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pectral power analysis was employed to assess the Fractal Dimension (FD) and explore 
fractal scaling using Hurst increment ranges and second-order moment relations in the 
context of urban population trends. This research aimed to scrutinize population trends 

in Karachi over both uneven periods (1729 to 1946) and even periods (1951 to 2020) using non-
parametric Mann-Kendall tests and Hurst error accuracy testing. The primary focus was on 
analyzing spectrum power fractal scaling through Hurst exponent ranges and second-order 
moment generation. The FD results indicated irregular (1.371) and regular (1.058) intervals 
within the inequality range of 1 < D < 1.5. The log-population trend cumulatively increased 
from 3.0 in 1729 to 5.72 in 1946, and from 6.05 in 1951 to 7.36 in 2020, suggesting that the 
fractal dimension is more appropriately fitted for total regular intervals. The second-order and 
range exponents were H2ndM (0.60 ± 0.09) and H-Range (0.83 ± 0.05) for the uneven period 
(1729 to 1946), and H2ndM (0.85 ± 0.06) and H-Range (0.93 ± 0.02) for the even period (1951 
to 2020). The study's results demonstrate that the range increment method is suitable and 
consistent across both long and short intervals. For regular intervals, the Hurst exponents show 
a linear relationship, indicating stability in the population trend analysis. 
Keywords: Fractal Dimension (FD), Mann-Kendell test, Spectrum power fractal scaling, Hurst 
Range increment (HRange), Hurst Second Order Moment Generation (H2ndM). 
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Introduction:  
The analysis of urban morphologies relies on urban models that simulate and reflect the 

characteristics of urban spatial patterns. These models are valuable for understanding the 
complexities of urban growth and spatial distribution [1] [2]. Trends in data are crucial for 
addressing real-world problems, typically defined as average changes per unit [3] [4]. In 
ecological studies, trend analysis of time series data is essential, particularly when data intervals 
range from small to large values over time, as seen in population dynamics [5] [6]. The Mann-
Kendall test is widely used for investigating trends in urban phenomena [7] [8] [9]. The 
assessment of fractal dimensions in time series data has garnered significant attention due to its 
implications for understanding complex, self-similar structures across various fields. This study 
focuses on evaluating the dispersion analysis method for estimating the fractal dimension of 
one-dimensional time series. This method is particularly relevant for signals with values 
measured at even time intervals, providing insights into the underlying structural properties of 
the data [5]. 

Fractal dimensions, denoted as DDD, characterize the roughness or complexity of a 
signal, where HHH is the Hurst coefficient related to the fractal dimension by H=2−DH = 2 - 
DH=2−D [10]. The Hurst coefficient HHH quantifies the degree of autocorrelation or 
smoothness in a signal, with HHH values approaching 0 indicating maximal roughness or 
anticorrelation, and values near 1 signifying smoother, positively correlated signals. For one-
dimensional series, the fractal dimension DDD falls within the range 1<D<21 < D < 21<D<2, 
where a higher DDD reflects increased complexity [11]. 

Dispersion analysis, introduced in 1988, has become a pivotal technique for assessing 
fractal characteristics across various applications, including regional flow distributions in 
biological systems like the heart, lung, and kidney [12]. The method involves estimating the 
variance of a signal at multiple resolution levels and plotting the logarithm of this variance 
against the logarithm of the resolution size. For fractal signals, this plot yields a straight line with 
a slope of 1−D1 - D1−D, providing a straightforward approach to quantifying the degree of 
heterogeneity in the signal [13]. 

This study builds upon the foundational work of dispersion analysis by applying it to a 
variety of one-dimensional time series signals, including those relevant to biological and 
environmental contexts. The robustness of dispersion analysis compared to traditional methods 
such as the Hurst rescaled range analysis will be evaluated [14]. The latter method, while well-
established, faces limitations, particularly in estimating fractal dimensions from shorter data sets 
due to its sensitivity to local correlations and nonstationary signals [15]. This research provides 
an assessment of fractal theory applied to urban studies, focusing on cities like Karachi, which 
exhibit fractal characteristics. Urban morphologies are often fractal, displaying self-affinity and 
self-similarity [16] [17]. This study calculates the fractal behavior of Karachi over different 
periods using fractal techniques related to the fractal dimension. The current methodology 
involves manipulating the Hurst exponent within the fractal approach [18] [19]. The Hurst 
exponent is a modern method for analyzing fractal scales, used to evaluate the memory 
characteristics of data series through fractal scaling [20]. 
Objectives of Study: 

This research aims to explore the relationship between urban population dynamics and 
fractal dimensions, considering Karachi as a fractal city. The study involves computing urban 
population data intervals to estimate fractal dimensions, applying spectral power fractal scaling, 
and comparing Hurst exponent estimates from Range Increment and Second Order Moment 
techniques. Error-correction formulas for fractal dimension and Hurst exponent estimation, 
along with the Fractal-Hurst relationship of urban population data, are also discussed. 
Data and Methodology: 
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The research examines Karachi's population dynamics across two distinct time intervals: 
an uneven period (1729-1946) and an even period (1951-2020). The data sources include (i) 
historical gazetteer records from 1729 to 1946 and (ii) annual population data from 1951 to 2020 
provided by the Pakistan Bureau of Statistics. Fractal features of population evolution were 
analyzed by calculating the Hurst exponent (H) for these intervals. Power spectrum analysis was 
employed to identify fractal scaling, and comparisons between Range Increment and Second 
Order Moment Generation techniques were made to validate the persistence and anti-
persistence observed in population fluctuations. Additionally, the study addresses errors 
associated with Hurst exponent calculations. 
Computational Models and Simulations:  

The research utilized computational models to simulate population growth and fractal 
dynamics. These simulations were run on a distributed computing platform to handle the 
complex calculations and large data volumes. Python’s scikit-learn library was used for model 
development and performance evaluation, providing insights into the persistence and anti-
persistence observed in population data. 
Spectrum Power Fractal Dimension:  
 The fractal dimension D is the state  

𝐵(𝑝, 𝑟) = {𝑥: 𝑑𝑖𝑠𝑡(𝑥, 𝑝) < 𝑟}                (1) 
 Where, B (p, r) is Hausdorff dimension by the p is a center point and r is the radius of 
particular phenomena, the dist (x, p) is the group between the one selected point x and other 
point p. Hypothetical x remains a subset of Rn bounded in N(r) showing of range compact, 
otherwise equal to r. Once r is gradients to 0, N(r) is increases is 1/r deliberating to power(1,2), 

𝐷 = lim
𝑟→0

(−
𝑙𝑜𝑔𝑁(𝑟)

𝑙𝑜𝑔𝑟
)      (2) 

Where, D is Hausdorff dimension, the log r → ∞ the symbol - is obligatory that D is positive 
(1,4,7). 

𝑁(𝑟) ≈ 𝑐𝑜𝑛𝑠𝑡 𝑟𝐷    (3)
    

N(r) is increases of asymptotically by𝑟 𝐷 . 

𝐷 =
log[

𝑁𝑛−1
𝑁𝑛

]

log[
𝑟𝑛

𝑟𝑛−1
]
                                   (4) 

where nN  to direct a curve by a scale nr  (1,2).  

Also, self-affinity is specified as numerous power laws e.g. Hurst exponent H , DH −= 2 .The 
fractal dimension D is specific by Hausdorff and found by (9,10), is expressed 

 𝐻𝑑(𝑠) = {
∞        0 < 𝑑 < 𝐷
0       𝐷 < 𝑑 < ∞
ℎ                 𝑑 = 𝐷

                  (5) 

If d = D, h is a finite value, numerically describes the size of data intervals.  
Hurst Exponent by Fractal Parameter Scaling   
 Hurst Exponent is mostly used to valuation of the memory of any data series, 
Supposed that a stochastic data series is measured x(t) is a fractal nature previously x(b t) is 
parallel to bH x(t), Superscript H is designed the Hurst Exponent, the stochastic data series are 
computed   
                                                     0<0.5<1, if 0 < H < 0.5 and 0.5 <H < 1                  (6) 
 Suppose that {y(t)} is disreputable as a random or Brownian process on the 
continuous time series, which is considered a persistent or anti-persistent series. uncertainty 
for a time step ∆t is incensement is as related 
                                                   ∆y(t) = y(t + ∆t) - y(t)                                        (7) 
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 As comparative variance ∆t, the successive increments ∆y(t),  y(t + ∆t) are not 

correlated. The correlation  𝜌, autonomous of time t, separated in 

22𝐻 = 2 + 2𝜌 (−
1

2
< 𝜌 < 1)                    (8) 

Indecision, {y(t)} is a fractal procedure in Hurst exponent H, earlier, ∀ c > 0,  

𝑦𝑐 = (
1

𝑐𝐻) 𝑦(𝑐𝑡)       (9) 

 This is a further fractal form of comparable statistical properties 
Hurst Exponent Range Increment-Second Order Moment Generation:  
 The Hurst exponent (H) is a crucial metric used to assess the persistence or anti-
persistence in data series, particularly within the framework of fractal analysis. The Range 
Increment method evaluates the size of variation in the data by analyzing the range of increments 
over time, providing insights into long-term dependence and self-affinity [9]. In contrast, the 
Second Order Moment Generation method calculates the exponent by measuring the scaling 
behavior of the second-order statistical moments of the data. By employing both techniques, 
the authors ensure a comprehensive and robust evaluation of the Hurst exponent, enhancing 
the accuracy of identifying the fractal properties and temporal dynamics of population 
deviations. The comparison of results from these methods further confirms the presence of 
persistence or anti-persistence in population trends. In the stochastic process of fractal any 

𝑡𝑖𝑚𝑒 ∆𝑡, the compatible ∆𝑦 is an explanation value 0 and equals 

𝐸(∆𝑦2) = 𝑐∆𝑡2𝐻      (10) 

The average of ∆𝑦2 is an impartial estimator of 𝐸(∆𝑦2)  ∆𝑥2= ∆𝑡2𝐻 of  𝐸(∆𝑦2)also  ∆𝑥2= 

∆𝑡2𝐻 .    ∆𝑥2  are the instant and ∆𝑡  is a period stage comprising the three-dimensional 
increments (1,2). 

𝐸(∆𝑦(∆𝑡2)) = 𝑐∆𝑡2𝐻 ⟹ 𝑙𝑛𝐸(∆𝑦∆𝑦(∆𝑡2)) = 𝑙𝑛𝑐 + 2𝐻𝑙𝑛∆𝑡     (11) 

𝐸(∆𝑦(2∆𝑡2)) = 𝑐(2∆𝑡2𝐻) ⟹ 𝑙𝑛𝐸(∆𝑦(2∆𝑡2)) = 𝑙𝑛𝑐 + 2𝐻𝑙𝑛2∆𝑡              (12) 

By Deducting the two equations (11 and 12) 

𝑙𝑛𝐸[𝑦(𝑡 + 2∆𝑡) − 𝑦(𝑡)]2 − 𝑙𝑛𝐸[𝑦(+∆𝑡) − 𝑦(𝑡)]2 = 2𝐻(𝑙𝑛2∆𝑡 − 𝑙𝑛∆𝑡) 

= 2𝐻(𝑙𝑛∆𝑡
∆𝑡⁄ ) = 2𝐻𝑙𝑛2      (13) 

Consequently, 

𝐻 =
1

(2𝑙𝑛2)
{𝑙𝑛𝐸[𝑦(𝑡 + 2∆𝑡) − 𝑦(𝑡)]2 − 𝑙𝑛𝐸[𝑦(𝑡 + ∆𝑡) − 𝑦(𝑡)]2}     (14) 

 Supposedly, the Hurst exponent is independent of the time step is determined, by 
the resolve of the form (14) is initiated to trial fractal molded. Hurst exponent could be 

computed from the coefficient correlation between the successive increments, by (22𝐻 = 2 +

2𝜌 (−
1

2
< 𝜌 < 1).Underneath the e ∆𝑡 has a predictable value of 0, by obtain𝑖𝑛𝑔 𝜌 resolved 

by  

𝜌 =
𝐸[𝑦(𝑡+2∆𝑡)−𝑦(𝑡+∆𝑡)][𝑦(𝑡+∆𝑡)−𝑦(𝑡)]

√𝐸([𝑦(𝑡+2∆𝑡)−𝑦(𝑡+∆𝑡)]2𝐸[𝑦(𝑡+2∆𝑡)−𝑦(𝑡)]2)
        (15) 

The prospect of the equation is the unbiased estimator for the expectation. 

{

[𝑦(𝑡 + 2∆𝑡) − 𝑦(𝑡 + ∆𝑡)][𝑦(𝑡 + ∆𝑡) − 𝑦(𝑡)]

[𝑦(𝑡 + 2∆𝑡) − 𝑦(𝑡 + ∆𝑡)]2

[𝑦(𝑡 + 2∆𝑡) − 𝑦(𝑡)]2

     (16) 

Hurst exponent is found  

22𝐻 = 2 + 2𝜌  𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝐻 = 𝑙𝑛(2 + 2𝜌)/𝑙𝑛4     (17) 
 The range increment is the variance between the highest and lowest values of y(t). let’s  

the R(∆𝑡) is the average range in all intervals and ∆𝑡is in the fractal process {y(t)}, In the 
equation below, 
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𝑦𝑐 = (
1

𝐶𝐻) 𝑦𝑐𝑡       (18) 

 Where, {y(t)} and {yc(t)} are the alike expected series (1,2). It is that the range 

procedure {yc(t)},  ∆𝑡 is 
1

𝐶𝐻
 time the range is {y(t)} is time period ∆𝑡/𝑐. Substituting ∆𝑡/𝑐 by 

∆𝑡  , 𝑅(∆𝑡) is the average range in the time interval  ∆𝑡   

𝑅(∆𝑡) = 𝐶∆𝑡𝐻      (19) 
Application of Spectrum Fractal Scaling:  
 Supposedly, an urban city concerning fractal cities, which is detected that the central 

distance r reliant on the population size p, r ∝ power of p. 

𝑟(𝑝) = 𝑘𝑝𝑑      (20) 

log(𝑟) = log(𝑘) + 𝑑𝑙𝑜𝑔𝑝      (21) 
So, d is the slope of abscissa the logarithm of the step size, and of ordinate the logarithm The 
power laws is  

y = f(x) = const xc       (22) 
exponent c. scale invariance involves 

 𝑓(𝑎𝑥) = 𝑏𝑓(𝑥)     (23) 

𝑓(𝑥) = 𝑐𝑜𝑛𝑠𝑡 𝑥𝑐     (24) 
Where   

 𝑐 = 𝑙𝑜𝑔𝑏/𝑙𝑜𝑔𝑎 

         log 𝑦 = log(𝑐𝑜𝑛𝑠𝑡) + 𝑐𝑙𝑜𝑔𝑥      (25)
  

Non-Parametric test:  
 The Mann-Kendall test reflects n data values along with Ti and Tj is the subgroup of 
data here, i = 1,2,3…..n-1  and j = i +1, i +2 ………..n.  

𝑆 = ∑ ∑ 𝑠𝑖𝑔𝑛(𝑇𝑗   −𝑇𝑖)
𝑛
𝑗=𝑖+1

𝑛−1
𝑖=1                    (26) 

𝒔𝒊𝒈𝒏(𝑇𝑗   −𝑇𝑖) = {

1 𝑖𝑓 𝑇𝑗   −𝑇𝑖 > 0

0 𝑖𝑓 𝑇𝑗   −𝑇𝑖  = 0

−1 𝑖𝑓 𝑇𝑗   −𝑇𝑖 < 0

                (27)

                  
Where Ti and Tj  are the first and second data values are assessed as an order of time series. 
The Statistic Zs test is obtained as express 

𝑍𝑠 = {

𝑠−1

𝜎
 𝑓𝑜𝑟 𝑠 > 0

0 𝑓𝑜𝑟 𝑠 = 0
𝑠+1

𝜎
𝑓𝑜𝑟 𝑠 < 0

                                           

(28) 

 The 𝑍𝑠 test is computed for the consequence of the trend. The 𝑍𝑠 stands the test of 
null of hypothesis, H0, the coefficient value of |Zs| < |Zα/2 

The following algorithm was utilized to perform nonparametric test. 

import pandas as pd 
from scipy.stats import mannwhitneyu, kruskal, wilcoxon, friedmanchisquare, 

chi2_contingency 
 

# Load data 
data = pd.read_csv('your_data.csv') 

 
# Example 1: Mann-Whitney U Test 

group1 = data[data['Group'] == 'A']['Value'] 
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group2 = data[data['Group'] == 'B']['Value'] 
stat, p_value = mannwhitneyu(group1, group2) 

print(f'Mann-Whitney U statistic: {stat}, P-value: {p_value}') 
 

# Example 2: Kruskal-Wallis H Test 
group1 = data[data['Group'] == 'A']['Value'] 
group2 = data[data['Group'] == 'B']['Value'] 
group3 = data[data['Group'] == 'C']['Value'] 

stat, p_value = kruskal(group1, group2, group3) 
print(f'Kruskal-Wallis H statistic: {stat}, P-value: {p_value}') 

 
# Example 3: Wilcoxon Signed-Rank Test 

before = data[data['Time'] == 'Before']['Value'] 
after = data[data['Time'] == 'After']['Value'] 

stat, p_value = wilcoxon(before, after) 
print(f'Wilcoxon Signed-Rank statistic: {stat}, P-value: {p_value}') 

 
# Example 4: Friedman Test 

group1 = data[data['Treatment'] == 'X']['Value'] 
group2 = data[data['Treatment'] == 'Y']['Value'] 
group3 = data[data['Treatment'] == 'Z']['Value'] 

stat, p_value = friedmanchisquare(group1, group2, group3) 
print(f'Friedman statistic: {stat}, P-value: {p_value}') 

 
# Example 5: Chi-Square Test for Independence 

contingency_table = pd.crosstab(data['Category1'], data['Category2']) 
stat, p_value, dof, expected = chi2_contingency(contingency_table) 

print(f'Chi-Square statistic: {stat}, P-value: {p_value}, Degrees of freedom: {dof}') 
print(f'Expected frequencies: \n{expected}') 

Accuracy of Error:  
  The power spectrum S(w) frequently is oppressed by the execution of a Fourier 
transform on the series paths the power law recital over a significant frequency scale [3] as 
definite by 

𝑆 ∝  𝜔−𝛽       (29) 

𝐻 =
𝛽−1

2
       (30) 

 Fractal scaling is exposed to arise after the scaling is projected by manipulating the 
extent of the data or else in assessing scaling in the power spectrum.  
Results and Discussion:  
 In this research, population data for Karachi was analyzed across two distinct time 
intervals: 1729-1946 and 1951-2020. These intervals were categorized into historical and recent 
periods, with data series examined through spectral power fractal scaling using the Hurst 
exponent, Second Order Moment, and Range Increment methods. Error calculations for the 
Hurst exponent and trend analysis using the Mann-Kendall statistic validated the fractal scaling. 
The integration of computational tools and models significantly enhanced the accuracy and 
reliability of the fractal and statistical analyses. The use of high-performance computing and 
advanced data processing techniques allowed for precise calculations of the Hurst exponent and 
fractal dimensions.  
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Figure 1. Linear Trend Irregular Population interval from 1729-1946 and 1729-1798 

 Table 1. shows that the non-parametric Kendall's test applied to the irregular data 
(1729-1946) and the regular data (1951-2020) reveals that the Kendall coefficient |Zs| is 
significantly higher than |Zα|. This indicates a stronger trend in the even intervals compared to 
the uneven intervals, as illustrated in Figures 1 to 6. The trend in the even interval shows a 
consistent increase compared to earlier periods. Additionally, with S statistic and p < α (0.05), 
the null hypothesis (H0) is rejected, confirming a significant trend in the data series. 

Table 1. Non-parametric analysis for logarithm population data series 1729 to 2020. 

Mann- 
Kendall statistic 

1729-1798 1810-1897 1901-1946 1729-1946 1951-2020 

Kendall's tau 0.978 0.744 1.000 0.966 0.999 

Kendall statistic (S) 89.000 58.000 45.000 643.000 1889.0 

Var(S) 1232.00 1236.00 5676.23 5845.000 27104.3 

Alpha 0.05 0.05 0.05 0.05 0.05 

p-value (Two-tailed) <.001 <.001 <.001 <.001 <.001 
|zs| 4.443 4.165 5.486 3.997 13.622 

|zα/2| 1.960 1.960 1.960 1.960 1.960 

|ts| 4.443 4.165 5.486 3.997 13.622 

| tα/2| 2.160 2.179 2.262 2.028 2.000 

 Further analysis explored the relationship between population and fractal dimension. 
For the uneven interval (1729-1946), the log-population (p) versus fractal dimension (D) is 
described by Log(P)ir = 0.8647D + 3.1933. For the even interval (1951-2020), it is Log(P)r = 
0.2035D + 6.1014. The coefficient of determination indicates a strong positive correlation 
between the log-linear functions of population and fractal dimensions, as shown in Table 2 (a-
b) and Figure 6. 

 
Figure 2. Linear Trend Irregular Population interval from 1810-1897 and 1901-1946 



                                International Journal of Innovations in Science & Technology 

Aug 2024|Vol 6 | Issue 3                                                                          Page|1335 

 
Figure 3. Linear Trend Regular Population interval from 1951-2020 and 1951-1960 

 
Figure 4.  Linear Trend  Regular Population interval from 1961 to 1970 and 1971 to1980.. 

 
Figure 5. Linear Trend Regular Population interval from 1981-1990 and 1991-2000. 
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Figure 6. Fractal Dimension versus log (pop) functions for  Total Irregular (1729-1946)and 

Regular Intervals (1951-2020). 
Table 2. (a)  Fractal Dimension and Hurst Exponents for Irregular and Regular Population 

intervals 

Date Interval Hurst Exponent Fractal Dimension 

1729-1946 0.629 1.371 

1729-1798 0.797 1.203 

1810-1897 0.81 1.190 

1901-1946 0.789 1.211 

1951-2015 0.942 1.058 

1951-1960 0.825 1.175 

1961-1970 0.773 1.227 

1971-1980 0.827 1.173 

1981-1990 0.837 1.163 

1991-2000 0.847 1.153 

2001-2020 0.863 1.137 

Table 2. (b) The Logarithm population along Fractal Dimension and Hurst Exponents 

Time 
Interval 

F. D Log(p) R2 
Log(p) 
estimated 

Log(p) 
Actual 

Hurst 
Exponent 

1729-1946 1.371 
y = 0.8647p + 
3.1933 

0.9867 4.378804 5.72835 0.629 

1951-2020 1.058 
y = 0.2035p + 
6.1014 

0.9884 6.316703 7.033741 0.942 

 Table 2. (a-b) highlights that the log population increased from 3.0 in 1729 to 5.73 in 
1946 and from 6.06 in 1951 to 7.36 in 2020. Conversely, the Fractal Dimension (FD) varied 
from 1.371 (1729-1946) to 1.058 (1951-2020), demonstrating that both irregular and regular 
population data series fall within the inequality range 1 < D < 1.5. This correlation underscores 
that fractal dimensions are a reasonable measure for even intervals. The Hurst exponents, 
calculated using the Range Increment and Second Order Moment methods, show values of 
H2ndM = 0.60 and HRange = 0.83 for the irregular period (1729-1946) and H2ndM = 0.85 and 
HRange = 0.99 for the regular period (1951-2020), as detailed in Table 3. 

Table 3. Hurst Exponent Obtain by H RangeM and H2ndM from 1729 to 2020 

Irregular interval 
Second Moment Growth 
(H2ndM) 

Range increment(H Range) 

1729 to1798 0.59 ± 0.06 0.72 ± 0.02 
1810 to 1898 0.51 ± 0.04 0.66 ± 0.03 
1901 to 1946 0.56 ± 0.07 0.79 ± 0.03 
1729 to 1946 0.60 ± 0.09 0.83 ± 0.05 
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Regular Interval 
Second Moment Growth 
(H2ndm) 

Range Increment (H Range) 

1951 to 1960 0.56 ± 0.07 0.69 ± 0.03 
1961 to 1970 0.58± 0.02 0.60 ± 0.03 
1971 to 1980 0.66 ± 0.02 0.90 ± 0.06 
1981 to 1990 0.68 ± 0.02 0.82 ± 0.03 
1991 to 2000 0.72 ± 0.02 0.82 ± 0.05 
2000 to 2020 0.82 ± 0.01 0.87 ± 0.01 
1951 to 2020 0.85 ± 0.06 0.99 ± 0.02 

 Both irregular and regular data series show Hurst exponents (H) > 0.5, indicating a 
positive correlation with fractal dimensions (Table 2). The Hurst exponent values between 0.5 
and 1 suggest a confident and increasing trend. This research confirms that spectral fractal 
dimensions inversely correlate with the Hurst exponent, with an increasing fractal dimension 
corresponding to a decreasing Hurst exponent. The data interval demonstrates a close-fitting 
persistence in the Hurst exponent, reflecting an interactive gradient of trend fitting for regular 
data series. 
Conclusion: 
 This study examines population inequality in Karachi using spectrum power fractal 
scaling through the Second Moment and Range Increment methods to analyze the Hurst 
Exponent. The analysis of data intervals from 1729 to 1946 and 1951 to 2020 revealed that 
recent decades exhibit a smoother and more pronounced increase compared to earlier periods. 
The findings confirm a strong positive correlation and persistence in the population data. Log-
linear functions versus fractal dimensions support the conclusion that Hurst Exponent values 
exceeding 0.5 indicate persistent data series. Additionally, the Range Increment method 
consistently produces higher values than the Second Moment technique across both irregular 
and regular datasets. Overall, the research provides valuable insights into the dynamics of 
population evolution and the patterns of inequality in Karachi over several centuries. 
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