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uman Activity Recognition (HAR) is essential for understanding daily behavior patterns, 
and wearable sensor data serves as a reliable source for monitoring complex activities. 
This study uniquely evaluates the performance of nine machine learning classifiers in the 

context of complex human activity recognition, relying solely on wearable sensors. It offers 
valuable insights into classifier effectiveness for real-world applications. Data from the PAMAP2 
dataset, which was collected using three wearable IMUs placed on the hand, chest, and ankle, 
along with a heart rate sensor, was utilized to identify six daily complex activities. A 70/30 train-
test split methodology was implemented to assess classifier performance. The Random Forest 
(RF) classifier achieved the highest performance, boasting 93% accuracy, precision, recall, and 
F1-score, followed closely by the K-Nearest Neighbors (KNN) classifier, which recorded 91% 
across all metrics. In contrast, the Logistic Regression (LR) classifier underperformed, achieving 
only 55% accuracy, likely due to its limitations in handling non-linear data. These results 
demonstrate that RF and KNN classifiers are effective for complex human activity recognition, 
while linear classifiers like LR are less suitable for such tasks. Overall, the Random Forest and 
KNN classifiers provide reliable performance for complex human activity recognition using 
wearable sensors, making them excellent choices for practical applications. 
Keywords: Human Activity Recognition, Machine Learning, Classification, Wearable Sensor, 
Complex Activity. 
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Introduction: 
Wearable sensor-based Human Activity Recognition (HAR) has gained significant 

attention recently due to its wide-ranging applications in healthcare, sports, and human-
computer interaction [1]. HAR systems utilize sensor data collected from wearable devices to 
recognize human activities, offering the potential to transform various sectors through real-time 
monitoring and analysis of human behavior [2]. Promising results have been achieved in 
accurately recognizing and classifying human actions using machine learning (ML) classifiers [3]. 
These classifiers excel at analyzing complex patterns in sensor data to predict actions being 
performed. However, the effectiveness of ML classifiers can be influenced by factors such as 
the types of activities being recognized, the sensor modalities employed, and the classifier 
algorithms utilized [4]. 

This study evaluates the performance of different ML classifiers in identifying common 
daily complex human activities using wearable sensor data (WSD). The specific activities selected 
for analysis include using a computer, cycling, folding laundry, cleaning the house, ironing, and 
vacuuming. Data for these activities were collected using inertial measurement units (IMUs) 
placed on various parts of the body, including the hand, chest, and ankle, to capture a range of 
postures and movements. 

The wearable sensor configuration consists of three wireless Colibri IMUs, each 
equipped with two accelerometers, one gyroscope, one magnetometer, and a sampling frequency 
of 100 Hz. Data collection involved nine participants, comprising eight males and one female, 
with an average age of 27 to 31 years [5]. The study assesses the effectiveness of nine commonly 
used ML classifiers in HAR applications: Decision Tree (DT), Gaussian Naive Bayes (GNB), 
Random Forest (RF), AdaBoost (AB), Gradient Boosting (GB), Logistic Regression (LR), 
Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and Multi-Layer Perceptron 
(MLP). These classifiers were trained and evaluated using WSD to recognize the activities 
performed by the participants.  

The findings provide valuable insights into the effectiveness of various ML classifiers 
for identifying complex human activities, indicating that RF and KNN achieved strong 
performance, while LR performed the weakest. These observations could inform the 
development of more autonomous and accurate HAR systems for a variety of real-world 
applications. 
Objective of the Study: 

The objective of this study is to evaluate and compare the performance of nine distinct 
machine learning classifiers in recognizing complex human activities solely through wearable 
sensor data. This research seeks to determine which classifiers are most effective at accurately 
classifying daily complex activities based on data collected from wearable devices. By doing so, 
it aims to provide insights into the suitability of various classifiers for real-world human activity 
recognition tasks. 
Novelty Statement: 

This study presents a novel evaluation of various machine learning classifiers for 
complex human activity recognition, utilizing only wearable sensors. It specifically addresses the 
gap in understanding classifier performance for recognizing intricate activities. By focusing on 
real-world sensor data and comparing nine classifiers, the research provides unique insights into 
the most effective algorithms for achieving accurate and resource-efficient human activity 
recognition—an area that has not been thoroughly explored previously. 
Material: 

The study utilized data from the publicly available PAMAP2 dataset, which comprises 
sensor data collected from wearable Colibri wireless IMUs positioned on three body locations: 
the hand, chest, and ankle, along with a heart rate sensor. This dataset records six common daily 
complex activities performed by the participants. 
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Method: 
A train-test split methodology was employed, utilizing 70% of the data for training and 

30% for testing. Nine different machine learning classifiers were evaluated, including Random 
Forest (RF), K-Nearest Neighbors (KNN), and Logistic Regression (LR), among others. The 
performance of each classifier was assessed using metrics such as accuracy, precision, recall, and 
F1-score to determine their effectiveness in recognizing complex human activities from the 
sensor data. 
Literature Review: 

Recent years have witnessed significant research focused on Human Activity 
Recognition (HAR) using wearable sensors, driven by its potential applications in human-
computer interaction, sports, and healthcare. Various strategies have been explored to enhance 
the precision and effectiveness of HAR systems, with a major emphasis on the selection and 
fusion of sensor modalities. Research indicates that accelerometer data are effective for 
identifying activities such as jogging, walking, and navigating stairs [6]. However, the integration 
of gyroscopes and magnetometers has been shown to improve the accuracy of activity 
recognition, particularly for complex movements involving rotations and changes in orientation 
[7]. 

The application of machine learning (ML) techniques has greatly advanced the 
development of HAR systems. Classifiers like Support Vector Machines (SVM) are popular due 
to their ability to handle high-dimensional data and nonlinear interactions [8]. Studies have 
demonstrated that Random Forest (RF) and Gradient Boosting (GB) algorithms also achieve 
high accuracy in HAR tasks [9]. These research efforts aim to enhance the generalizability and 
robustness of HAR models. Transfer learning has emerged as a viable strategy to leverage 
knowledge from related tasks or domains to improve HAR performance [10]. For instance, one 
study outperformed traditional ML models by employing transfer learning in HAR using 
wearable sensors [11]. 

Moreover, deep learning methods have gained traction in HAR research. Convolutional 
Neural Networks (CNNs) are utilized to automatically extract features from sensor data, 
eliminating the need for manual feature engineering [12]. Recurrent Neural Networks (RNNs) 
have shown promise in capturing temporal dependencies within sequential sensor data, further 
enhancing activity recognition accuracy [13]. Despite these advancements, challenges remain in 
HAR research, particularly regarding sensor orientation and location variability, which can affect 
data quality and the effectiveness of HAR models [14]. Ethical considerations concerning the 
security and privacy of personal data collected by wearable sensors also need to be addressed in 
the design of HAR systems [15]. 

This research aims to enhance classifier performance by comparing supervised and 
ensemble learning classifiers in the context of HAR with mobile devices. It evaluates the 
effectiveness of walking and sitting movements on two UCI datasets while performing feature 
selection to reduce dimensionality, thus transforming high-dimensional data into lower-
dimensional forms. The findings underscore the significance of HAR in security, fitness, and 
healthcare [31]. 

Human Activity Recognition (HAR) is a critical area of research within body area 
networks and computing, focused on categorizing input data into distinct classes. This study 
explores both basic and deep learning methods, employing dimensionality reduction and feature 
extraction via Topological Data Analysis (TDA) to tackle HAR challenges. The WISDM and 
UCI-HAR datasets serve as public data sources for experimentation. Techniques for data 
balancing and sampling mechanisms ensure the acquisition of balanced datasets. Consequently, 
seven machine learning methods are utilized as ensemble classifiers, including 1D-CNN, 
BiLSTM, and GRU, alongside proposed deep learning approaches. The study presents the best 
reported results for the proposed methods on the WISDM and UCI-HAR datasets [32]. 
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This paper reviews the application of Inertial Measurement Unit (IMU) sensors for 
HAR, aiming to enhance the functionality of wearable devices during daily activities. The study 
focuses on measuring acceleration and angular velocity to personalize gestural control. Four 
machine learning models are utilized: Artificial Neural Networks, Decision Tree Classifier, 
Random Forest Classifier, and K-Nearest Neighbors. Notably, the Random Forest Classifier 
achieves a high accuracy of 97.67%, thereby enabling greater functionality and customization of 
wearable robotics, ultimately improving the quality of life for individuals with disabilities [33]. 

In summary, HAR based on wearable sensors is an evolving field with substantial 
practical applicability. Current research primarily concentrates on sensor modality integration, 
machine learning and deep learning approaches, as well as challenges like sensor variability and 
data privacy. Progress in these areas is expected to lead to more precise and reliable HAR 
systems, with applications across various real-world scenarios. 
Material and Methods: 

Figure 1 shows the flow of this study. 

 
Figure 1. Flow of Study 

Data Collection: 
The PAMAP2 (Physical Activity Monitoring) [5] dataset is employed in this study. This 

dataset was gathered using three Inertial Measurement Unit (IMU) sensors and one heart rate 
sensor, as previously described. Each IMU consists of two accelerometers, one gyroscope, and 
one magnetometer, all operating at a sampling frequency of 100 Hz. The data collection involved 
nine volunteers, comprising one female and eight males, with an average age ranging from 27 to 
31 years. 
Data Preprocessing: 

To generate orientation-independent values, data from each IMU’s accelerometers, 
gyroscope, and magnetometer were fused. Time-domain features were collected, including 
rotation on the x, y, and z axes from the gyroscope; acceleration on the x, y, and z axes from 
two accelerometers; and magnetic field data on the x, y, and z axes from the magnetometer for 
each IMU. 

For this study, 36 out of 53 potential features were extracted. Table 1 summarizes the 
sensor data, noting that features associated with simple activities were excluded, as the focus is 
solely on complex activities. The total number of samples collected was 992,341 (approximately 
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1 million), with each participant contributing around 20 minutes of data, which includes 
approximately 3 to 4 minutes of each activity. To evaluate the classifiers, a train-test split 
methodology was employed, dividing the dataset into 70% (694,638 samples) for training and 
30% (297,703 samples) for testing. 

Table 1. Extracted features from 3 IMUs 

Sensor Value 

Accelerometer (2 at each IMU) Acceleration at x-, y-, and z-axis 

Gyroscope (1 at each IMU) Rotation at x-, y-, and z-axis 

Magnetometer (1 at each IMU) Magnetic field at x-, y-, and z-axis 

Each feature (column) in the CSV file was labeled according to the corresponding sensor 
data. The six activities (classes) were also labeled appropriately to facilitate the supervised 
learning approach for the machine learning models. Due to the presence of missing values in 
the data, the corresponding rows (samples) were removed. Ultimately, 992,341 samples 
remained for analysis. 
Machine Learning Classifiers: 

A total of nine machine learning classifiers were selected for evaluation: Gaussian Naive 
Bayes (GNB), K-Nearest Neighbors (KNN), Decision Tree (DT), Random Forest (RF), 
AdaBoost (AB), Gradient Boosting (GB), Logistic Regression (LR), Support Vector Machine 
(SVM), and Multi-Layer Perceptron (MLP). The classifiers were trained using 70% of the dataset, 
while the remaining 30% was reserved for testing. Each classifier's performance was assessed 
using key metrics, including F1-score, accuracy, precision, and recall. 
Experimental Setup: 

The classifiers were evaluated based on their accuracy, precision, recall, and F1-score in 
classifying the six activities. These metrics provided a comprehensive assessment of each model's 
performance in recognizing and distinguishing between the various human activities. 
Software and Tools: 

Preprocessing, feature extraction, and classification were conducted using Microsoft 
Excel and the Python programming language. The machine learning classifiers were 
implemented with the Pandas, NumPy, and Scikit-learn libraries. This methodology aimed to 
evaluate how effectively the classifiers recognized complex human activities based on data 
collected from wearable sensors. The findings of the study will provide valuable insights into 
the relative strengths of various classifiers for human activity recognition (HAR) applications, 
aiding researchers in selecting appropriate sensors and machine learning models. While previous 
studies primarily utilized inertial sensors, especially accelerometers, to identify simple activities, 
the integration of additional inertial sensors, such as gyroscopes and magnetometers, enables the 
recognition of complex human activities with enhanced accuracy. 
Result and Discussion: 
Experimental Results: 

The tests aimed to evaluate the effectiveness of nine machine learning classifiers in 
identifying complex human activities based on wearable sensor data (WSD). The activities under 
consideration included computer work, cycling, folding laundry, vacuuming, ironing, and 
housecleaning. The classifiers were assessed using key performance metrics, including recall, 
accuracy, precision, and F1-score. 
Classifier Performance: 

The Random Forest classifier achieved an overall accuracy of 93%, with corresponding 
precision, recall, and F1-score also at 93%, indicating the best performance among the classifiers 
tested. Table 2 provides a breakdown of precision, recall, and F1-score for each activity. The 
overall precision, recall, and F1-score are calculated using a weighted average to account for the 
varying number of samples across activities. 
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Table 2. Precision, recall & f1-score (Random Forest) 

Activity Precision Recall F1-Score 

Computer-Work 0.9985 0.9898 0.9941 
Cycling 0.9571 0.9681 0.9626 
Folding-Laundry 0.9233 0.8432 0.8814 
house-cleaning 0.8998  0.8901  0.8949 ironing  0.9052 
0.9573 0.9305 vacuum-cleaning 0.9003 0.8792 0.8896 

The confusion matrix for Random Forest is given below in the Figure 2. 

 
Figure 2. Confusion matrix for Random Forest 

The K-Nearest Neighbors (KNN) classifier performed competitively, achieving an 
overall accuracy of 91%. Table 3 presents the precision, recall, and F1-score for each activity, 
while Figure 3 illustrates the confusion matrix for a comprehensive view of the classifier's 
performance. 

Table 3. Precision, recall & f1-score (KNN) 

Activity Precision Recall F1-Score 

Computer-Work 0.9841 0.9935 0.9888 

Cycling 0.9672 0.9427 0.9548 

Folding-Laundry 0.8033 0.8579 0.8297 

House-Cleaning 0.8753 0.8775 0.8764 

Ironing 0.8901 0.9307 0.9100 

Vacuum-Cleaning 0.9216 0.8296 0.8732 

Table 4. Precision, recall & f1-score (Decision Tree) 

Activity Precision Recall F1-Score 

Computer-Work 0.9816 0.9836 0.9826 

Cycling 0.9191 0.9058 0.9124 

Folding-Laundry 0.7366 0.7402 0.7384 

House-Cleaning 0.7692 0.7757 0.7724 

Ironing 0.8544 0.8615 0.8579 

Vacuum-Cleaning 0.7770 0.7669 0.7719 
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Figure 3. Confusion matrix for KNN 

The Decision Tree classifier also demonstrated strong performance, achieving an overall 
accuracy of 84%. Table 4 provides the precision, recall, and F1-score for each activity, while 
Figure 4 presents the confusion matrix, offering further insight into the classifier's effectiveness. 

 
Figure 4. Confusion matrix for Decision Tree 

The MLP classifier achieved an overall accuracy of 80%. Table 5 details the accuracy, 
precision, recall, and F1-score for the MLP classifier, while Figure 5 displays the corresponding 
confusion matrix. Although the Support Vector Machine (SVM) classifier produced reasonable 
results, it required an excessive amount of time—over 10 hours—to build the model on a 
Google Colab setup. This long training time makes the use of SVM a critical consideration, 
particularly for real-time applications, where speed is essential. The SVM classifier achieved an 
overall accuracy of 77%. Table 6 presents the precision, recall, and F1-score for each activity, 
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and Figure 6 illustrates the confusion matrix, highlighting the correctly classified instances for 
each class. 

Table 5. Precision, recall & f1-score (MLP) 

Activity Precision Recall F1-Score 

Computer-Work 0.9823 0.9747 0.9784 

Cycling 0.9400 0.9033 0.9213 

Folding-Laundry 0.6404 0.6160 0.6280 

House-Cleaning 0.7274 0.6450 0.6838 

Ironing 0.7470 0.8738 0.8054 

Vacuum-Cleaning 0.7615 0.7220 0.7412 

 
Figure 5. Confusion matrix for MLP 

 
Figure 6. Confusion matrix for SVM 
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Another ensemble classifier, Gradient Boosting (GB), was evaluated and achieved an 
overall accuracy of 76%. Details regarding precision, recall, and F1-score for the GB classifier 
can be found in Table 7, while Figure 7 presents the corresponding confusion matrix. 

Table 6. Precision, recall & f1-score (SVM) 

Activity Precision Recall F1-Score 

Computer-Work 0.9360 0.9615 0.9486 

Cycling 0.9120 0.9071 0.9096 

Folding-Laundry 0.6483 0.4546 0.5345 

House-Cleaning 0.6734 0.6374 0.6549 

Ironing 0.6921 0.8410 0.7593 

Vacuum-Cleaning 0.7611 0.6891 0.7233 

 
Figure 7. Confusion matrix for Gradient Boosting 

Table 7. Precision, recall & f1-score (Gradient Boosting) 

Activity Precision Recall F1-Score 

Computer-Work 0.9756 0.9614 0.9684 

Cycling 0.8971 0.9028 0.9000 

Folding-Laundry 0.6558 0.4680 0.5462 

House-Cleaning 0.6492 0.6148 0.6315 

Ironing 0.6978 0.8322 0.7591 

Vacuum-Cleaning 0.7155 0.6865 0.7007 

Table 8. Precision, recall & f1-score (AdaBoost) 

Activity Precision Recall F1-Score 

Computer-Work 0.8877 0.9018 0.8947 

Cycling 0.7310 0.8605 0.7905 

Folding-Laundry 0.5465 0.1714 0.2610 

House-Cleaning 0.4831 0.3945 0.4343 

Ironing 0.5989 0.7789 0.6771 

Vacuum-Cleaning 0.5781 0.5779 0.5780 
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The AdaBoost (AB) classifier achieved an overall accuracy of 65%. Additional details 
regarding its performance are provided in Table 8 and illustrated in Figure 8. 

 
Figure 8. Confusion matrix for Ada Boost 
Table 9. Precision, recall & f1-score (GNB) 

Activity Precision Recall F1-Score 

Computer-Work 0.7340 0.8617 0.7927 

Cycling 0.7989 0.8322 0.8152 

Folding-Laundry 0.2371 0.1799 0.2046 

House-Cleaning 0.5595 0.1828 0.2756 

Ironing 0.5319 0.8357 0.6501 

Vacuum-Cleaning 0.6249 0.5470 0.5833 

 
Figure 9. Confusion matrix for GNB 
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The Gaussian Naive Bayes (GNB) classifier took the least amount of time to build the 
model, completing the process in just a few minutes. GNB achieved an overall accuracy of 61%. 
The precision, recall, and F1-score for each activity are detailed in Table 9, while Figure 9 
presents the corresponding confusion matrix. 

Table 10. Precision, recall & f1-score (Logistic Regression) 

Activity Precision Recall F1-Score 

Computer-Work 0.6222 0.8014 0.7005 

Cycling 0.6204 0.6825 0.6500 

Folding-Laundry 0.3009 0.0212 0.0397 

House-Cleaning 0.4078 0.3367 0.3688 

Ironing 0.5461 0.7302 0.6248 

Vacuum-Cleaning 0.5720 0.5188 0.5441 

Table 11. Overall accuracy, precision, recall & f1-score 

 

 
Figure 10. Confusion matrix for Logistic Regression 

In contrast, the Logistic Regression (LR) model demonstrated the weakest performance, 
with an overall accuracy of 55%. Figure 10 shows the confusion matrix for activity recognition, 
and Table 10 displays the precision, recall, and F1-score for each activity. 
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Comparative Analysis: 
Table 11 provides a comprehensive overview of the performance of all classifiers, 

summarizing accuracy, precision, recall, and F1-score. As noted, the overall precision, recall, and 
F1-score for these classifiers are calculated using a weighted average. The results indicate that 
the Random Forest (RF) classifier achieved the highest performance, followed closely by K-
Nearest Neighbors (KNN). In contrast, Logistic Regression (LR) exhibited the poorest 
performance among the nine classifiers assessed for recognizing complex activities using inertial 
sensors. Additionally, it is worth mentioning that Support Vector Machine (SVM) required the 
longest time to build the model, exceeding 10 hours, while Gaussian Naive Bayes (GNB) 
completed the process in just a few minutes. Previous studies have primarily focused on 
comparing simple daily activities using data from wearable sensors. 
Discussion: 

The results of the tests illustrate the effectiveness of using wearable sensor data with 
machine learning classifiers to recognize complex human activities. This study emphasizes the 
critical role of inertial sensors in identifying such activities, particularly in contexts where privacy 
and security are significant concerns. Furthermore, it provides a comparative analysis of various 
machine learning algorithms, aiding researchers in selecting the most suitable methods for 
similar studies. Ultimately, the primary contribution of this research lies in the performance 
comparison of different machine learning models. 
Classifier Performance: 

The strong performance of the Random Forest (RF) classifier highlights the 
effectiveness of ensemble methods for human activity recognition (HAR) tasks. The K-Nearest 
Neighbors (KNN) classifier, a non-parametric lazy learner, also showed commendable results, 
with the number of neighbors set to 5 for these experiments. Both the Decision Tree and Multi-
Layer Perceptron (MLP) classifiers achieved reasonable accuracies of 84% and 80%, 
respectively. In contrast, the poorer performance of Logistic Regression underscores the 
limitations of basic, non-ensemble classifiers in handling complex activity recognition tasks. 
Practical Implications: 

The results are significant for the development of human activity recognition (HAR) 
systems across various applications, including human-computer interaction, sports performance 
monitoring, and healthcare. For real-world HAR applications where high accuracy and 
robustness are essential, classifiers such as Random Forest (RF) and K-Nearest Neighbors 
(KNN) should be considered. 
Comparison with Previous Studies: 

The outcomes align with previous studies [16-30] that demonstrated the effectiveness of 
classifiers such as Random Forest (RF), K-Nearest Neighbors (KNN), Decision Tree (DT), 
Multi-Layer Perceptron (MLP), and Support Vector Machine (SVM) in human activity 
recognition (HAR) tasks. However, this investigation expands on earlier research by evaluating 
a broader range of classifiers and comparing their capabilities in recognizing a diverse array of 
activities. 
Limitations and Future Directions: 

This investigation focuses on the activities, sensor combinations, and machine learning 
classifiers. Future studies could explore the performance of ML classifiers in recognizing 
additional activities and utilizing different sensor modalities. Moreover, this study did not 
address the impact of ambient factors, such as noise and sensor orientation, on activity 
recognition. Incorporating these elements could enhance the robustness of HAR systems. 
Conclusion: 

This study evaluated the efficacy of nine machine learning classifiers in identifying 
complex human activities using data from wearable sensors. The activities examined included 
computer work, cycling, folding laundry, vacuuming, ironing, and housecleaning. Our findings 
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indicate that the Random Forest (RF) classifier outperformed the others, achieving the highest 
F1-score, accuracy, precision, and recall. The K-Nearest Neighbors (KNN) classifier also 
demonstrated competitive performance, making it a suitable choice for activity recognition tasks. 
In contrast, the Logistic Regression (LR) model had the lowest performance. These results 
highlight the effectiveness of ensemble and instance-based classifiers like RF and KNN in 
complex human activity recognition from wearable sensor data. The implications of this research 
are significant for developing accurate and reliable human activity identification systems across 
various sectors, including sports, healthcare, and human-computer interaction. Further 
investigation is needed to explore the effectiveness of these classifiers in different activity 
recognition scenarios and sensor configurations. 
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