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n recent years, the research community has shown a growing interest in the continuous 
temporal data gathered from motion sensors integrated into wearable devices. This type of 
data is highly valuable for analyzing human activities in a variety of domains, including 

surveillance, healthcare, and sports. Various deep-learning models have been developed to 
extract meaningful feature representations from temporal sensory data. Nonetheless, many of 
these models are constrained by their focus on a single aspect of the data, frequently overlooking 
the complex relationships between patterns. This paper presents an ensemble model aimed at 
capturing these intricate patterns by combining CNN and LSTM models within an ensemble 
framework. The ensemble approach involves combining multiple independent models to 
harness their strengths, resulting in a more robust and effective solution. The proposed model 
utilizes the complementary capabilities of CNNs and LSTMs to identify both spatial and 
temporal features in raw sensory data. A comprehensive evaluation of the model is conducted 
using two well-known benchmark datasets: UCI-HAR and WISDM. The proposed model 
attained notable recognition accuracies of 97.92% on the UCI-HAR dataset and 98.52% on the 
WISDM dataset. When compared to existing state-of-the-art methods, the ensemble model 
exhibited superior performance and effectiveness. 
Keywords: Human Activity Recognition; Ensemble Deep Learning Model; Sensory Data 
Analysis; Wearable Devices; Time-Series Signal Processing. 
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Introduction: 
Human Activity Recognition (HAR) refers to the process of identifying human actions using 

either visual data [1] or sensor data collected from wearable devices, such as smartwatches, smart 
glasses, and smartphones [2]. These HAR systems employ machine learning models and signal 
processing techniques to classify simple actions like standing, to complex activities like running, 
cycling, and cooking. HAR is widely used in applications belonging to diverse domains like wellness 
[3], athletics [4], healthcare [5], security [6], etc. It uses sensory time-series data from sensors like 
Inertial Measurement Units (IMU), pressure sensors, heart rate monitors, and more. Raw data from 
the wearable devices cannot be used directly for HAR; as it lacks context, is noisy, and contains 
missing values. It has to be pre-processed for its effective use. 

Many approaches have been developed to extract useful features from continuous 
temporal data as shown in Figure 1. These are handcrafted codebooks and deep-learning 
approaches. Handcrafted features-based approaches depend on the domain knowledge of 
researchers to manually extract features from this data, including simple statistical measures like 
mean, median, variance, maximum, minimum, mode, and standard deviation, as well as more complex 
and rich components, such as frequency domain-based features, which are related to the Fourier 
transform of the signals [7]. On the other hand, codebook-based algorithms, such as the Bag-of-
Features (BOF) approach, use unsupervised clustering algorithms like K-means to create a histogram-
based representation of sensory data which is then used for inference. However, this clustering 
process can be computationally demanding and is not scalable, must be repeated when new 
classes are introduced. Deep learning models provide a more effective and efficient method for 
recognizing human activities as compared to handcrafted and codebook-based approaches because 
they can learn hierarchical data representations and capture temporal patterns directly from raw 
sensory data [8]. Given large amounts of data and careful training, these models perform 
exceptionally better than other mentioned techniques.  Moreover, these models are more adaptive 
and generalize well in production. 

 
Figure 1. The distribution of feature extraction methods for HAR using time-series sensory data. 

This research emphasizes HAR using sensory devices, particularly through the 
implementation of an ensemble model. The proposed CNN-LSTM model serves as an ensemble of 
models by combining the spatial feature extraction capabilities of CNN with the temporal 
dependency capturing abilities of LSTM. The proposed architecture comprises convolutional layers 
followed by LSTM layers, allowing for the effective processing of sequential data and identification 
of activity patterns. The proposed model is tested on two benchmark datasets: UCI-HAR [9], and 
WISDM [10]. Experimental results testify to the ensemble model’s effectiveness by achieving an 
accuracy of 97.92% for UCI-HAR and 98.52% for WISDM datasets, showcasing its potential for 
robust human activity recognition across diverse datasets and applications. The contributions of this 
paper are summarized as follows: 
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• A summarized review of existing feature extraction techniques for HAR. 

• A novel technique has been proposed to automatically learn features and recognize 
activities from wearable smart device data. 

• Performance assessment of the proposed CNN-LSTM model over two well-known public 
datasets. 

Literature Review: 
The utilization of wearable sensor data obtained from different devices, such as 

smartphones, smartwatches, and smart glasses, is the most recent trend in the field of HAR research. 
Such devices contain IMU (accelerometer, gyroscope, and magnetometer) sensors, which record the 
user’s movement as well as pressure and heart rate sensors for environmental and physiological data, 
respectively. Many approaches have been developed to extract useful features from time-series 
sensory data. These are (i)handcrafted, (ii) codebook, and (iii) deep learning-based approaches. 
Handcrafted Feature-Based Techniques: 

Handcrafted features are mathematical and statistical measures calculated from raw data, by 
using domain knowledge and experience on the subject. Researchers extract mathematical features 
from cleaned sensory data. The extracted data points are then combined to create a feature vector, 
which is subsequently used as input for classification algorithms like support vector machines, HMM, 
logistic regression, etc. These features are computationally inexpensive and take little time to set up. 
An overview of the entire process, from handcrafted feature extraction to activity classification, is 
given in Figure 2. 

 
Figure 2. Illustration of HAR process following handcrafted feature extraction, which involves 

pre-processing, segmentation, feature extraction, and computation. 
The researchers in [11][12] used statistical measures like mean, variance, maximum, 

minimum, average, kurtosis, and standard deviation. While [13] investigated frequency domain 
features for identifying physical activities. The author [7] Introduced a hierarchical approach for HAR 
using wearable sensors. They addressed composite daily actions such as cooking, which involve 
multiple atomic actions, by initially extracting hand-crafted features and employing them for subspace 
pooling. Moreover, [14] used appearance-based approaches, fuzzy logic, space-time analysis, and local 
binary patterns to extract these features from raw sensory data. Researchers computed a subset of 
features from raw sensory data in [15][16] and used them as deep neural network input. They 
concluded that combining hand-crafted features with deep neural networks improves classification 
accuracy. Although handcrafted features can be computed quickly, their effectiveness is largely 
dependent on the researcher’s domain knowledge and ability to extract relevant information from 
unprocessed data [17]. 
Codebook-based Techniques: 

Unlike handcrafted features, these techniques use the BOF approach [18] which has two 
primary parts: (i) codebook generation and (ii) codeword assignment by feature encoding as shown 
in Figure 3.  Initially, raw time series sensory data is grouped using clustering by their underlying patterns, 
forming groups, and each group’s centroid is assigned as a codeword. Then, the resulting activity 
sequence data becomes a final representation by assigning these codewords, which are part of the 
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histogram-based representation, which is ultimately used by a classification machine learning 
algorithm [19]. 

 
Figure 3. Pictorial representation of the HAR using a codebook-based feature extraction 

approach, where codewords are derived from raw sensory data. Codebook methods simplify 
complex data by summarizing raw signals into structured sets of "words," facilitating efficient 

processing and pattern recognition. 
The codebook method was employed for many different recognition tasks that dealt with 

bodily, mental, and eye-gaze activities [20]. A codebook-based feature learning methodology was 
presented by Koping et al. [21] to identify human activities from sensory data. They estimated 
codewords in activity sequences to create a feature vector representation based on a histogram, and 
they generated a codebook using the k-mean clustering algorithm. A different study [18] employed 
this technique for person identification using gait. They encoded the static appearance and motion 
information of the walker. Codebook-based approaches work incredibly well because they use 
clustering algorithms to capture hidden patterns in different human activities. Nonetheless, codebook 
computation with an ideal cluster size is a time-expensive procedure [22]. 
Deep Learning-Based Techniques: 

The use of deep neural network architectures has considerably advanced the use of sensory 
data for human activity recognition, allowing automatic learning of hidden patterns in the input data. 
As shown in Figure 4, these networks usually consist of several layers with hidden neurons that input 
data passes through to learn useful features through weight adjustments using the back-propagation 
algorithm, which calculates the derivatives to each weight used in the network [23]. These models can 
automatically extract discriminative features from unprocessed signal data. For HAR, several deep 
network architectures have been used, such as recurrent neural networks (RNNs) [24], gated 
recurrent units (GRUs) [25][26][27][28], convolutional neural networks (CNNs) [11][13][26][29] 
LSTM [12], and hybrid models [30]. RNNs are tailored for sequential data, with connections 
between nodes forming a directed graph over a temporal sequence, enabling the network to retain 
memory through its hidden states [31]. 

While deep learning-based methods are excellent at concluding unprocessed sensory data, 
stand-alone models may find it difficult to fully capture the intricacy of underlying patterns in complex 
tasks like analyzing continuous time series data of human activities. Ensemble deep networks 
combine the best features of several models into a single, cohesive framework [32]. The author 
[15][33] used sensory data to combine CNN and LSTM networks to identify human activities. They 
found remarkable performance gains as compared to single networks. By utilizing the strengths of 
various networks within a single framework, these models are excellent at capturing complex spatial 
features and intricate temporal relationships [34]. This allows them to prevail over the shortcomings 
of individual models and provide a more all-encompassing solution to the complexities of HAR 
systems. 
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Figure 4. Illustration of HAR using deep learning network, applied to raw sensory data. 

Material and Methods: 
Ensemble models sequentially integrate multiple deep learning architectures, with the output 

of one model feeding into the next, forming a layered structure for data processing [35]. In this 
study, we present a thorough evaluation of a CNN-LSTM ensemble model for human activity 
recognition. The model’s performance is assessed using two well-known public datasets: WISDM and 
UCI-HAR. After the evaluation of several model configurations, we determined that the proposed 
ensemble CNN-LSTM model achieved the highest accuracy and efficiency. A detailed breakdown of 
the model’s implementation is also provided to demonstrate our approach. 

 
Figure 5. Depiction of the process of segmenting raw time-series data into segments using the sliding 

window approach. 
Data Preprocessing: 

We used IMU sensor data, widely available in common wearable devices such as smartphones. 
These sensors record raw time series data that allow collecting information on the body motion of the 
subject. These sensors measure different forces acting on the device for instance, accelerometers 
measure acceleration force, magnetometer measures the magnetic force, and gyroscope sensors 
measure angular velocities. By integrating data from these sources, we can capture human motion 
in the three dimensions: x, y, and z. Based on guidelines found in the literature, the raw sensor data 
was split into samples of 128 frames, with a 50% overlap between frames [21], this segmentation of 
data into individual segments is illustrated in Figure 5. 
Model Architecture Design: 

The proposed ensemble model is composed of multiple layers, including CNN, LSTM, 
dropout, and batch normalization layers. These layers are arranged hierarchically to extract 
distinguishing features from the pre-processed data. In the final stage, fully connected layers are 
employed, utilizing the SoftMax activation function for activity classification. 
Convolutional Neural Network (CNN): 

CNNs with their layered structure of convolution and pooling layers are extremely efficient 
in spatial feature extraction from raw data. A CNN consists of several levels or layers, with each layer 
containing several filters that, when applied to the input data, produce feature maps; an abstract view 
of a CNN is depicted in Figure 6. Convolutional layers are succeeded by batch normalization and 
dropout layers. The batch normalization layer caters to the covariant shift in the data as it passes from 
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one layer to another. Dropout layers decrease the number of parameters, preventing overfitting in 
the model [36]. All the filters of a CNN layer are applied on each channel of the input which generates 
a set of feature maps. These filters perform local pattern recognition. The CNN uses Stochastic 
gradient descent (SGD) for parameter optimization during training. 

 
Figure 6. An illustration of a CNN. The network consists of multiple convolutional layers 

succeeded by dense layers and a SoftMax layer for classification. n represents the dimensions of 
the layer. 

Long Short-Term Memory (LSTM): 
LSTMs are a variant of recurrent neural networks (RNNs) that excel at capturing long-term 

dependencies in temporal data. Unlike traditional RNNs, LSTMs overcome challenges such as 
vanishing or exploding gradients by utilizing cell states and gating mechanisms specifically the forget, 
input, and output gates to preserve crucial information over time. The forget gate, using a sigmoid 
function, determines which portions of the cell state should be discarded. The input gate selects which 
parts of the input should be retained, while the output gate decides what portion of the cell state 
should be propagated forward [37]. These mechanisms allow LSTMs to learn from time series data 
by taking prior data points into account. For instance, considering xt as the input at time step t, ht−1 
as the hidden state from the previous time step t 1, and W as the weight matrix, the gates’ operations 
can be described mathematically as follows: 

ft = σ(Wf × [ht−1, xt] + bf )  (1) 
it = σ(Wi × [ht−1, xt] + bi)  (2) 
ot = σ(Wo × [ht−1, xt] + bo)  (3) 
C˜t  = tanh(Wc × [ht−1, xt] + bc) (4) 

Ct = ft ⊗ Ct−1 + it ⊗ C˜t  (5) 

ht = ot ⊗ tanh(Ct)   (6) 
Here, ft represents the forget gate activation vector at time t, σ is the sigmoid activation 

function, W denotes the weight matrices, i refers to the input gate, o to the output gate, and f to 
the forget gate. The hidden state is represented by h, while xt indicates the input vector at the 
current time step. The concatenation of ht−1 (the hidden state from the previous time step) and xt is 

denoted by [ht−1, xt]. The bias vectors are represented by b, C̃t   is the candidate cell state vector, and 

tanh is the hyperbolic tangent function. The cell state at time t is given by Ct, the element-wise 

multiplication operation is represented by ⊗, and Ct−1 refers to the previous cell state vector. 
Figure 7 represents the LSTM architecture. 
Proposed Model: 

The CNN-LSTM ensemble neural network leverages the strengths of both models. 
While LSTMs excel at capturing sequential data and time-based dependencies, CNNs are proficient 
in learning spatial features. The proposed ensemble network integrates two convolutional layers, each 
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followed by a ReLU activation function. After the first CNN layer, a batch normalization layer is 
applied, and after the second CNN layer, a dropout layer is added. Each convolutional layer 
consists of filters of various sizes to capture features across different levels of spatio-temporal 
resolution. The dropout and batch normalization layers are used in sequence after each convolutional 
layer to normalize and enhance the training process by adjusting and scaling the data in each training 
batch. Dropout layers are introduced to prevent overfitting by regularizing the data between network 
layers [38]. Batch normalization helps the model converge faster by scaling features to the same range, 
addressing covariant shifts, and ultimately improving overall performance. The output of the 
convolutional layers is flattened and passed to the LSTM network, which comprises two LSTM layers 
with 128 units each, using a tanh activation function. Similar to the CNN layers, the LSTM layers also 
utilize dropout and batch normalization layers. The final output from the LSTM is forwarded to two 
dense layers with ReLU activation functions and a classification layer employing the SoftMax function 
for classification.  The architecture of the proposed model is illustrated in Figure 8. 

 
Figure 7. Illustration of the LSTM unit with input, output, and forget gates which control the 

flow of data. 
The Adam optimizer is used for the proposed model, which adjusts the learning rate for 

each neuron using the previous and squared gradients. We took k-fold cross-validation into account 
as a verifying factor in terms of the learned weights. A categorical cross-entropy loss function 
was adopted to measure the network’s accuracy, as a guide for the training stage. Different hyper-
parameters used during training are listed in Table 1: 

 
Figure 8. Proposed CNN-LSTM Network Architecture for Analyzing Time Series Sensory Data. 



                                International Journal of Innovations in Science & Technology 

Oct 2024|Vol 6 | Issue 4                                                                      Page |1758 

Table 1. Overview of the components and hyperparameters of the proposed CNN-LSTM 
model, with subscripts indicating the respective layer numbers. 

Phase Parameters Values 

Pre-processing Window size 128 
 Step size 64 
 Features 3 

Training Optimizer Adam 
 Learning rate(alpha) 0.001 
 Batch size 128 
 Loss function Categorical cross-entropy 

Architecture CNN1 
BatchNorm1 CNN2 

128 
Axis = -1 

128 
 Dropout1 0.1 
 LSTM1 

BatchNorm2 LSTM2 
128 

Axis = -1 
128 

 Dropout2 0.1 
 Dense1 256 
 Dense2 256 

WISDM Dataset: 
The WISDM dataset [39] has in total over 1 million samples of smartphone activity data from 

36 subjects. The act iv i t ies  include sitting, standing, walking, jogging, and walking upstairs. During 
these activities, participants held a smartphone in a front leg pocket and took readings from an 
accelerometer at 20 Hz with 50% overlap of 4-second intervals with a total number of 128 
measurements per window. Table 2 below shows the summary of the dataset. 

Table 2. Activity distribution and parameters used for collection of the WISDM dataset. 

Dataset WISDM 

Total Participants 36 
Total Activities 6 
Window size 128 
Sampling rate 20 Hz 

Data dimension 3 
Sensor 1 (Accelerometer) 

Device & its placement Smartphone, Front leg pocket 

Activities Instances 

Downstairs 100,427 
Jogging 342,177 
Sitting 59,939 

Standing 48,395 
Upstairs 122,869 
Walking 424,400 

UCI-HAR Dataset: 
The UCI-HAR dataset [9] captures the physical activities of 30 participants aged between 

19 and 48. Six distinct activities are recorded: sitting, standing, lying, walking, walking downstairs, 
and walking upstairs. Participants performed these activities while carrying a Samsung Galaxy S 
II smartphone in their waist pocket. The smartphone’s accelerometer and gyroscope sensors 
recorded inertial motion at a frequency of 50 Hz. A summary of the dataset is presented in Table 
3. When performing the activity recognition, the raw sensory data was divided into frames as 
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follows: a window size of 128 timestamps with 50% overlap, or 64 step intervals, was used. This 
segmentation provided 128 measurements per window that enabled the generalization capacity 
for the model. Figure 9 illustrates the segmentation of data into individual segments. 

Table 3 Activity distribution and parameters used for collection of the UCI-HAR dataset. 

Dataset UCI-HAR 

Total Participants 30 
Total Activities 6 
Window size 128 
Sampling rate 50 Hz 

Data dimensions 9 
Sensor 2 (Gyroscope & Accelerometer) 

Device & its placement Smartphone, Waist 

Activities Instances 

Walking-downstairs 1406 
Walking-upstairs 1544 

Sitting 1777 
Walking 1722 
Standing 1906 
Laying 1944 

Implementation Details: 
The network comprises 12 layers and it is implemented using Kera’s framework. The model 

is trained in a supervised learning setting using the RMSprop optimizer, a variant of gradient descent 
[37]. The LSTM layers consisted of 128 hidden units, and the dataset was processed over 70 epochs 
with a batch size of 128. The categorical cross-entropy loss function is employed during training. The 
validation loss is used after training and the Early Stopping callback process [40] is also used to find 
appropriate weights. The last layer is formed by the SoftMax function for the task of providing output 
probabilities. The ratio of train, test, and validation split is 70:20:10 respectively. The process of 
hyperparameter optimization is done with a multi-resolution search method [41]. This approach is 
employed to optimize hyperparameters, including the number of LSTM layers, their integration with 
batch normalization, the number of dense layers, and the choice of activation function. For this multi-
class classification problem, the categorical cross-entropy loss function is utilized [42]. 

 
Figure 9. Depicts the performance of the proposed ensemble CNN-LSTM model on WISDM and 

UCI-HAR datasets. The performance is assessed using various matrices including accuracy, 
precision, recall, and F1-score. 
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Result and Discussion: 
In this study, we evaluated the performance of a CNN-LSTM ensemble model for HAR 

using two popular datasets: WISDM and UCI-HAR datasets. The CNN-LSTM model combines 
the strengths of CNNs and LSTM networks, making it well-suited for capturing both spatial and 
temporal features from time-series data. This hybrid approach is crucial for HAR tasks, where 
sensor data contains both temporal dependencies and patterns in spatial dimensions. Figure 9 
presents the recognition scores achieved by the proposed CNN-LSTM model on UCI-HAR and 
WISDM datasets. Whereas, the training and validation accuracy of the network is visualized in 
Figure 10. In addition, the training and validation loss of the network is visualized in Figure 11. 
These visualizations offer a clear representation of how the model’s performance progresses 
over time, providing insight into its learning trajectory and convergence behavior. 

 
Figure 10. Depicts the training and validation accuracy for the proposed ensemble CNN-

LSTM model on the UCI-HAR dataset. 

 
Figure 11. Depicts the training and validation loss for the proposed ensemble CNN-LSTM 

model on the UCI-HAR dataset. 
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Table 4 represents the classification performance on the UCI-HAR dataset, evaluated 
using various metrics. The macro-averaged accuracy across all activities is 97.92%, indicating 
that the model performs exceptionally well in classifying human activities overall. However, 
there are notable variations in the performance of different activities. The walking activity 
achieved an accuracy of 97.79%, a precision of 97.57%, a recall of 89.11%, and an F1 score of 
93.15%. While the high precision indicates that most predictions labeled as” Walking” are 
correct, the slightly lower recall suggests that the model occasionally confuses walking with other 
activities, particularly walking upstairs. The F1 score of 93.15% reflects a good balance between 
precision and recall for this activity. For walking upstairs, the model performs very well with an 
accuracy of 97.39%, precision of 91.74%, recall of 91.93%, and an F1 score of 91.83%. This 
shows that the model is highly effective at distinguishing walking upstairs, though there is a 
slight confusion with other activities like walking and walking downstairs. Walking downstairs 
achieved an outstanding accuracy of 99.29%, with a high precision of 96.50%, recall of 98.57%, 
and an F1 score of 97.53%, indicating that the model performs exceptionally well in identifying 
this activity with minimal misclassifications. 
Table 4. Performance metrics (Accuracy, Precision, Recall, and F1 Score) for activity classification 

using the UCI-HAR dataset 

Activities Accuracy (%) Precision (%) Recall (%) F1 Score (%) 

Walking 97.79 97.57 89.11 93.15 
Walking Upstairs 97.39 91.74 91.93 91.83 
Walking Downstairs 99.29 96.50 98.57 97.53 
Sitting 95.89 88.70 86.35 87.51 
Standing 97.42 90.00 96.43 93.10 
Laying 99.73 98.53 100.00 99.26 

Average 97.92 93.84 93.73 93.73 

The model’s performance for more static activities such as sitting and standing is also 
strong. For sitting, the model achieved an accuracy of 95.89%, a precision of 88.70%, a recall of 
86.35%, and an F1 score of 87.51%. However, sitting exhibits slightly lower performance 
compared to other activities, which may be attributed to its occasional misclassification as 
standing. Standing, on the other hand, performs better, with an accuracy of 97.42%, precision 
of 90.00%, recall of 96.43%, and an F1 score of 93.10%, showing that the model is highly reliable 
in detecting this activity. The highest performance is observed for laying, where the model 
achieved a near-perfect accuracy of 99.73%, precision of 98.53%, recall of 100%, and an F1 score 
of 99.26%. This indicates that the model can almost perfectly classify instances of laying without 
confusion with other activities. 

The classification performance on the WISDM dataset is evaluated using several metrics, 
including accuracy, precision, recall, and F1 Score as shown in Table 5. The macro-averaged 
accuracy across all activities is 98.52%, indicating that the model performs very well in classifying 
human activities overall. However, the performance varies across different activities. The 
walking activity achieved a precision of 85.37%, a recall of 90.00%, and an F1 score of 87.62%. 
This suggests that while the model identifies most walking instances correctly, there are a 
moderate number of false positives, possibly due to confusion with similar activities like jogging. 
On the other hand, jogging shows excellent performance, with a precision of 99.11%, a recall of 
96.62%, and an F1 score of 97.85%. The high precision and recall for jogging indicate that the 
model is highly accurate in predicting this activity with minimal misclassification. For activities 
such as walking upstairs and walking downstairs, the model demonstrates strong performance, 
with accuracies of 99.85% and 99.59%, respectively. The F1 scores for these activities are 98.64% 
and 94.96%, respectively, indicating that the model effectively distinguishes these activities from 
others, with slight confusion in certain cases. These results suggest that the model is highly 
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effective in handling dynamic activities. The model’s performance for more static activities like 
sitting and standing also reflects the model’s strength, with standing achieving a precision of 
98.59% and an F1 score of 98.11%. However, sitting shows a slightly lower precision of 83.33%, 
indicating that it is occasionally misclassified as another static activity such as standing. The F1 
score for sitting is 85.20%, reflecting a balance between precision and recall, but with room for 
improvement in distinguishing this activity from others. 
Table 5. Performance metrics (Accuracy, Precision, Recall, and F1 Score) for activity classification 

using the WISDM dataset. 

Activities Accuracy (%) Precision (%) Recall (%) F1 Score (%) 

Walking 97.38 85.37 90.00 87.62 
Jogging 98.70 99.11 96.62 97.85 
Upstairs 99.85 98.91 98.37 98.64 
Downstairs 99.59 92.96 97.06 94.96 
Sitting 97.08 83.33 87.16 85.20 
Standing 98.50 98.59 97.65 98.11 

Average 98.52 93.04 94.48 93.73 

Discussions: 
The results from both datasets underscore the effectiveness of the CNN-LSTM 

ensemble model for HAR. The CNN component efficiently extracts spatial features from sensor 
data, identifying important patterns from the provided readings. These patterns are particularly 
useful for distinguishing activities with unique spatial characteristics, such as walking downstairs 
or jogging. The LSTM component, on the other hand, captures temporal dependencies, allowing 
the model to understand sequences of sensor readings over time. This is critical for accurately 
classifying activities that involve continuous movement patterns, such as walking, jogging, and 
walking upstairs. 

The ensemble CNN-LSTM model proves efficient for both dynamic and static activities, 
as seen in the consistent performance across both the WISDM and UCI-HAR datasets. In 
particular, the model excels in identifying dynamic activities, with consistently high F1 scores for 
jogging, walking downstairs, and walking upstairs in both datasets. Its ability to handle temporal 
data effectively is reflected in the high recall and F1 scores, which indicate that the model can 
accurately capture the temporal transitions between different activity states. However, the results 
also reveal some challenges in distinguishing between similar static activities like sitting and 
standing, where there is occasional misclassification. This can be attributed to the similar sensor 
readings for these activities, which rely more on subtle differences in posture or minimal 
movement. 
Table 6. Comparison of the proposed model’s recognition results (%) against the state-of-the-

art method using the UCI-HAR dataset. The top outcomes are highlighted in bold. 

Methods Year Accuracy 

Wang et al. [43] 2023 96.0 
Gupta et al. [44] 2021 87.65 
Soni et al. [45] 2023 97.15 

Khan et al. [46] 2021 95.4 
Tong et al. [30] 2022 95.4 

Proposed CNN-LSTM 2024 97.92 

In future work, several strategies could be explored to improve the classification 
performance of sitting in HAR tasks using the ensemble CNN-LSTM model. Incorporating 
additional sensor modalities could help better distinguish sitting from other static activities like 
standing or laying. Furthermore, fusing sensor data from multiple body positions could offer a 
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more comprehensive understanding of posture. Combining these approaches has the potential 
to reduce the misclassification of sitting and enhance overall classification accuracy. 
Table 7. Comparison of the proposed model’s recognition results (%) against the state-of-the-

art methods using the wisdom dataset. The top outcomes are highlighted in bold. 

Methods Year Accuracy 

Seelwal et al. [47] 2023 87.85 
Afsar et al. [48] 2023 88.46 

Al-juaifari et al. [49] 2023 89.43 
Semwal et al. [50] 2022 90.0 
Duan et al. [51] 2022 90.77 

Proposed CNN-LSTM 2024 98.52 

Comparison with State-of-the-Art Techniques: 
Tables 6 and 7 present a comprehensive analysis of the results compared to existing 

techniques. The achieved accuracies greatly surpass numerous existing models in the literature, 
suggesting that the ensemble approach offers a competitive advantage. For example, 
conventional machine learning models and independent deep learning architectures often face 
challenges in achieving such impressive performance levels on these datasets. The suggested 
model attained macro-averaged accuracy rates of 98.52% on the UCI-HAR dataset and 97.92% 
on the WISDM dataset. These findings highlight the efficacy of ensemble models in improving 
the precision and dependability of HAR systems. Subsequent investigations may enhance the 
CNN-LSTM model by incorporating diverse sensors, employing advanced data augmentation 
methods, and formulating more intricate ensemble strategies. Furthermore, evaluating the model 
in practical situations among various demographic cohorts would yield significant insights for 
enhancement. 
Conclusion: 

This paper provides a comprehensive assessment of the ensemble model proposed for 
the HAR using time series sensory data collected from everyday wearable devices like 
smartphones and smartwatches. The ensemble models work by combining or integrating 
multiple models to capitalize on their unique strengths, resulting in a more effective solution. 
The proposed CNN-LSTM-based ensemble network is capable of capturing both spatial and 
temporal features, enabling it to learn relationships within raw sensory data and accurately 
identify human activities. The model’s performance is evaluated on two widely used datasets: 
UCI-HAR and WISDM. The recognition outcomes, along with comparisons to recent state-of-
the-art approaches, highlight the efficiency of the proposed hybrid CNN-LSTM model. 
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