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Introduction: Medical chatbots are innovative solutions that leverage Natural Language 
Processing (NLP) and Artificial Intelligence (AI) to enhance communication efficiency between 
healthcare providers and patients. In the realm of conversational AI, intent classification—the 
task of understanding a user's intent from natural language input—is both a complex and crucial 
aspect of the technology. This process is vital for ensuring that chatbots can accurately interpret 
and respond to patient queries in a meaningful and contextually appropriate manner. 
Novelty Statement: This research proposes a hybrid approach that combines transformer-
based embeddings with traditional deep learning models to reduce both complexity and 
computational cost in medical intent classification. By integrating the strengths of advanced 
transformer techniques with more established models, this approach aims to improve efficiency 
without sacrificing performance, making it more suitable for real-world healthcare applications. 
Material and Method: This study investigates the use of context-aware word embeddings, 

including word2vec and sentence transformers, to capture rich semantic information from 

medical text. To refine the unstructured data, we apply various NLP preprocessing techniques, 

such as text cleaning, stop word removal, and lemmatization. For classification, we utilize a 

combination of ensemble-based and deep learning methods, including XGBoost, Random 

Forest, LSTM, and Bi-LSTM. These methods are tested on real-world data from 6,662 patients, 

with the dataset containing 25 distinct classes. 

Result and Discussion: Empirical analysis demonstrates that the Bi-LSTM model, when 

combined with sentence transformers, achieves an accuracy of 95.23%, outperforming state-of-

the-art models reported in the relevant literature. 

Concluding Remarks: This research is expected to be highly beneficial to healthcare 

professionals by enhancing information extraction and enabling more effective handling of 

patient queries. 

Keywords: NLP; Intent Classification; Word Embedding; Sentence Transformers; Health 
Informatics; Transformer Models. 
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Introduction: 
Intent classification combines language analysis with AI techniques to predict users’ 

intent from natural language content [1]. This process is a critical component of natural language 
understanding (NLU) in dialogue management and conversational AI systems. Due to its wide-
ranging applications across various domains, intent classification has become a prominent 
research area within the field of Natural Language Processing (NLP), which has gained 
significant attention with the rise of technologies like ChatGPT. NLP integrates machine 
learning techniques with linguistics to address real-world challenges such as sentiment analysis, 
email filtering, text summarization, and the development of conversational agents or chatbots 
[2], [3]. Most online natural language content is available in unstructured text format, making it 
essential to explore methods for classifying electronic medical records and extracting meaningful 
data through text preprocessing techniques. Medical symptom text classification, in particular, 
facilitates the analysis of symptoms, streamlining patient care by freeing up time for healthcare 
professionals. By describing their symptoms in natural language, users can receive automated 
responses from a trained model that helps diagnose diseases based on the symptoms provided 
[4]. 

According to a survey [5], a significant number of adults prefer using online platforms 
to search for healthcare solutions before consulting with a clinician. Medical symptom text 
classification has a wide range of valuable applications in healthcare. One key application is 
enhancing diagnostic support systems, where AI models interpret patient-reported symptoms 
and suggest potential medical issues. This assists healthcare professionals in making more 
accurate and error-free decisions [6]. Additionally, this technology can support telemedicine by 
enabling automated symptom evaluation and providing feedback to patients remotely, helping 
ensure timely medical intervention. Furthermore, text classification can be used to monitor 
public health trends by analyzing symptoms shared on social media and health forums, 
potentially enabling the early detection of disease outbreaks [7]. 

Medical symptom text classification encompasses various approaches tailored to meet 
different healthcare needs [8]. One common approach is binary classification, which categorizes 
symptoms into two groups, typically indicating whether a specific condition is present or absent. 
Multi-class classification, on the other hand, sorts symptoms into multiple predefined categories, 
such as distinguishing between the flu, the common cold, or allergies. To achieve multi-class 
text classification for medical symptoms [9], [10], [11], [12], our proposed method combines 
both machine learning and deep learning (DL) models. We employ diverse encoding techniques 
such as TF-IDF, word2vec, and sentence transformers to capture the semantic meaning of 
medical texts effectively [13], [14]. 
Novelty Statement: 

This study presents a hybrid approach that combines transformer-based models with 
traditional classification techniques to learn rich semantic representations while reducing 
computational costs. By leveraging high-level semantic information, our approach aims to 
enhance model performance. The results demonstrate that, through this integration, 
classification tasks can be both more efficient and more effective, achieving improved accuracy 
with less computational expense. 
Objective: 

The primary objectives of this study are as follows: 

• To apply various NLP techniques—such as text cleaning, punctuation removal, 
lemmatization, and stop word elimination—to preprocess raw text data for analysis. 

• To utilize feature-engineering methods for extracting context-aware representations that 
improve the model's ability to understand medical text. 
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• To implement ensemble-based and deep learning techniques, specifically XGBoost, 
Random Forest, LSTM, and BiLSTM, for the task of medical intent classification. 

• To perform empirical analysis to assess the performance of the proposed models on a 
benchmark dataset, and to compare the results with state-of-the-art models. 

Related Work: 
This section reviews recent studies relevant to intent classification using machine 

learning and deep learning methods. In a study [15], the author proposed a biomedical text 
classification model that incorporates augmented word representation and distribution, as well 
as relational aspects. The approach suggests combining semantic relationships extracted from a 
large corpus with co-occurrence and pointwise mutual information techniques to learn enriched 
embeddings for biomedical text classification. The GloVe embeddings generated were then 
employed in deep learning models for improved classification performance. 

In a subsequent study [16], the authors addressed challenges in classifying clinical text 
documents into specific medical specialties. They presented a machine learning approach 
consisting of text preprocessing, Word2Vec embeddings, and several classifiers. However, they 
noted limitations due to the dataset's small size and the limited number of categories, despite 
achieving an accuracy of 82% with a method that combined k-NN with Word2Vec. 

Furthermore, a study by the authors of [17] applied capsule networks for classifying text 
from 44 medical subfields. The combination of capsule networks with LSTM (Long Short-Term 
Memory) networks resulted in an F1 score of 73.51%. While this was a notable achievement, 
the authors highlighted that the dataset may have been insufficient, which could impact the 
study’s generalizability. 

In another study [18], conventional classification approaches were found to be 
ineffective for categorizing medical articles into broad categories like diabetes or cancer. To 
address this, the authors proposed a document-level medical article classification method using 
two types of features: CBFs (Content-Based Features), which focus on the writer’s stylistic 
choices and text difficulty, and DSBs (Domain-Specific Blocks), which rely on topic modeling 
(LDA) to filter keywords and assign articles to medical categories. 

The challenge of obesity status extraction from unstructured clinical text data in 
Electronic Health Records (EHR) was explored by Hosseini et al. in [20]. They proposed an 
integrated model combining rule-based features and a knowledge-assisted deep learning (DL) 
model for classifying clinical texts related to obesity. The rule-based features involved predefined 
phrases indicative of obesity (e.g., "BMI 35"), while the DL model used a CNN (Convolutional 
Neural Network) trained on the text data with the aid of medical codes (UMLS CUIs). The 
results demonstrated high diagnostic accuracy, with an improved F1 score for obesity 
classification compared to existing methods. Additionally, the rule-based identification of trigger 
phrases proved effective in many cases. 

In the study [21], the authors addressed the issue in China where patients often make 
incorrect initial medical specialty selections due to a lack of medical knowledge. To tackle this, 
they developed a Hybrid Model (HyM) that takes Chinese text descriptions of patient symptoms 
and assigns the most appropriate medical specialty from a list of eight specialties. The HyM 
combined features from four techniques: LSTM, Text-CNN, BERT, and TF-IDF, and was 
trained on over 40,000 offline hospital patient symptom descriptions. The model achieved an 
accuracy of 93.5% and an F-score of 90%. 

The study in [22] discussed the challenges of trend analysis and identifying potential 
safety risks related to clinical trials, particularly because adverse events (AEs) are often 
documented in unstructured textual form. The authors proposed a method for classifying AEs 
into predefined subcategories using SVM (Support Vector Machines), Word2Vec, and TF-IDF. 
This method was applied to a dataset of 687 protocols, achieving an accuracy of 84%. 
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Lastly, a study [23] applied CNN and LSTM with TF-IDF on two datasets: THUCNews 
(long text) and Taobao reviews (short text). This approach aimed to improve text classification 
performance by leveraging both deep learning models and traditional text feature extraction 
techniques. 
Material and Methods: 

Figure 1 illustrates the proposed research framework for classifying medical users' 
intents from textual content. The first step in the framework is text preprocessing, which 
includes cleaning the text, removing punctuation, and eliminating stop words to prepare the data 
for model training. The second step involves generating word embeddings, such as Word2Vec, 
TF-IDF, and sentence transformers, to capture context-aware encodings of the text. Finally, 
ensemble-based and deep learning models, including XGBoost, Random Forest, LSTM, and 
BiLSTM, are applied in a recursive manner for classification. A detailed description of each step 
is provided in the following sections. 

 
Figure 1. Flow diagram of the proposed study for medical intent classification 

Text Preprocessing: 
The text preprocessing steps involve several stages, including tokenization, text cleaning, 

stop word removal, and lemmatization. A detailed description of each step is provided below: 
Text Cleaning: 

Text cleaning is a crucial step in preparing written data, aiming to enhance its quality and 
consistency [24]. This process involves several tasks designed to eliminate irrelevant or 
extraneous elements. HTML tags, special characters, and unnecessary punctuation are removed 
to streamline the text and focus on meaningful content. Additionally, spelling corrections may 
be applied to address typographical errors, ensuring the accuracy of subsequent analyses. Proper 
handling of punctuation is also emphasized, as it plays a vital role in providing structure and 
clarity to the text during processing. 
Stop Words Removal: 

Stop words removal is the process of eliminating common, non-informative words from 
the text [24]. Words such as "the," "is," and "and" are considered stop words because they do 
not contribute significant meaning for pattern recognition in machine learning models. By 
removing these words, the focus shifts to more relevant terms, such as "fever" or "headache," 
which carry important information for classification tasks. This helps improve the efficiency and 
accuracy of the model by reducing noise and emphasizing key features. 
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Lemmatization: 
This step involves reducing words to their base or dictionary form through 

lemmatization, ensuring consistency in the representation of medical symptoms. By applying 
lemmatization, we standardize the language used to describe symptoms, which is crucial for 
building an accurate classification model. This preprocessing technique enhances the model's 
performance and helps eliminate redundancy in the data [25], allowing it to focus on meaningful 
features for better classification accuracy. 
Feature Engineering: 

Feature engineering is a critical step in preparing data for machine learning models, as it 
converts raw textual data into fixed numerical representations. In this study, we employ three 
distinct encoding methods, as outlined below: 
TF-IDF: 

Term Frequency-Inverse Document Frequency (TF-IDF) is a fundamental technique in 
Natural Language Processing (NLP) that helps identify the most informative terms within a 
document corpus. It consists of two components: Term Frequency (TF), which measures how 
often a specific term (t) appears within a given document (d). The Term Frequency is calculated 
as shown in equation (1). 

𝑇𝐹 (𝑡, 𝑑)  =   
𝑓 (𝑡,𝑑)

𝑡𝑜𝑡𝑎𝑙_𝑤𝑜𝑟𝑑𝑠_𝑖𝑛_𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡(𝑑)
   (1) 

In this formula, f (𝑡, 𝑑) represents the frequency of term t in document \( d \), while 

𝑡𝑜𝑡𝑎𝑙_𝑤𝑜𝑟𝑑𝑠_𝑖𝑛_𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡(𝑑) refers to the total number of words in document d. The 
second factor, Inverse Document Frequency (IDF), measures the importance of a term across 
the entire document collection (corpus). Terms that appear frequently in many documents are 
considered less informative for a specific document. IDF is calculated using the following 
equation (2). 

𝐼𝐷𝐹(𝑡)  =  𝑙𝑜𝑔 (
𝑁

𝑑𝑜𝑐_𝑓𝑟𝑒𝑞(𝑡)
)     (2) 

Here, 𝑁 represents the total number of documents in the corpus, and 𝑑𝑜𝑐_𝑓𝑟𝑒𝑞(𝑡) 
denotes the number of documents that contain the term t. The logarithm (log) is applied to 
emphasize terms that appear in fewer documents, thus giving greater importance to rare or 
distinctive terms. 

𝑇𝐹 − 𝐼𝐷𝐹(𝑡) =  𝑇𝐹(𝑡)  +  𝐼𝐷𝐹(𝑡)    (3) 

Subsequently, by multiplying TF and IDF, we get a final 𝑇𝐹 − 𝐼𝐷𝐹 score for each term 
within a document. 
Word2Vec: 

Word2Vec, short for "word to vector," bridges the gap between human and machine 
language by converting words into numerical representations known as word embeddings [26]. 
Word2Vec leverages the semantic relationships between words, placing them in a high-
dimensional vector space where words with similar meanings are positioned closer together. The 
Skip-gram model, a key component of Word2Vec, takes a center word as input and predicts the 
surrounding contextual words within a specific window. The Word2Vec encoding of a textual 
document using the Skip-gram model is computed using the following equation (4). 

p(wO|wI) =  
exp(vwO

′  τ vwI
) 

∑ exp(vwO
′  τ vwI

) W
w=1

     (4) 

Where 𝑤𝑜 denotes word occurrence and Exp (𝑤) is the exponent of the vector 

representation of the center word (𝑤), Σ that represents summation over all possible context 
words within the window size around the center word, w=1 indicates that the summation starts 

from the first context word, 𝑊𝑐  represents the weight matrix for the context words, T is the 
symbol which denotes the transpose operation and c represents a context word vector. The 

factor 𝑝(𝑤|𝑐) represents the probability of the center word (w) given a context word (c). 
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Sentence Transformer: 
Sentence transformers convert input sentences into high-dimensional vectors that 

capture their semantic meaning, enabling a deeper understanding of patient queries [24]. The 

similarity between two sentence embeddings, 𝑒1 and e2, is typically measured using a similarity 
metric such as cosine similarity. 

𝐶𝑜𝑠𝑖𝑛𝑒 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑒1, 𝑒2) =
𝑒1⋅𝑒2

∥𝑒1∥∥𝑒2∥
   (5) 

Where 𝑒1 and e2  represent the vector embeddings of the input sentences, and ∥e1∥ 

and ∥e2∥ denote their respective magnitudes. This method plays a critical role in NLP tasks such 
as semantic textual similarity, information retrieval, and duplicate detection, where 
understanding the semantic relationships between text snippets or sentences is vital for precise 
analysis and informed decision-making. 
Machine Learning Models 

Machine Learning, a subfield of AI, enables machines to learn from existing data related 
to a specific problem. Ensemble-based methods in machine learning combine multiple models 
to improve predictive performance. Rather than relying on a single model for predictions, 
ensemble methods leverage several models and aggregate their outputs, enhancing the accuracy 
and robustness of the predictions. 

 
Figure 2. Architecture of Sentence Transformer for Medical Intent Classification 
In this study, we employed two distinct ensemble-based machine learning models to 

predict patient intent from natural language text: 1) Random Forest and 2) XG-Boost. The 
detailed architecture and workings of each model are outlined below: 
Random Forest: 

Random Forest is a powerful ensemble learning algorithm that has gained significant 
popularity in recent years. By combining multiple decision trees, Random Forest delivers robust 
and accurate predictions. Each tree is trained on a random subset of the data and features, which 
helps reduce overfitting and enhances the model's ability to generalize to unseen data. The 
process of constructing a forest of decision trees involves two key steps. 

The first step is Bootstrap Aggregation (Bagging), where Random Forest generates a 
collection of decision trees by randomly sampling n instances (with replacement) from the 
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original dataset of size N. The second step is subset feature selection, where, at each node of a 
tree, a random subset of m features (from the total M features) is chosen as candidates for 
splitting. For a new data point (x), each tree in the forest votes for a specific class label, and the 
final prediction is determined by aggregating the votes across all trees. The final prediction is 
given by the following equation (6): 

𝑦 
^

= 𝑎𝑟𝑔𝑚𝑎𝑥_𝑐 ∑(𝑇_𝑖(𝑥) ==c)    (6) 

Where ŷ denotes the Predicted class label, c denotes the Class label, 𝑇_𝑖(𝑥) denotes the 

Prediction of the   i-th tree in the forest for data point x and 𝑎𝑟𝑔𝑚𝑎𝑥_𝑐 denotes operator that 
finds the argument (class label) with the maximum value. 
Extreme Gradient Boosting (X-G-Boost): 

XGBoost has become a prominent ensemble learning technique due to its ability to build 
robust and highly accurate machine learning models. The XGBoost classification process occurs 
in two key steps:  
Sequential Learning: 

In this phase, XGBoost gradually builds its knowledge base, much like a student 
preparing for an exam. Instead of trying to learn everything at once, it adds new decision trees 
sequentially. Each new tree is designed to correct the errors made by the previous ones, thus 
improving the model with every iteration. 
Gradient Loss Minimization: 

This step focuses on minimizing the loss function, which quantifies prediction errors. 

Mathematically, let F(x) represent the current model's prediction for a given data point 𝑥, 𝑦_i  be 

the true label for the data point 𝑖, and 𝐿(𝑦_𝑖, 𝐹(𝑥_𝑖)) be the loss function. The goal of XGBoost 
is to minimize the following objective, represented by equation (7). 

𝑂𝑏𝑗 =  ∑ _𝑖 𝐿(𝑦_𝑖  , 𝐹(𝑥_𝑖)) +  Ω(𝐹)    (7) 

Where, 𝛺(𝐹) represents a regularization term that penalizes model complexity, 
preventing overfitting. 
Deep Learning (DL) Models: 

The advent of deep learning (DL) models has brought about a significant transformation 
in the field of artificial intelligence, particularly in understanding the semantics and 
comprehension of natural language text. Inspired by the human brain’s remarkable ability to 
learn from vast amounts of data, DL models excel at uncovering hidden patterns and 
relationships within complex datasets. In this study, we employed two powerful DL models: 
Long Short-Term Memory (LSTM) networks and Bidirectional LSTM (Bi-LSTM) networks, to 
effectively capture the intricate nuances of language and enhance model performance. 

 
Figure 3. Model Architecture of Deep Learning based Long Short-Term Memory 
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Long Short-Term Memory (LSTM): 
LSTM (Long Short-Term Memory), a specialized type of Recurrent Neural Network 

(RNN), is designed to learn long-term dependencies in sequential data. A typical LSTM unit 
consists of a repeating module with four neural network layers interacting in a specific manner. 

The module is controlled by three gate activation functions (ϕ1, ϕ2, and ϕ3) along with two 

output activation functions (ϕ1 and ϕ2). The symbol π represents element-wise multiplication, 
while Σ denotes element-wise addition. A key component of LSTMs is the cell state, which acts 
as a "memory line" running from the memory of the previous block (S_(t-1)) to the current 
block (S_t). This cell state allows information to flow directly through the network. The LSTM 
network can decide how much of the previous information should be passed along, and this is 
controlled by the first layer (σ1). The operation of this layer is illustrated in Figure 3. 

𝑐 𝑓𝑡 =  𝜎1(𝑊𝑐 𝑓 ·  [𝑂𝑡 − 1, 𝑥𝑡] +  𝑏𝑐 𝑓)   (8) 

𝐼𝑡 =  𝜎2(𝑊𝐼 ·  [𝑂𝑡 − 1, 𝑥𝑡] +  𝑏𝐼)    (9) 
𝑆˜𝑡 = 𝑡𝑎𝑛ℎ (𝑊𝑆 ·  [𝑂𝑡 − 1, 𝑥𝑡] +  𝑏𝑆 )   (10) 
𝑆 𝑡 =  𝑐 𝑓𝑡 ×  𝑆 𝑡1 +  𝐼𝑡 ×  𝑆˜𝑡 − 1    (11) 

A sigmoid layer (σ2) determines the values to be updated, while a tanh layer (ϕ1) 
generates a vector of new candidate values (S˜t), as shown in equation (4). The combination of 
these values is then added to the cell state. Finally, the cell state is updated using the following 
equation (5). 
Bidirectional Long Short-Term Memory (Bi-LSTM): 

The Bi-LSTM network is capable of capturing both forward and backward information 
from the text, making it highly effective for extracting contextual features from sentences. 

ℎ𝑖→ = 𝐿𝑆𝑇𝑀𝑎𝑖−1, 𝑥𝑖    (12) 

ℎ𝑖← = 𝐿𝑆𝑇𝑀𝑎𝑖+1, 𝑥𝑖     (13) 
ℎ𝑖 = ℎ𝑖→; ℎ𝑖←     (14) 
ℎ𝑐 = ℎ1, ℎ2, ℎ3, ⋯ , ℎ𝑚   (15) 

Where 𝑎 < 𝑖 >represents the hidden layer state of the current memory cell. ℎ𝑖→and ℎ𝑖← 

represent the hidden state of the forward and back memory network at the 𝑖 − 𝑡ℎ character 

position, respectively. ℎ𝑖 represents a combination of hidden states in both directions.  

 
Figure 4. Model Architecture of Deep Learning based Long Short-Term Memory 

Result and Discussion: 
This section presents the results of the proposed framework for the intent classification 

task. As shown in Table 1, the XG-Boost model outperforms the Random Forest model across 
various encoding methods. When using Sentence Transformers, XG-Boost achieves the highest 
accuracy of 89.00%, with a precision of 87.22%, recall of 88.93%, and an F1-Score of 88.07%. 
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In comparison, the Random Forest model with Sentence Transformers yields an accuracy of 
85.92%, precision of 86.34%, recall of 87.11%, and an F1-Score of 86.72%. Furthermore, the 
XG-Boost model with TF-IDF encoding also demonstrates superior performance, attaining an 
accuracy of 87.23% and an F1-Score of 85.85%.  

Table 1. Results of Ensemble based Methods with diverse Word Embedding over Medical 
Speech Transcription and Intent Dataset 

Model Encoding Method Accuracy 
% 

Precision 
% 

Recall 
% 

F1-Score 
% 

Random Forest 

TF-IDF 83.45 81.24 84.76 83.00 

Word2Vec 81.67 80.13 82.25 81.18 
Sentence Transformers 85.92 86.34 87.11 86.72 

X-G Boost TF-IDF 87.23 83.67 88.12 85.85 
Word2Vec 78.89 77.15 79.44 78.28 

Sentence Transformers 89.00 87.22 88.93 88.07 

According to Table 2, with TF-IDF encoding, the highest accuracy of 93.23% is 
achieved after 25 epochs. For Word2Vec embeddings, the LSTM model performs optimally at 
20 epochs, achieving an accuracy of 95.23%, precision of 93.67%, recall of 95.12%, and an F1-
Score of 94.85%. Similarly, with Sentence Transformers, the model reaches its highest 
performance at 20 epochs, with an accuracy of 95.92%, precision of 91.34%, recall of 96.11%, 
and an F1-Score of 93.72%. 
Table 2. Results of Deep Learning based LSTM Model with diverse embedding over Medical 

Speech Transcription and Intent Dataset 

Model  Encoding 
Method 

Epochs 
# 

Accuracy Precision Recall F1-Score 

LSTM 

TF-IDF 5 88.45 86.24 90.76 88 
 10 89.45 87.24 91.76 89 
 15 88.67 86.13 90.25 88.18 
 20 89.92 91.34 92.11 91.72 
 25 93.23 88.67 93.12 90.85 
 30 84.89 83.15 85.44 84.28 

Word2Vec 5 87.45 88.24 91.76 89 
 10 88.67 87.13 91.25 89.18 
 15 90.92 91.34 92.11 91.72 
 20 95.23 93.67 95.12 94.85 
 25 84.89 83.15 86.44 85.28 
 30 95 93.22 94.93 94.07 

Sentence 
Transformers 

5 
93.45 88.24 92.76 90 

 10 89.45 90.24 92.76 91 
 15 94.67 91.13 94.25 92.18 
 20 95.92 91.34 96.11 93.72 
 25 93.23 93.67 94.12 94.85 
 30 84.89 86.15 88.44 87.28 

Table 3 presents the results of the Bi-LSTM model for medical intent classification using 
different embedding methods and epoch counts. For TF-IDF encoding, the highest accuracy of 
95.23% is achieved at 25 epochs, along with precision of 91.67%, recall of 96.12%, and an F1-
Score of 93.85%. However, as training progresses to 30 epochs, the performance significantly 
drops to 87.89% accuracy, indicating potential overfitting. For Word2Vec encoding, the model 
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performs best at 20 epochs, achieving an accuracy of 97.23%, precision of 95.67%, recall of 
97.12%, and an F1-Score of 96.85%. 

Table 3. Results of Deep Learning based Bi-LSTM Model with diverse embedding over 
Medical Speech Transcription and Intent Dataset 

Model Encoding 
Method 

Epochs # Accuracy Precision Recall F1-Score 

Bi-
LSTM 

TF-IDF 5 90.45 88.24 93.76 90 
 10 91.45 89.24 94.76 91 
 15 91.67 88.13 93.25 90.18 
 20 92.92 94.34 95.11 94.72 
 25 95.23 91.67 96.12 93.85 
 30 87.89 86.15 88.44 87.28 

Word2Vec 5 89.45 90.24 93.76 91 
 10 90.67 89.13 93.25 91.18 
 15 92.92 93.34 94.11 93.72 
 20 94.23 95.67 94.12 96.85 
 25 86.89 85.15 88.44 87.28 
 30 94.00 95.22 96.93 96.07 

Sentence 
Transformers 

5 
95.45 90.24 94.76 92 

 10 91.45 92.24 94.76 93 
 15 96.67 93.13 96.25 94.18 
 20 97.92 93.34 98.11 95.72 
 25 95.23 95.67 96.12 96.85 
 30 86.89 88.15 90.44 89.28 

 
Figure 5. Performance of the proposed model with diverse embedding over different epochs 

According to Figure 5, the Sentence Transformer combined with the Bi-LSTM model 
demonstrates the best performance at 20 epochs, achieving an accuracy of 97.92%, precision of 
93.34%, recall of 98.11%, and an F1-Score of 95.72%. Table 4 provides a comparison of the 
proposed models with state-of-the-art methods. 
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Table 4. Comparison of Proposed Model with State-of-art Methods 

Ref Year Model/Method Performance 

[17] 2022 Capsule network + TF-IDF  73.25 % Acc 
[16] 2023 K-Nearest Neighbor + Word2Vec 82.51 % Acc 
[22] 2021 Support Vector Machine + TF-IDF 79.58 % Acc 
[15] 2023 Recurrent Neural Network + GloVe 83.20 % Acc 
[19] 2019 CBFs and topic modeling (LDA) 84.15 % F1  
[20] 2019 CNN + Rule-based Features 80.58 % Acc 
[21] 2023 Hybrid Model (HyM) CNN+ TF-IDF 89.50 % Acc 

Proposed Bi-LSTM + Sentence Transformers 95.23 % Acc 

Conclusion: 
In this study, we conducted an empirical analysis of medical intent classification using 

both ensemble-based and deep learning (DL) approaches. To assess the performance and 
effectiveness of the proposed models, we utilized a publicly available dataset that includes 
medical speech, transcription, and intent data, encompassing 25 to 30 different classes and 
approximately 6,662 patient records. The analysis incorporated two machine learning models, 
XG-Boost and Random Forest, as well as two deep learning models, LSTM and Bi-LSTM. The 
results indicate that the XG-Boost model outperforms Random Forest, especially when paired 
with Sentence Transformers. However, among the deep learning models, Bi-LSTM achieved the 
highest performance with Sentence Transformers at 20 epochs, reaching an accuracy of 97.92% 
and an F1-Score of 95.72%. These models have a wide range of applications, including medical 
conversational bots, clinical decision support systems, and telehealth services. In the future, we 
plan to develop our own dataset, enhance our feature engineering techniques, and explore the 
use of advanced transformer-based architectures for more semantic-aware medical intent 
classification. 
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