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NOISIAI

fractal scaling using Hurst increment ranges and second-order moment relations in the

context of urban population trends. This research aimed to scrutinize population trends
in Karachi over both uneven periods (1729 to 1946) and even periods (1951 to 2020) using non-
parametric Mann-Kendall tests and Hurst error accuracy testing. The primary focus was on
analyzing spectrum power fractal scaling through Hurst exponent ranges and second-order
moment generation. The FD results indicated irregular (1.371) and regular (1.058) intervals
within the inequality range of 1 < D < 1.5. The log-population trend cumulatively increased
from 3.0 in 1729 to 5.72 in 1946, and from 6.05 in 1951 to 7.36 in 2020, suggesting that the
fractal dimension is more appropriately fitted for total regular intervals. The second-order and
range exponents were H2ndM (0.60 £ 0.09) and H-Range (0.83 £ 0.05) for the uneven period
(1729 to 1946), and H2ndM (0.85 £ 0.06) and H-Range (0.93 £ 0.02) for the even period (1951
to 2020). The study's results demonstrate that the range increment method is suitable and
consistent across both long and short intervals. For regular intervals, the Hurst exponents show
a linear relationship, indicating stability in the population trend analysis.
Keywords: Fractal Dimension (FD), Mann-Kendell test, Spectrum power fractal scaling, Hurst
Range increment (HRM,%C) Hurst Second Order Moment Generation (Hzn(m)
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Introduction:

The analysis of urban morphologies relies on urban models that simulate and reflect the
characteristics of urban spatial patterns. These models are valuable for understanding the
complexities of urban growth and spatial distribution [1] [2]. Trends in data are crucial for
addressing real-world problems, typically defined as average changes per unit [3] [4]. In
ecological studies, trend analysis of time series data is essential, particularly when data intervals
range from small to large values over time, as seen in population dynamics [5] [6]. The Mann-
Kendall test is widely used for investigating trends in urban phenomena [7] [8] [9]. The
assessment of fractal dimensions in time series data has garnered significant attention due to its
implications for understanding complex, self-similar structures across various fields. This study
focuses on evaluating the dispersion analysis method for estimating the fractal dimension of
one-dimensional time series. This method is particularly relevant for signals with values
measured at even time intervals, providing insights into the underlying structural properties of
the data [5].

Fractal dimensions, denoted as DDD, characterize the roughness or complexity of a
signal, where HHH is the Hurst coefficient related to the fractal dimension by H=2-DH = 2 -
DH=2-D [10]. The Hurst coefficient HHH quantifies the degree of autocorrelation or
smoothness in a signal, with HHH values approaching 0 indicating maximal roughness or
anticorrelation, and values near 1 signifying smoother, positively correlated signals. For one-
dimensional series, the fractal dimension DDD falls within the range 1<D<21 <D < 21<D<2,
where a higher DDD reflects increased complexity [11].

Dispersion analysis, introduced in 1988, has become a pivotal technique for assessing
fractal characteristics across various applications, including regional flow distributions in
biological systems like the heart, lung, and kidney [12]. The method involves estimating the
variance of a signal at multiple resolution levels and plotting the logarithm of this variance
against the logarithm of the resolution size. For fractal signals, this plot yields a straight line with
a slope of 1-D1 - D1-D, providing a straightforward approach to quantifying the degree of
heterogeneity in the signal [13].

This study builds upon the foundational work of dispersion analysis by applying it to a
variety of one-dimensional time series signals, including those relevant to biological and
environmental contexts. The robustness of dispersion analysis compared to traditional methods
such as the Hurst rescaled range analysis will be evaluated [14]. The latter method, while well-
established, faces limitations, particularly in estimating fractal dimensions from shorter data sets
due to its sensitivity to local correlations and nonstationary signals [15]. This research provides
an assessment of fractal theory applied to urban studies, focusing on cities like Karachi, which
exhibit fractal characteristics. Urban morphologies are often fractal, displaying self-affinity and
self-similarity [16] [17]. This study calculates the fractal behavior of Karachi over different
periods using fractal techniques related to the fractal dimension. The current methodology
involves manipulating the Hurst exponent within the fractal approach [18] [19]. The Hurst
exponent is a modern method for analyzing fractal scales, used to evaluate the memory
characteristics of data series through fractal scaling [20].

Obijectives of Study:

This research aims to explore the relationship between urban population dynamics and
fractal dimensions, considering Karachi as a fractal city. The study involves computing urban
population data intervals to estimate fractal dimensions, applying spectral power fractal scaling,
and comparing Hurst exponent estimates from Range Increment and Second Order Moment
techniques. Error-correction formulas for fractal dimension and Hurst exponent estimation,
along with the Fractal-Hurst relationship of urban population data, are also discussed.

Data and Methodology:
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The research examines Karachi's population dynamics across two distinct time intervals:
an uneven period (1729-1946) and an even period (1951-2020). The data sources include (i)
historical gazetteer records from 1729 to 1946 and (ii) annual population data from 1951 to 2020
provided by the Pakistan Bureau of Statistics. Fractal features of population evolution were
analyzed by calculating the Hurst exponent (H) for these intervals. Power spectrum analysis was
employed to identify fractal scaling, and comparisons between Range Increment and Second
Order Moment Generation techniques were made to validate the persistence and anti-
persistence observed in population fluctuations. Additionally, the study addresses errors
associated with Hurst exponent calculations.
Computational Models and Simulations:

The research utilized computational models to simulate population growth and fractal
dynamics. These simulations were run on a distributed computing platform to handle the
complex calculations and large data volumes. Python’s scikit-learn library was used for model
development and performance evaluation, providing insights into the persistence and anti-
persistence observed in population data.

Spectrum Power Fractal Dimension:
The fractal dimension D is the state
B(p,r) = {x:dist(x,p) < r} (1)
Where, B (p, 7) is Hausdorff dimension by the p is a center point and r is the radius of
particular phenomena, the dist (x, p) is the group between the one selected point x and other
point p. Hypothetical x remains a subset of R, bounded in N(r) showing of range compact,
otherwise equal to r. Once t is gradients to 0, N(r) is increases is 1/r deliberating to power(1,2),
D = lim (- 2220 ©
>0 logr
Where, D is Hausdorff dimension, the log r = 00 the symbol - is obligatory that D is positive
(1,4,7).
N(r) = const rP ?3)

N(r) is increases of asymptotically byr 2.
log Nn-1
log[ ]

-1

where N, to direct a curve by a scalel, (1,2).

Also, self-affinity is specified as numerous power laws e.g. Hurst exponent H , H =2—D .The
fractal dimension D is specific by Hausdorff and found by (9,10), is expressed
o 0<d<D
Hy(s)={0 D<d<oo ©)
h d=D
If d = D, h is a finite value, numerically describes the size of data intervals.
Hurst Exponent by Fractal Parameter Scaling
Hurst Exponent is mostly used to valuation of the memory of any data series,
Supposed that a stochastic data series is measured x(t) is a fractal nature previously x(4 t) is
parallel to b" x(t), Superscript H is designed the Hurst Exponent, the stochastic data series are
computed
0<0.5<1,if 0 <H <0.5and 0.5 <H <1 (0)
Suppose that {y(t)} is disteputable as a random or Brownian process on the
continuous time series, which is considered a persistent or anti-persistent series. uncertainty
for a time step At is incensement is as related

Ay(t) = y(t + A9 - y(©) )
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As comparative variance At, the successive increments Ay(t), y(t + At) are not
correlated. The correlation p, autonomous of time t, separated in

22 =2+2p(—3<p<1) ®)
Indecision, {y(t)} is a fractal procedure in Hurst exponent H, eatlier, V ¢ > 0,
1
Ye = (C_H) y(ct) ©)

This is a further fractal form of comparable statistical properties
Hurst Exponent Range Increment-Second Order Moment Generation:

The Hurst exponent (H) is a crucial metric used to assess the persistence or anti-
persistence in data series, particularly within the framework of fractal analysis. The Range
Increment method evaluates the size of variation in the data by analyzing the range of increments
over time, providing insights into long-term dependence and self-affinity [9]. In contrast, the
Second Order Moment Generation method calculates the exponent by measuring the scaling
behavior of the second-order statistical moments of the data. By employing both techniques,
the authors ensure a comprehensive and robust evaluation of the Hurst exponent, enhancing
the accuracy of identifying the fractal properties and temporal dynamics of population
deviations. The comparison of results from these methods further confirms the presence of
persistence or anti-persistence in population trends. In the stochastic process of fractal any
time At, the compatible Ay is an explanation value 0 and equals

E(Ay?) = cAt?H (10)

The average of Ay? is an impartial estimator of E(Ay?) Ax?= At?? of E(Ay?)also Ax*=
At?M. Ax? are the instant and At is a period stage comprising the three-dimensional
increments (1,2).

E(Ay(At?)) = cAt?H = InE(AyAy(At?)) = Inc + 2HInAt (11)

E(Ay(24t%)) = c(2At%7) = InE(Ay(2At?)) = Inc + 2HIn2At (12)
By Deducting the two equations (11 and 12)

InE[y(t + 2At) — y(t)]? — mE[y(+At) — y(t)]? = 2H(In2At — InAt)

= 2H(!"At/, ) = 2HIn2 (13)

Consequently,

= (2;2) {InE[y(t + 2At) — y(£)]? — ImE[y(t + At) — y(t)]*} (14)

Supposedly, the Hurst exponent is independent of the time step is determined, by
the resolve of the form (14) is initiated to trial fractal molded. Hurst exponent could be

computed from the coefficient correlation between the successive increments, by (22H =2+
2p (—% <p< 1).Underneath the e At has a predictable value of 0, by obtaining p resolved

by
E[y(t+2A)—y(t+At)][y(t+At)—y(t)]

 JE(y(t+200) -y (t+AD2E[y (t+2A0) -y (D)]?)
The prospect of the equation is the unbiased estimator for the expectation.

[y(t + 2At) — y(t + AD)][y(t + At) — y(D)]
[y(t + 2At) — y(t + At)]? (16)

[y(t + 2At) — y(D)]?

(15)

Hurst exponent is found
220 =2+ 2p whichis H = In(2 + 2p) /In4 17
The range increment is the variance between the highest and lowest values of y(t). let’s
the R(At) is the average range in all intervals and Atis in the fractal process {y(t)}, In the
equation below,
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1
ye = (C—H) yet (18)
Where, {y(t)} and {y.(t)} are the alike expected series (1,2). It is that the range

procedure {y.(t)}, Atis CiH time the range is {y(t)} is time period At/c. Substituting At/c by

At , R(At) is the average range in the time interval At
R(At) = CAt? (19)
Application of Spectrum Fractal Scaling:
Supposedly, an urban city concerning fractal cities, which is detected that the central
distance r reliant on the population size p, r X power of p.
r(p) = kpd (20)
log(r) = log(k) + dlogp (21)
So, d is the slope of abscissa the logarithm of the step size, and of ordinate the logarithm The
power laws is

y = f(x) = const x° (22)
exponent c. scale invariance involves
f(ax) = bf (x) (23)
f(x) = const x°¢ (24)

Where
c =logb/loga
logy = log(const) + clogx (25)

Non-Parametric test:
The Mann-Kendall test reflects 7 data values along with T;and Tjis the subgroup of

data here,7=123....n-7 andj=7+1,:+2 ........... 7.
$ = X5 Eicivasign(Ty -T) (26)
1ifT; _-T; >0
sign(T; _T;) =S 0if T; _-T; =0 27)
-1ifT; _T; <0

Where T; and T; are the first and second data values are assessed as an order of time series.
The Statistic Z test is obtained as express

% fors>20
Zs =14 O0fors=0
% fors <0
(28)
The Zs test is computed for the consequence of the trend. The Zs stands the test of

null of hypothesis, Ho the coefficient value of |Z| < | Zq
The following algorithm was utilized to perform nonparametric test.

import pandas as pd
from scipy.stats import mannwhitneyu, kruskal, wilcoxon, friedmanchisquare,
chi2_contingency

# Load data
data = pd.read_csv('your_data.csv')

# Example 1: Mann-Whitney U Test
groupl = data[data['Group'] == "A"]['Value']
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group2 = data[data['Group'] == 'B'|['Value']
stat, p_value = mannwhitneyu(groupl, group2)

print(fMann-Whitney U statistic: {stat}, P-value: {p_value}")

# Example 2: Kruskal-Wallis H Test
groupl = data[data['Group'] == "A"|['Value']
group2 = data[data['Group'] == 'B'|['Value']
group3 = data[data['Group'] == "'C'|['Value']
stat, p_value = kruskal(group1, group2, group3)
print(fKruskal-Wallis H statistic: {stat}, P-value: {p_value}")

# Example 3: Wilcoxon Signed-Rank Test
before = data[data['Time'] == 'Before']|['Value']
after = data[data['Time'] == "Aftet"]['Value']
stat, p_value = wilcoxon(before, after)
print(fWilcoxon Signed-Rank statistic: {stat}, P-value: {p_value}')

# Example 4: Friedman Test
groupl = data[data['Treatment'] == "X'|['Value']
group2 = data[data['Treatment] == "Y"]['Value']
group3 = data[data['Treatment'] == "Z"]['Value']
stat, p_value = friedmanchisquare(group1, group2, group3)
print(fFriedman statistic: {stat}, P-value: {p_value}')

# Example 5: Chi-Square Test for Independence
contingency_table = pd.crosstab(data['Category1'], data|'Category2'])
stat, p_value, dof, expected = chi2_contingency(contingency_table)
print(f Chi-Square statistic: {stat}, P-value: {p_value}, Degrees of freedom: {dof}")
print(fExpected frequencies: \n{expected}")

Accuracy of Error:

The power spectrum S(w) frequently is oppressed by the execution of a Fourier
transform on the series paths the power law recital over a significant frequency scale [3] as
definite by

Sx w# (29)
H=22 (30)

Fractal scaling is exposed to arise after the scaling is projected by manipulating the
extent of the data or else in assessing scaling in the power spectrum.
Results and Discussion:

In this research, population data for Karachi was analyzed across two distinct time
intervals: 1729-1946 and 1951-2020. These intervals were categorized into historical and recent
periods, with data series examined through spectral power fractal scaling using the Hurst
exponent, Second Order Moment, and Range Increment methods. Error calculations for the
Hurst exponent and trend analysis using the Mann-Kendall statistic validated the fractal scaling.
The integration of computational tools and models significantly enhanced the accuracy and
reliability of the fractal and statistical analyses. The use of high-performance computing and
advanced data processing techniques allowed for precise calculations of the Hurst exponent and
fractal dimensions.
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Figure 1. Linear Trend Irregular Population interval from 1729-1946 and 1729-1798

Table 1. shows that the non-parametric Kendall's test applied to the irregular data
(1729-1946) and the regular data (1951-2020) reveals that the Kendall coefficient |Zs| is
significantly higher than |Ze |. This indicates a stronger trend in the even intervals compared to
the uneven intervals, as illustrated in Figures 1 to 6. The trend in the even interval shows a
consistent increase compared to earlier periods. Additionally, with S statistic and p < « (0.05),
the null hypothesis (HO) is rejected, confirming a significant trend in the data series.

Table 1. Non-parametric analysis for logarithm population data series 1729 to 2020.

Mann- .. 1729-1798 1810-1897 1901-1946 1729-1946 1951-2020
Kendall statistic

Kendall's tan 0.978 0.744 1.000 0.966 0.999
Kendall statistic (S) 89.000 58.000 45.000 643.000 1889.0
Var(S) 1232.00 1236.00 5676.23 5845.000  27104.3
Alpha 0.05 0.05 0.05 0.05 0.05
p-value (Two-tailed) <.001 <.001 <.001 <.001 <.001
Ed 4.443 4.165 5.486 3.997 13.622

| /2| 1.960 1.960 1.960 1.960 1.960
|2 ] 4.443 4.165 5.486 3.997 13.622

| 22| 2.160 2.179 2.262 2.028 2.000

Further analysis explored the relationship between population and fractal dimension.
For the uneven interval (1729-1946), the log-population (p) versus fractal dimension (D) is
described by Log(P)ir = 0.8647D + 3.1933. For the even interval (1951-2020), it is Log(P)r =
0.2035D + 6.1014. The coefficient of determination indicates a strong positive correlation
between the log-linear functions of population and fractal dimensions, as shown in Table 2 (a-
b) and Figure 6.
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Figure 2. Linear Trend Irregular Population interval from 1810-1897 and 1901-1946
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Table 2. (a) Fractal Dimension and Hurst Exponents for Irregular and Regular Population
intervals

Date Interval Hurst Exponent Fractal Dimension
1729-1946 0.629 1.371
1729-1798 0.797 1.203
1810-1897 0.81 1.190
1901-1946 0.789 1.211
1951-2015 0.942 1.058
1951-1960 0.825 1.175
1961-1970 0.773 1.227
1971-1980 0.827 1.173
1981-1990 0.837 1.163
1991-2000 0.847 1.153
2001-2020 0.863 1.137

Table 2. (b) The Logarithm population along Fractal Dimension and Hurst Exponents
Time Lo Lo Hurst
Interval E-D | Log(p) R2 estigrg)a)ted Ac%?z Exponent
1729-1946 | 1.371 Z 15330'864717 109867 | 4.378804 5.72835 0.629
1951-2020 | 1.058 }67 1614?'2035]3 "1 0.9884 | 6316703 7.033741 0.942

Table 2. (a-b) highlights that the log population increased from 3.0 in 1729 to 5.73 in
1946 and from 6.06 in 1951 to 7.36 in 2020. Conversely, the Fractal Dimension (FD) varied
from 1.371 (1729-1946) to 1.058 (1951-2020), demonstrating that both irregular and regular
population data series fall within the inequality range 1 < D < 1.5. This correlation underscores
that fractal dimensions are a reasonable measure for even intervals. The Hurst exponents,
calculated using the Range Increment and Second Order Moment methods, show values of
H2ndM = 0.60 and HRange = 0.83 for the irregular period (1729-1946) and H2ndM = 0.85 and

HRange = 0.99 for the regular period (1951-2020), as detailed in Table 3.
Table 3. Hurst Exponent Obtain by H raneeM and HzndM from 1729 to 2020

Irregular interval

Second Moment Growth

Range increment(H rangc)

(Hz.aM)
1729 to1798 0.59 + 0.06 0.72 £ 0.02
1810 to 1898 0.51 £ 0.04 0.66 £ 0.03
1901 to 1946 0.56 = 0.07 0.79 £ 0.03
1729 to 1946 0.60 £ 0.09 0.83 + 0.05
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Regular Interval ?;Iczc;nd(in)Moment Growth Range Increment (H rangc)
1951 to 1960 0.56 £ 0.07 0.69 £ 0.03
1961 to 1970 0.58% 0.02 0.60 £ 0.03
1971 to 1980 0.66 £ 0.02 0.90 £ 0.06
1981 to 1990 0.68 £ 0.02 0.82 £ 0.03
1991 to 2000 0.72 £ 0.02 0.82 £ 0.05
2000 to 2020 0.82 £ 0.01 0.87 £ 0.01
1951 to 2020 0.85 £ 0.06 0.99 £ 0.02

Both irregular and regular data series show Hurst exponents (H) > 0.5, indicating a
positive correlation with fractal dimensions (Table 2). The Hurst exponent values between 0.5
and 1 suggest a confident and increasing trend. This research confirms that spectral fractal
dimensions inversely correlate with the Hurst exponent, with an increasing fractal dimension
corresponding to a decreasing Hurst exponent. The data interval demonstrates a close-fitting
persistence in the Hurst exponent, reflecting an interactive gradient of trend fitting for regular
data series.

Conclusion:

This study examines population inequality in Karachi using spectrum power fractal
scaling through the Second Moment and Range Increment methods to analyze the Hurst
Exponent. The analysis of data intervals from 1729 to 1946 and 1951 to 2020 revealed that
recent decades exhibit a smoother and more pronounced increase compared to earlier periods.
The findings confirm a strong positive correlation and persistence in the population data. Log-
linear functions versus fractal dimensions support the conclusion that Hurst Exponent values
exceeding 0.5 indicate persistent data series. Additionally, the Range Increment method
consistently produces higher values than the Second Moment technique across both irregular
and regular datasets. Overall, the research provides valuable insights into the dynamics of
population evolution and the patterns of inequality in Karachi over several centuries.
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