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conditions. Generally, for flood routing in rivers, the Saint-Venant equations will be used

which can be solved by finite distinction method. Saint-Venant equations will be converted
into nonlinear equations and will be solved using the Preissmann scheme in the finite difference
method. Using the Newton Raphson method, the set of equations will be changed into linear
equations and will be solved by the space method. Our aims are to the estimated zones of Saint-
Venant equations for flood routing by using the finite difference method with over bank unsteady
flow in an open channel. The effectiveness of this method to optimize the choice of finite
difference method is more accurate than other methods having adequate space and time steps.
Keywords: Flood routing; Saint-Venant equations; sprace method; over bank flow; hydraulic radius.

In this paper, we learn about the control of open channel water glide under the flood routing

Acknowledgement. of interest in publishing this | Control of open channel water
The authors are thankful to the | manuscript in IJIST flow and detecting leaks and
Higher Education Commission | Project details. dumps".

for providing research grant to | This  research work is | Author's Contribution

develop this work. developed under the Higher | All authors have contributed
Conflict of interest Education Commission | equally

The authors declare no conflict | Project no. 5398 titled "

Qi #igCiekactor  [Rf s (DiDEAS

SR
JOURNALS RAOTINDE XN -
Gl R Dist @ Scilit

Dec 2021 | Vol 3|Issue 5 Page | 96



mailto:talat@cuiatd.edu.pk
https://doi.org/10.33411/IJIST/2021030507
https://crossmark.crossref.org/dialog/?doi=10.33411/IJIST/2021030507

OPEuaACCESS International Journal of Innovations in Science & Technology
Introduction

Over the last two decades, the study of open channel water flow has become an active
research area due to its numerous advantages. It has been extensively investigated by many
researchers. The hydraulic and hydrological problems involved in the computation of flood waves
are based on Saint Venant (SV) equations, the pair of continuity and momentum equations. This
study is important in an open channel under non-uniform or unsteady flow. It is worth mentioning
that in this case SV equations cannot be solved analytically. Stoker [1] obtained the approximate
solution of SV equations using the explicit finite difference method described in [2]. Ooi and Weyer
[3] described the control design for an irrigation channel derived from physical data. Many
researchers have obtained approximate solution of SV equations in a particular case of open
channels ([4], [5], [7], [8], [9], [10], [11], [12], [13] and [14]). In these models, river waves can
be categorize as gravity, diffusion, or kinematic waves, that relates to exceptional types of
momentum equations.

The flood routing is fully based on the unsteady flow (long wave or surges) and the water
storage equations. At the point of the channel, a flood hydrograph will find out from the well-
known hydrograph at various points upstream or downstream via the known channel characters
with the characteristics of side inflow or outflow between these two points. Nguyen and Kawano
[15] obtained simultaneous solutions for flood routing in the open channel network by using the
Preissmann method for their proposed model. Kazezylmaz-Alhan et al. [16] discussed the reliability
of the finite difference method for solving proposed diffusion and kinematic wave equations that
describe the overland flow. Kohne et al. [17] presented the diffusion and kinematic wave method
for runoff and surplus computation. Das [18] presented the Muskingum model to find the flood
path and obtained its coefficients by employing the optimization method. Sulistyono and Wiryanto
[19] investigated the flood routing by dynamic wave model in the trapezoidal channels.

The main objective of this paper is to develop a quantitative method for identifying river
wave types in the case of flood routing with the overbank flow. Different theoretical cases relate to
the ratios between the central channel and flooded location concerning breadth and glide will be
analyzed. Moreover, we define the estimated zones of SV equations for flood routing by using the
Preissmann method with over bank unsteady flow in an open channel.

Materials and Methods

For flood routing issues like river waves and dynamic modeling of one-dimensional, the

numerical answer of SV equations will be used. In the case of the flooded region in the river, let

By and B, be the breath of the central channel and flooded region of the channel, respectively as
given in Figure 1. Also let A; and A, be the cross-sectional area of the central channel and flooded
region of the channel, respectively.

B;

B;

h; Il)

X
Figure 1. Open Channel having two breaths and cross-sectional areas for flow.
SV equations consist of two equations; continuity equation and momentum equation. The
continuity (mass) equation is given as

94, 0Q
9t Tax @

which further implies that
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aQ
B = 1
2 6t x4 o )
Whereas the momentum equation is given as follows:

aQ 6(%) on
T +gds G-+ Sp) — gA2S0 +qV =0,

at
VA  9(Va4;)
?-F 622+A2(_+Sf) gA,So +qV =0,
A5+ Ay 2 ond CL 4 5p) — gAsSe +qV = 0.
Thus, the momentum equatlon becomes
—+V6V M g(s,—S)+% =0 ©
T8 T 95 ~ 90 4, ’

where is the flow high (m), is the velocity of flow (m/s), is the acceleration due to gravity
(m/s’), is energy line slope, is the slope of the riverbed, is discharge (m’/s), is the horizontal
distance (m), is time (s) and the q is a lateral inflow.

To derive this system, a basic assumption will be made: that there is one-dimensional flow
in both regions of the channel (central region and flooded region), and there is lateral inflow or
outflow.

Generally, the side channel will be rougher than the central channel. The velocity V in the
central region is greater than as compared to the flooded region. In this case, the Manning formula
can be applied separately to both regions in determining the velocity of both channels. In this case,
the manning formula might be applied one by one to every section in determining the velocity of
the section. After that, the discharge in the section will be computed. The total discharge will be
equal to the sum of these discharges. Since velocity V in the central channel will be greater than the
velocity in the flooded region so the component of discharge in the flooded area is small as
compared to the discharge in the central channel; hence discharge Q can be approximated as
follows.

Q= AV, €)
where the cross-sectional area A; depends on x and t. As
A, = B;h. )
Differentiating equation (3), we have
0Q _ 9(A44V) aA1 av
ax gx B V + Al ox
= vEB (Blh) v
av
= Blha + (Blh) a. 5)
Substituting equation (5) in equation (1), we get
oh dh av

BZa +(BIV) +(Blh)_: I

5" p (Vah+hav>—
29c TP Mo T Max) T

and so,

BZ 6h q
T —+ V + h B1' (6)

If n is the ratio of ﬂooded region breath B, and central channel breath B,, thatis, n = %,
1

then we obtain

Al 6V q
+ V dx Bl 6x B1’ (7>

Generally, in the momentum equation, the term will be calculated by the Manning formula.
Since the velocity in the central region is greater than the velocity in the flooded region, thus the
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term of the Manning formula in the flooded region is smaller as compared to the central region of
the channel. As

N[

2
3

A;R3S

~

= n S

which implies that

wIN
N| R

'~

VA]_ =
and hence
4
S¢=(Vn)?R3 = (Vn)?R™™,
where R is the hydraulic radius (m), n is the coefficient of roughness and m is constant

(m = g) and (h << By) is for large rivers. For central channel, the hydraulic radius is given by
Bih R
T B2k 14 ﬂ h. )
Substituting equation (9) in equatlon (8), we get
S¢ = n?Vihm, (10)
As Froude number is a dimensionless number which is used in hydrodynamics to specify that how
a particular model works in relation to a real system, so

|4
F=—
Jgh
that is,
ghF? = V2 (11)
Substituting equation (11) in (10) implies
Sf = nngzhl_m.
As
S
f 2,12 -m
—-— = F°(1-m)h™™—,
ox Y 1-m Ox
so, we have
dh R 9Sf
9x  n?gF2(1-m) ox (12)
Using (12) in (2), the momentum equation becomes
Vv, %, (s 5)+qV 0
ot dx n2gF2%(1—m) 0x g\ 20 ’
that is,
v R™ 8Sf qv _
—t+V +?a—+g(5f—50)+A—2_0, (13)

where B = n?F2(1 — m). Continuity equation (7) and the momentum equation (13)
provide the general form of SV equations with flooded region and the side channels rougher than
the central channel. In such case, SV equations depends on parameter that appears in the continuity
equation. In the particular case = 1, equivalent to flood routing with no overbank flow, was
considered widely by Moussa and Bocquillon [12]. These two equations can be solved by using
finite difference method. According to this method, Preissmann method is used to solve SV
equations.

Result and Discussion

The Pressman model has a vast application in flood routing hydrograph in the open

channel as given in Figure 2.
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Figure 2. Preissmann method
By using above model, the time derivative is as follows
Of |k+1 _ 657 _ A —fE
L [t = g [BEI] 4+ (1 -y [ (14)
Similarly, the space derivative is given as follow
Of |k+1 _ I ri f1+1 i
of | a[ L (1 - ) | (15)
And the others terms are given as
K1, ck+1 k ok
f =q [f1+1 -;fl ] + (1 _ a) [fl+12+fl ] (16)

. oh av . .
In the SV equations; for the terms 5 and 5 W will use equation (14), and for terms

Z—’; , aa% and Z—Z we will use equation (15), and for terms %, V, Bi , AL and S¢, we will use equation
1 1 2
(16). The continuity equation (7), for P = %becomes
T 2t 24¢ 2 2
Al k+1 Al k+1
—_ + —_
hitl — plett hk. ., — k¥ (Bl). (Bl).
1 _ i+1 1
[( DI (- (@) .
A k
B_i)'+1 11-(|--|i1 + Vk+1 Vi’il + Vik
+(1-a) . (@) ————— +(1—a)T
1 k+1 1 k+1 1 k 1 k
()., * &) ()., * &)
~q|@ : +(1 - @) =0,

which implies that
A
r][h}(_:-ll + hk+1] _ T][hl+1 + hk] +_ta2( k+1 + Vk+1)(hk+1 hll<+1)

At
+ —a(l — (Vi + V) (hiSq — R)
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A
+ia<1—a>( S+ V(R — hE)

+_(1 - 05) ( i+1 T Vk)(h1+1 hic)

+é£az(ég“‘+<égk” Vst )

Ax B]_ B]_ ; l+1 A
wea-ol(F) +(G) v
+A a( a)<Bl + ) (Vi, = V)
At A, A\F

+ _a(l — a) <(_> + (_) ) Vk+1 V'k+1
Ax Bl i1 B1 ; ( i+1 i )

a0 ((5),, G o ae(5) 4 G),)
—qAt(1 — a) ((Bi)k+1 + (Bi)f) = 0. )

Finally, a function T; for interval i will be obtained as follows.
T8 M V) = a1 40

At 2 < A1 et Al ot ( k+1 k+1) ( k+1 k+1)
+—a (—) + (—) > Viiy =V, + aD Viss —V;
Ax Bl i1 Bl ; i+1 2 i

k+1

At A A k+1 At
+EaD3 <<B—1) + (B_i) ) +D, + A_a2( llj_Jrll + Vk+1)(hk+1 hfﬂ'l)

At
+A—aD5(h}‘++11 hf*) + aDG( VERL + V) +D, — Dy

_ ghta ((Bil)k+1 + (B—l)zm) = 0. (18)

i+1
In equation (18), D; to Dg are coefﬁcients which are given below:

k
h1+1 - hi ’

oeo-a((G 1)

D;_(1- a)( - Vik);

D5=a(1—a)( VK, Vk),
D6 = (1 a)(h1+1 hk)

At
D7 - = DsDs,
1\" 14"
Dg - qAt(1 — @) <( ) + (—) )
By 1+11 By i
Similarly, the momentum equation (13), for = = becomes
Vk+1 Vk Vk+1 Vk k+1 + Vk+1 V'k + V_k
i+1 i+1 + ( ) l+1 + (1 _ a) i+1 1
2At 2At 2

k+1 _ k+1 Vk
i+1 2 )+(1— )( l+1 l)l
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1] (G + (s — (B
] e e A e

y (a)<(5f)i:1 - (Sf)i+1> rd-a <(Sf)i+1 - (Sf)iﬂ

Ax Ax

S 4 (5) SV (s
—gSo + g (a)<( f)1+1 Z(f)l +(1-a) (f)l.l_lz (f)l

NS AN AR (N
I
|

i+1

l 1 _ l — 0’
+q Ila > +( a) >
which implies that

Ax [V 4 /] — Ax VKL + V] + laz(v_k+1 + V) (it -yt
gAt i+1 i gAt i+1 i g i+1 i i+1 i

1 1
+§ a(1—a) (Vi + V) (Vi = v ) + g (1—a)?(Visy + V) (Vi — V)

1 1
+5all- @) (Vg + VO (Vi = V) + g—ﬁaz((hm)!‘:f + (R™)FH)

+ + 1
< (51 = (5);™) + 5 et = (@i + @) (51, ~ (5)))

1 m m k+1 k+1 1 )
+—5 @@= (Ml + M) (), — ) ) +o5 -

2 . "
x (M + W) () = (57) =595+ axa ((5) + (5); ™)

+ax(1—a) ((Sp);,, +(5)F) + ax <(A12)k+1 N (Alz)kﬂ)

g i+1 i

k k

a8x q _ v V) =

+22 (1 - a) ((Az)i+1 + (Az)i) 0. (19)
Consequently, a function U; for interval i will be obtained as follows.

Ax
Uy (R, vt nit vl = ght VI + V] + D

2

+%((Vili+11)2 + (Vik+12)> + Dlo(Vilj:il - Vik+1) + D11(Vil§r+11 + Vik+1) + Dy,
1

(M + WD (), — (57 ) + aDua((mIE + ()
1

b (R~ (5) e i (5 (5 01

() o &

where Dg to D;g are given as:

Ax
Dy = B [Vis1 + V€],
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D10 = - a(l - a)( i+1 + Vik),

1
D11 = 5 C{(l - a)(Vilil - Vl'k),

1
Dy, = 5“2 [(Viﬁ-l)z - (Vik)z];

1
D13 = _ﬁ (1 - a) ((Sf)k+1 o (Sf)ic)’

Dy = (1 — ) ((R™K 1 + (F™5),
D15 - D14D13,
D16 = _ZAXSO,

Dy; = Ax(1—a) ((Sf):(ﬂ + (Sf)f)'

=0 o((2) +(2))

i+1

As in favor of each interval, the two vector functions and are the functions of four variables,
namely. In the favor of each interval, we define two equations, and similarly, for intervals equation
will arise. For each interval, we have a node. And for each node, there will be two unknowns (flow
rate and depth), thus if there are unknowns, then two equations are formed. Thus, we will obtain
two more equations from up and downstream conditions [20].

Finally, a system of nonlinear equations will be generated; to change the nonlinear equations
to linear, we will use the Newton-Raphson method. According to this method, the derivative of
functions is given as follows

aT; At

5 dB.\ K+
2[ykHl — yjet] [(BOI]" — A (d_hl)l
=n+ _a i+1 i

ahk+1 [(Bl)%(u]z
dB,
A [(Bl)!(+1] (A )k+1 A
+25 ap, : ( dh ) — —toﬂ[vikjl1 -V
Ax [(31)!(“] Ax
dB.\ K+
At (TR,
_A_ (XDS + qAxa T )
x [(B1)]
that is,
ki1 (AB\<1
aT; k+1 k+1 Aui (W)n At
— =1+ —az -V 1- aD
ahk+1 [ i ] [(31):”1]2 Ax 3
(apk+1 (4B k+1
_ 1[(3 )(2:;;]) %QZ[VK? —ykH] - g aDs + [(Bj)A;fl]z] (‘%) : (21)

Also
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o Bt (22) " - i (48)

— 77_|__a(2|: k+1_V'k+1]
o A l (o]

k+1 k+1
k+1 (dA4; k+1 (dBy
LA (B1i¥1 (W)l — (A)i¥1 (W)iu
fx (BT

At
+ A_az[vilfﬁl _ Vik+1]

(%)k+1
i

that is,

— = +—a g i+1
oh{t Ax ' l (B J

o1 (dB k+1
At . [1 (Al)l-l:'-l( 1) +ll [ k+1

+— aD LY
[(31 131

Ax
qAta dB4 k+1
(B ](W)Hl ' 22
Similarly, we have

oT; At (AN AN A At
. - + (= —— aD, +— th+1 h{(+1
onT T Ax” <(B1)i+1 (B1>l. ax P2t g @0 — ]

+5- abs, (23)
Ty _ _ At of(A k1 Ay k+1)_£ a?[nk+1 k+1] 4 At
ST = 3 (( )l+1 + (Bl)i+1 abD, + st a2 [l — R + 55 aby, 24)
k+1
aUl az k+1 k+1 _ k+1 az 1 k+1 a(Sf)
L =ﬁ((5f)i+1 —(57), )m(hm Dt —g—ﬁ((hm)n+ + (R™)*) —ahgﬁrl
+1

k+1 k+1 k+1(dA
aD14 ( f) +Ax a a(sf)i _ Vivi ( dhz)H.l (25>
ahk+1 ah£(+1 [(AZ)!(III .

ka1 (dB\H
oT; At 2[yk ki Vk+1][1 (4, )”1( ) ]

At
Vik+1] + A_x (ZDS

+aDyz(m(Rm k) ¢ =
As Sp =n?gF*h'™™ we have

a(Sr),
ah{c+1
i

k+1
a(Sy);
ah{c+1
L
Where f = n?F?(1 —m), and the above equation (25) becomes

oU;
T (s = () mam it = (st + g

—1yk+1 -myk+1 —-myk+1 Vi (dap\kt1
+aDyz(mR™ ) + aDyy(h™)E + Ax agB(h™™)E — m(ﬁ)”l : (20)
Also

k+1
=n2gF?(1 —m)(h~™)k*1,

that is,

= gB(h~™)k*,
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k+1
aUu k+1 k ( f)
(( $hher — () ) mem i + ((hm)}‘:f+ (| =
ah TonkH
k+1 k1 ket (@A)
D a(s Vit (577).
+aDys(m(R™HE) + —u (fk)+1 tAxa (fk)+1 -— (dh >l2+1
ﬁ ahl+1 ahl+1 [(Az)g(:ll
that is,
aU; k+1 k _
T = o7 (( Sy = ()7 ) mAm DR + a? (W™K + (mE) (™K
1+

m—1\k+1 -myk+1 -myk+1 __ Vg(fll dA; k1
+aDy3(m(R™ D) + Dy (h™)E + Ax agB (™) (k] ( - >i+1 : (27)
In the similar way, the partial derivatives of remaining equations are

au; _ Ax  2a% k41 qixa
av§(+1 - gt g Vl DlO + Dll + g(Az):H-l (28)
and
aU; Ax | 2a?% k41 qhAxa
—mr ==tV + Do+ Dy +— 29
avg(_:—ll gAt g 1 10 11 g(AZ)}(+1 ( )

As a result, in support of interval, equations can be produced. Hence, it is ample to get
the other two equations from the upstream and downstream boundary conditions, so for all nodes,
two unknowns and values will be obtained. The upstream borderline (node No. 1) may
additionally be the inflow hydrograph, where is the discharge of influx hydrology, and the
downstream boundary circumstance (node No.) may be the glide phase, the place is the overflow
height, is the overflow coefficient factor, and is the weight.

Thus, the downstream and upstream conditions are given a

(hg, Vk) ® ® (hyi1,Vii1)
(hy,V,) @ ® (h,,V3)
As
To(hy, V1) = Q1 — A1V, (30)
Tiew1(Mis1, Vier1) = Ag1Viers — CW (hyeyq — H)'S. (31)

The initial condition is the steady flow before the flood, so the partial derivative of equation
(30) and (31) are

0T, (h,, V- a 04,V 04
O( 1 1) — Ql _ 1v1 — —Vl 1' (32)
Ohy oh,  oh, oh,
av, oy, av, _Vla_v1 =" (33)
0Tk +1 (i1, Vir1) _ 0Ak+1Vi+1 B A(C.W (hgpr —H)™)
ohy Oh, oh,
0A
=Viss a}’;” — (1.5)CW (hyyy — H)OS, (34)
1
and

OTkr1 (i1, Viern) _ 0Aks1Virs  OCC.W (Ryeyq — H)™)
Vi1 Vi1 V41
= Ags1 (35)

To solve non-linear equations from (32) to (35), we will use the Newton-Raphson
algorithm.

The Newton-Raphson method is one of the most familiar iterative schemes used to solve
non-linear equations. First, we will write given equations in vector form:

Ti(xl, X2, wen, XZN) = O,
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where i = 1,2,3,...,2N, X = (x4, x5, ..., Xy )denotes the vector of unknown variables.
By Taylor series expansion, we have

oT;
T;(x + 6x) = T;(x) + zadxj + 0(6x)?
— J

fori = 1,2,3,...,2N. In the above equation, first partial derivatives form a Jacobian
matrix. If we take
N
aT;
pr ax]
then
T;(x + 6x) = T;(x) + ] 6x; + 0(6x)*.
If we neglect higher order terms and set the left hand-side equal to zero, then we obtain a
set of linear equations given by
] 6.7(] = —Ti(X').
The above system of linear equations in matrix form can be further solved by using
Gaussian elimination method or LU decomposition method for the unknown value of x, and hence
the approximate solution is obtained by

Xnew = Xo1a + OX.
The iteration procedure will be carried out until a reset convergence stage is achieved. Now
in our case, we write our above-mentioned equations in the same way as above
To(hTHL, Vi) = 0.
By Taylor series expansion, we can write as follows
aT, aT,
To(RE VI, AR, AVIHY) = To(hy, Vi) + s T AR+ T AV
Put Ty (AL, VL AL A VYY) = 0 and let T, (h ,V1) = t, so the above equation
ol 1 1 1 o1, V1 0 q

will become

aT, aT,
t ahn+1 Ahn+1 aVl AVn+1 O
that is,
hn+1 aT Avn+1 36
ahn+1 T oo aVn+1 —to- (36)
Also,

Ti (hlfl+1, Vin+1) — 0’
By the Taylor series expansion, we have

T(hn+1 VTl+1 Ahn+1 AVn+1) — T(hTH—l VTl+1) +

Ahn+1 4+ —*L aT AVn+1.

+
T VT
Put T; (R, VL AR A VYY) = 0 and Ty (R, V) = t;, we get that
oT; aT oT; oT;
AR+ —— AV 4 —— AR —— AV = (37)
ahn+1 aVn+1 ah:l_:-ll aVlri-Iil l
Similarly, we obtaln the following equations
oU; oU; oU;
AR 4+ AV + + AR + —— AV = ;. (38)
oprt 6V”+1 ) Ve ovitt '
0Ty+1 0Ty +1
ahn+1 Ah?+1 + aVn+1 AVIG—:% - tN+1' (39)
N+1 N+1
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In the above equation (30) to (39), to, t;, u; and ty4q be the values of Ty, T;, U; and Ty 41,
respectively. Finally, we get a system of 2N + 2 equations and 2N + 2 unknowns, where
unknowns are h and V. The system of equations are transformed into the matrix form is as follows

(OLOn o . . 0 ([ Ak ] [ T ]
aTl Tl aT; AT, AV, by
dhy V4 Bhy OV ¢ : Ahsy —U1
ol 8U1 oUy, Uy A'[/2 _t2
dhy1 9V7 Oho OVa ' ' ' Ah- —Uu2
0 O OTo aTz aT‘g 8T2 3 ]
Ohy OVy Ohs Vs ® . AVy |=

0 0 AUs 9Us U9 6U2
Ohs Vo Ohsy OVy *

0 TN 41 OT N1 Ah’.f\f—F]. —UN

L . . . . © "Ohny1 OV - AVN+1 -*tN+1-
The matrix elimination programs, such as Gaussian elimination or LU decomposition method

will be used to solve the above given system. However, Fread [9] used the Sparse characteristics of

the Jacobian coefficient matrix with maximum value are considered for consecutive elements and

developed an effective algorithm to solve such kind of Ribbon matrix problem. No matter which

solution is used to solve the matrix, it is ultimately the case. The step is to calculate the correction

value of the unknown of the next iteration. Thus, we obtain the following

=0 + 50y
hk+1 hf + 8h;,

Numerical Experiment.

The above method requires main and boundary conditions. The main condition is a stable
flow before the flow change, where the upstream condition can be flooded hydraulic pressure, and
the downstream boundary condition can be a displacement relationship.

We consider a rectangular open channel with a length of 3 km, a breath of 3 m, having bed
slope 0.0005 and a Manning roughness coefficient at the beginning of the channel is 0.25. When
the flood entered with the specified water level (in flow water level) with a spillway at its end having
height of 1 m, width of 15 m, and coefficient factor 1.6. Then, the water level curve and flow water
level on each point will be drawn at any time by the above method. For calculations, MATLLAB
software has been used.

In Figures 3 and 4, the flow of water graph at 500 m and 1500 m in intervals from the
flood beginning point has been drawn with Preissmann scheme. According to these Figures, we
observed that through the increase of distance from the starting point of flood, difference between
results increases.
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Figure 3. Hydrographs computed at the 500 m distance from the flood start
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Figure 4. Hydrographs computed at the 1500 m distance from the flood start

Conclusion.

We study the control of open channel water flow under flood routing conditions by

employing the Saint Venant equations. The Saint Venant equations converted the structure of flow
in the given channel into nonlinear partial differential equations which can be solve numerically by
using numerical methods such as finite difference method and Newton Raphson method. By using
this method, we develop iteration scheme to estimate the flow and height of water in the given
channel. We also study the estimated zone of Saint-Venant equations for flood routing with over
bank unsteady flow in the open channel. Some numerical experiments are also presented.
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