3422392.3422503.

[106] F. Haneef and M. A. Sindhu, “A Reinforcement Learning Based Grammatical Inference
Algorithm Using Block-Based Delta Inverse Strategy,” IEEE Access, vol. 11, pp.
12525–12535, 2023, doi: 10.1109/ACCESS.2023.3242124.

[107] J. P. Meher and R. Mall, “Machine Learning-based Software Bug Classification through
Mining Open Source Repositories,” OCIT 2023 - 21st Int. Conf. Inf. Technol. Proc.,
pp. 17–22, 2023, doi: 10.1109/OCIT59427.2023.10431348.

[108] S. M. Abozeed, M. Y. Elnainay, S. A. Fouad, and M. S. Abougabal, “Software bug
prediction employing feature selection and deep learning,” 2019 Int. Conf. Adv. Emerg.
Comput. Technol. AECT 2019, Feb. 2020, doi: 10.1109/AECT47998.2020.9194215.

Copyright © by authors and 50Sea. This work is licensed under
Creative Commons Attribution 4.0 International License.

