
                              International Journal of Innovations in Science & Technology 

Nov 2024|Vol 6 | Issue 4                                                                              Page |1878 

 

 

An ANFIS-Based High Precision Error Iterative Analysis 
Method (HPEIAM) to Improve Existing Software Reliability 

Growth Models 
Gul Jabeen1,2, Sabit Rahim1, *, Gul Sahar1, Luo Ping2 
1Karakoram International University Gilgit, Pakistan 
2Tsinghua University, Beijing, China 
*Corresponding Author: Sabit Rahim, sabit.rahim@kiu.edu.pk  
Citation |Jabeen G., Rahim S, Sahar G, Ping L, “An ANFIS-Based High Precision Error 
Iterative Analysis Method (HPEIAM) to Improve Existing Software Reliability Growth 
Models”, IJIST, Vol 6, Issue 4. pp 1878-1896, Nov 2024 
Received |Oct 14, 2024; Revised | Nov 18, 2024; Accepted | Nov 19, 2024; Published | 
Nov 20, 2024. 

Software Reliability Growth Models (SRGMs) are statistical interpolations of software failures 
by mathematical modeling. Up till now, more than 200 SRGMs have been proposed to 
estimate failure occurrence. Research continues to develop more accurate, efficient, and robust 
models. To overcome the shortcomings of SRGMs and adapt to the current software 
development process characterized by increasing complexity, a high-precision error iterative 
analysis method (HPEIAM) is proposed in this paper. HPEIAM combines the parametric 
SRGMs (PSRGMs) predicted results with their residual errors, which are considered as 
another source of information that can be modeled with an adaptive neuro-fuzzy inference 
system (ANFIS). The predicted errors are used to correct the PSRGMs forecasted results 
repeatedly with the help of ANFIS, which is considered a powerful model to deal with non-
linear data. The proposed technique combines the advantages of the neural network with a 
fuzzy inference system and PSRGMs, which helps to overcome the disadvantages of these 
models. The performance of the proposed technique is compared with six PSRGMs using 
three sets of real software failure datasets based on five criteria. Experimental results 
demonstrate that the HPEIAM can significantly improve the model fitting and predictive 
performance of every parametric SRGM. 
Keywords: Software Reliability, Software Failures, Residual Errors, Artificial-Neuro-Fuzzy- 
Inference System, Parametric Software Reliability Growth Models, Prediction Accuracy 
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Introduction: 
Software is becoming an increasingly important part of critical and non-critical 

applications. Ensuring software quality is becoming a key issue. The reliability of software is 
generally considered the most important attribute [1][2] of software quality measurement. 
Estimating and predicting software reliability is now increasingly required for highly reliable 
systems.  

Researchers and scholars have developed PSRGMs where the researchers [3][4] 
mentioned the most reliable and practical method for software reliability estimation using 
SRGMS models during the test phase. The cost optimization and time of the software 
development are not separate from the reliability of the software. When software failures are 
detected in a later stage, the cost and time increase. Before the testing phase, the accurate and 
concise estimation of software reliability might minimize software development costs and 
improve software quality effectively. PSRGM requires the application of basic assumptions 
such as independence of failure time, immediate correction of detected failures, and failure 
correction without introducing new errors. In addition, any software development process is 
environmentally dependent, and some assumptions seem unrealistic in certain situations. Many 
PSRGMs analyze the application of software reliability during the testing phase[5][6]. However, 
due to unrealistic assumptions, there is no single model that could be widely used in all 
situations. The [6][7] in the literature proposed non-parametric approaches to address these 
problems.  These models address the problem of unrealistic assumptions and applicability of 
the issues but fail to predict accurately. 

Recently, some authors [8][9] tried to use nonparametric hybrid techniques like 
ANFIS, which is a combination of Artificial Neural Networks (ANN) and fuzzy logic. It 
provides an effective technique for modeling non-linear (chaotic) data sequences. It is also 
called a non-parametric technique since it does not use any predefined assumption for modeling 
events. ANFIS uses the power of the two patterns such as ANN and FIS in a single framework 
and overcomes the disadvantages of both models. Studies showed that neuro-fuzzy systems are 
more effective in handling a large amount of noisy data or random data sequences [10]. 

In this research, a well-established prediction technique called HPEIAM based on 
ANFIS has been presented, which addresses the limitations of PSRGMs by using their residual 
errors as another source of information to a non-parametric approach like ANFIS. Because of 
a hybrid approach, this technique overcomes the problems associated with PSRGMs that come 
from restrictive assumptions. In addition, this approach uses the residual errors from the 
estimated results of PSRGMs as a new source of information to optimize the prediction 
accuracy of PSRGMs. The residual errors also form a non-linear (chaotic) data sequence.  

The proposed method's performance has been measured in conjunction with the 
traditional SRGMs by using well-known datasets. The result of the experiment has been derived 
from the three datasets which illustrate that the proposed technique can better fit the failure 
data and provide a more accurate prediction of the remaining failures in software testing. Our 
method improves the accuracy of every selected PSRGM model and provides more accurate 
predictions. It overcomes the disadvantages of PSRGMs and uses the advantages of all ANFIS 
models. The purpose of this study propose a new optimized technique to improve the 
performance of SRGMs. From our analysis of the experiment, we show that the residual errors 
iterative modification can improve the prediction accuracy up to an expected level, no matter 
how much historical data is used. Our results demonstrate that our technique can work well 
with every set of data and improves the performance accuracy of every software reliability 
growth model by using residual error modification. 
Objective of the study: 

The objective of this research is to propose a novel High Precision Error Iterative 
Analysis Method (HPEIAM) to enhance the accuracy and performance of parametric software 
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reliability growth models (PSRGMs). The proposed method aims to address the limitations of 
existing PSRGMs by incorporating their residual errors as a new source of information to the 
ANFIS to iteratively correct the predicted results towards making more accurate results for 
software failures. 
Novelty statement: 

The research presents a novel residual error iterative method that uses the residual 
errors from the PSRGMs as an additional source of information to Non-PSRGMs like Artificial 
Neuro-Fuzzy Inference Systems. However, the proposed method combines the residual error 
modifications iteratively by using PSRGMs and up to the expected level of the ANFIS 
modeling to acquire high prediction accuracy. An ideal PSRGM would not deal with residual 
errors directly because there may be many complex and random fluctuated (positive and 
negative) signals in them, which are not directly incorporated in PSRGMs. Therefore, ANFIS 
is used to predict the residual errors. It is considered a more powerful tool to deal with non-
linear data sequences [8]. However, by mathematical modeling of known data sequences and 
repeated computation of error values, the prediction accuracy is improved and an expected 
level of precision can be achieved. 
Related Work: 

Software reliability is commonly considered the most significant factor of software 

quality attributes over the past few decades. The demand for estimation and prediction of 

software reliability is increasing in projects to get reliable software [3]. PSRGMs are based on 

underlying distribution assumptions. Statistical methods such as regression, and non-

homogeneous Poisson process models are used in these models. These models are grouped 

into the time between failure models and failure count models. During the last few years, many 

PSRMs have been proposed. We are presenting some of them here. 

Although the wide usage of parametric approaches imposed several restrictions, they 

cannot retain their accuracy across different projects. These models require underlying 

assumptions to be used. However, in many cases, these assumptions look questionable and 

unrealistic. There is no single model which can be universally used in all situations [11]. 

Therefore, various models are applied, and the efficient model is selected according to the given 

situation. This process takes more time and requires more experts to select the best model. The 

ability to predict future reliability values using the PSRGMs is also considered the main goal 

using the selected data. It is usually in the form of time between failures or the number of 

failures. Although PSRGMs fit past failure data well, however, they do not give more accurate 

future predictions [12]. Much research has been carried out to address the PSRGMs issues. The 

non-PSRGMs are getting attention from researchers, in these models machine learning 

techniques used such as neural networks [4][5][13][14] support vector machines [15] Genetic 

Algorithms (GAs) [6][16][17]. The software reliability problems are solved by using GAs. An 

analytical model has been proposed using a stochastic differential equation to predict the 

reliability of the project[18]. 

These models address the issues of unrealistic assumptions and applicability. 

However, they fail to remedy the issue of predictability. The fuzzy logic is ranked as significant 

in non-parametric approaches [19][20].  The accuracy of SRGMs is an important factor, no 

matter which type of model or method is used and how much data is used by the model to 

achieve an expected accuracy level is a significant factor for any model. Therefore, it is essential 

to develop a reliability model for software, that can use the data effectively and give accurate 

prediction outcomes. In this paper, we have proposed a well-established new combined 
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parametric and non-parametric HPEIAM techniques, which can help software engineers to 

construct the high-precision prediction model more easily. The proposed technique is termed 

as HPEIAM. Mathematical modeling and repeated computation of residual error values can 

enhance the accuracy of prediction up to a projected level. 

Proposed Work: 
The primary purpose of SRGMs models is to achieve precise prediction accuracy. We 

claim that our proposed method (HPEIAM) can enhance the accuracy of prediction of 
PSRGMs effectively. In the following section, our proposed method is described in detail. 
High Precision Error Iterative Analysis Method (HPEIAM): 

To simplify the explanation of our method, we have introduced some notations first. 

Assume that a set of known data 𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡), . . . , 𝑥𝑛(𝑡) is used to develop a 
mathematical model such as: 

𝑦 =  𝑓(𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝑛(𝑡), 𝑎1, 𝑎2, . . . , 𝑎𝑛, 𝑡1, 𝑡2, … , 𝑡𝑠) (1) 

Where 𝑎1, 𝑎2, . . . , 𝑎𝑛 are parameters and 𝑡1, 𝑡2, . . . , 𝑡𝑠 are specific variables. 
Specifically, we predict the future trends using these mathematical models: 

𝑥𝑛+1(𝑡), 𝑥𝑛+2(𝑡), 𝑥𝑛+3(𝑡), . . . , 𝑥𝑛+𝑘(𝑡).  

The 𝑎1, 𝑎2, 𝑎3, . . . , 𝑎𝑛 are unknown parameters which can be determined by using any 

input sequences 𝑥1(𝑡), 𝑥2(𝑡), . . . , 𝑥𝑛(𝑡) with multiple methods including the least square 
method or the maximum likelihood method. For convenience, this paper discusses only one 

argument which is denoted as 𝑥(𝑡). We can write the model (1) as follows: 

𝑦 =  𝑓(𝑥1(𝑡), 𝑥2(𝑡), . . . , 𝑥𝑛(𝑡), 𝑎1, 𝑎2, . . . , 𝑎𝑟 , 𝑡).    (2) 

After applying the input data sequences 𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝑛(𝑡) in any SRGM, we 
determine the first approximation solution and its predicted values as 

𝑥1(𝑡)
(1)

, 𝑥2(𝑡)
(1)

, . . . , 𝑥𝑛(𝑡)
(1)

, The exact values corresponding to the predicted values are 

assumed to be 𝑥𝑛+1(𝑡)(1), 𝑥𝑛+2(𝑡)(1), . . . , 𝑥𝑛+𝑙(𝑡)(1) 

Suppose the error values can be specified as 𝜀𝑛
(1)(𝑡)  =  𝑥𝑛(𝑡)  −  𝑥𝑛(𝑡)

(1)
(𝑛 =

 1,2, … ), which is referred to as the first error. However, the acquired errors 𝜀𝑛
(1)(𝑡) can be 

positive or negative based on the predicted values.  

For more clarity, we ignore t, such as 𝑥1(𝑡)(1), 𝑥2(𝑡)
(1)

, 𝜀1
(1)(𝑡) and (1) are 

abbreviated as 𝑥1
(1),  𝑥2(𝑡)

(1)
, 𝜀1

(1)and y = f(t) respectively. In the proposed technique, the 

error value 𝜀𝑛
(1)    has been used to get more accurate results than previously predicted solution 

𝑥𝑛+𝐼
(1)(𝑖 =  1,2, . . . , 𝑙) through multiple iterations. Therefore, we analyze the error 

data𝜀1
(1)

,
𝜀2

(1), . . . , 𝜀𝑛
(1) same as 𝑥𝑖

(1)(𝑖 =  1, 2, … , 𝑛) by using a non-parametric model such 

as in this case we have used an ANFIS to model the errors. So the model can be established as:  

𝑦 =  𝑓(𝜀1
(1), 𝜀2

(1), . . . , 𝜀𝑛
(1)).             (3) 

The 𝜀𝑖
(1)(𝑖 =  1, 2, . . . , 𝑙)forms a complex sequence (random positive and negative 

values) that is impossible to incorporate with PSRGMs. Therefore, we used Adaptive Neuro-
Fuzzy Interface System (ANFIS). ANFIS is considered an appropriate model to deal with non-
linear (chaotic) data sequences. We modeled the residual errors using ANFIS and predicted the 
expected errors for the SRGMs. By modeling Equation (3) in ANFIS, we obtained residual 

error approximate and predicted solution 𝜀1
(1)

, 𝜀2
(1)

, . . . , 𝜀𝑛
(1)

and 

𝜀𝑛 + 1
(1)

, 𝜀𝑛 + 2
(1)

, . . . , 𝜀𝑛 + 1
(1)

 respectively. The detailed residual error approximation 
modeling with ANFIS is explained in Section III-C. 
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Hence it is obvious to get the second approximate solution 𝑥1
(1)

, 𝑥2
(1)

+

𝜀𝑛
(1)

(𝑖 =  1,2, … , 𝑛), by adding the 1st approximate solution (modeled with SRGMs) and the 

first error approximate solution (modeled with ANFIS). We observe that 𝑥𝑖
(2)

 is the more 

closed approximate solution than 𝑥𝑖
(1)

(𝑖 =  1,2, … , 𝑛)to the exact solution𝑥𝑖(𝑖 =
 1, 2, … , 𝑛).  

Likewise,𝜀𝑖
(2) =  𝑥𝑖 − 𝑥𝑖

(2)
(𝑖 =  1,2, … , 𝑛), it is known as the 2nd error. Using the 

same method as defined above, we can get an approximate solution to the 2nd error 

𝜀𝑖
(2)

(𝑖 =  1,2, … , 𝑛) 𝜀𝑖
(2) and the 3rd  approximation solution 𝑥𝑖

(3)
=  𝑥𝑖

(2)
+  𝜀𝑖

(2)
(𝑖 =

 1,2, … , 𝑛).   
Hence, by continuing the above multiple error iterative process, we obtain the 

predicted values closer to the exact values 𝑥𝑖(𝑖 = 1,2, … , 𝑙). We get the kth approximate 

solution 𝑥𝑖
(𝑘)(𝑖 =  1,2, … , 𝑙, 𝑘 = 1,2, … , 𝑚), predicted solution 𝑥𝑛 + 1

(𝑘)
(𝑖 =

 1,2, . . . , 𝑙, 𝑘 =  1,2, … , 𝑚), error sequence 𝜀𝑖
(𝑘)(𝑖 = 1,2, … , 𝑙, 𝑘 =  1,2, … , 𝑚) and its error 

approximation solution sequences𝜀𝑖
(𝑘)

(𝑖 =  1,2, … , 𝑙, 𝑘 =  1,2, . . . , 𝑚).  

At the same time, we estimate 𝑥𝑖
(𝑘)

=  𝑥𝑖
(𝑘−1)

+  𝜀𝑖
(𝑘−1)

 and 𝜀𝑖
(𝑘)𝑖 =  𝑥𝑖 −

𝜀𝑖
(𝑘)

(𝑖 = 1,2, … , 𝑛, 𝑘 = 1,2, … , 𝑚)  repeatedly. 
Basic Theorem: 

The prediction accuracy of any SRGM depends on the residual error modification. If 
the residual errors are predicted accurately, they can be used to enhance the prediction accuracy 
to an expected level. In this section, Theorem 1 describes that mathematical modeling and 
multiple iterations analysis of residual errors obtained from the mathematical models can greatly 
improve the prediction accuracy of the model or help to achieve the expected optimized results. 
Theorem 1: 

Assume a known data sequence 𝑥𝑖(𝑖 =  1,2, . . . , 𝑙) which can be determined by 

function 𝑦 =  𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛, 𝑎1, 𝑎2, . . . , 𝑎𝑟, 𝑡) By using  our proposed technique 

(HPEIAM), mth predictive value 𝑥𝑛 + 𝑖
(𝑚)

 can be obtained which is more close to the exact 

solution 𝑥𝑛 + 𝑖(𝑖 =  1,2, . . . , 𝑙) than  𝑥𝑛 + 1
(1)

.  
Proof. For any value n, the following common inequalities exist: 

0 ≤ |𝑥𝑛 − 𝑥𝑛
(𝑚)

| = |𝜀𝑛(𝑚)| ≤ |𝜀𝑛
(𝑚−1)

| ≤, . . . , ≤ |𝜀𝑛(1)| = |𝑥𝑛 − 𝑥𝑛
(1)

𝑥𝑛|      (4) 

Therefore, we consider  𝑀 =  𝑚𝑎𝑥 {|𝑥𝑖 − 𝑥𝑖
(1)

|𝑖 = 1,2, . . . , 𝑛} and analyze the 

error sequence𝜀𝑖(𝑘)(𝑖 = 1,2, . . . , 𝑛, 𝑘 = 1,2, . . . , 𝑚). To obtain the value of 

𝜀𝑛(𝑘)   𝑎𝑛𝑑 𝑥𝑛
(𝑚)

,  following equations hold: 

𝜀𝑛(1) = 𝑥𝑛 − 𝑥𝑛
(1)

, 

𝜀𝑛(2) = 𝑥𝑛 − 𝑥𝑛
(2)

= 𝑥𝑛 − (𝑥𝑛
(1)

+ 𝜀𝑛
(1)

) = 𝜀𝑛(1) − 𝜀𝑛
(1)

 

𝜀𝑛(3) = 𝑥𝑛 − 𝑥𝑛
(3)

= 𝑥𝑛 − (𝑥𝑛
(2)

+ 𝜀𝑛
(2)

) = 𝜀𝑛(2) − 𝜀𝑛
(2)

 

By continuing the same process, we get: 𝜀𝑛(𝑚) = 𝜀𝑛(𝑚−1) − 𝜀𝑛
(𝑚−1)

 

Now we show that equation (4) is true when 𝑚 → ∞, and 𝜀𝑛(𝑚) → 0. Therefore 

from𝜀𝑛(𝑚) = 𝑥𝑛 − 𝑥𝑛
(𝑚)

 , we found that the approximate solution 𝑥𝑛 + 1
(𝑚)

(𝑖 = 1,2, . . . , 𝑙) 

is more closer to exact solution 𝑥𝑛 + 𝑖(𝑖 = 1,2, . . . . , 𝑙) than 𝑥𝑛 + 𝑖
(1)

(𝑖 = 1,2, . . . , 𝑙) 
Since 
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0 ≤ |𝜀𝑛(1)| = |𝑥𝑛 − 𝑥𝑛
(1)

| ≤ 𝑀, 
Then we obtain 

0 ≤ |𝜀𝑛(2)| = |𝑥𝑛 − 𝑥𝑛
(2)

| = |𝜀𝑛(1) − 𝜀𝑛
(1)

| ≤ |𝜀𝑛(1)| ≤ 𝑀, 
So the following inequality can be obtained: 

0 ≤ |𝜀𝑛(𝑚)| = |𝜀𝑛
(𝑚−1)

| ≤, . . . . |𝜀𝑛(1)| ≤ 𝑀, 
As defined in equation 4, when 𝑚 → ∞ and 𝜀𝑛(𝑚) → 0 

Residual Error Estimation using ANFIS: 
The above-mentioned HPEIAM technique improves the accuracy of any prediction 

model and provides an optimal solution. The residual errors are responsible for the prediction 

accuracy of the given model. The errors approximation 𝜀𝑖(𝑘) are responsible for the prediction 
accuracy of every predicted value. We have used a more powerful tool to model the error 
approximations such as ANFIS. The ANFIS was introduced by Jang[21]. It is a powerful 
(ANN) and Fuzzy Inference System (FIS). Combining the ANN and FIS can overcome the 
disadvantages and provide the advantages of both techniques. ANFIS uses the ability of ANN’s 
to classify the data and identify the patterns. Consequently, ANFIS has several advantages, 
including its adaptive capability, nonlinear ability, and rapid learning capacity. The are many 
types of fuzzy interference systems. The segeno-type FIS is used in this study because it is more 
computationally efficient than other types. To explain the ANFIS structure, we assumed that 
there are two inputs: e1 and e2. The two fuzzy if-then rules for a first-order Surgeno fuzzy model 
are written as follows: 

• 𝑅𝑢𝑙𝑒: 𝑖𝑓 𝑒1 𝑖𝑠 𝐴1 𝑎𝑛𝑑 𝑒2 𝑖𝑠 𝐵1 𝑡ℎ𝑒𝑛 𝑓1 = 𝑝1𝑒1 + 𝑞1𝑒1 + 𝑟1, 
• 𝑅𝑢𝑙𝑒: 𝑖𝑓 𝑒1 𝑖𝑠 𝐴2 𝑎𝑛𝑑 𝑒2 𝑖𝑠 𝐵2 𝑡ℎ𝑒𝑛 𝑓2 = 𝑝2𝑒1 + 𝑞2𝑒1 + 𝑟2 

Similarly iA  and iB  are fuzzy sets, if is the output, and 𝑝𝑖, 𝑞𝑖 and 𝑟𝑖 are the design parameters 

which can be obtained through the training process. The ANFIS architecture is in Figure 1. 

 
Figure 1. Graphical Representation of Adaptive Neuro-Fuzzy Inference System 

(ANFIS) [21] 

• Layer 0: Enable inputs to the system  

• Layer 1: This layer fuzzify the inputs by using specific fuzzy sets of number and 
membership      functions  

• Layer 2: In this layer, the specific node for every rule has been added and each node 
computes the firing strength of a rule by multiplication.  
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• Layer 3: In this layer, the previously calculated firing strengths are normalized.  

• Layer 4: It fires the rules using the normalized strength of each rule.  

• Layer 5: In this layer, the result is calculated by adding all the outputs coming from 
layer 4. 
An ANFIS model uses two learning algorithms, backpropagation, and hybrid methods, which 
are used to minimize the error between the observed and estimated data [22].  
Algorithm Description: 
To provide a clear description of the proposed technique, we specify the subsequent algorithm. 

Algorithm 1 High Precision error iterative analysis algorithm 

𝑰𝒏𝒑𝒖𝒕: 𝒙𝟏, 𝒙𝟐, . . . , 𝒙𝒏, 𝜹 ≥ 𝟎 
𝑪𝒓𝒆𝒂𝒕𝒆 𝒂 𝒎𝒐𝒅𝒆𝒍: 𝒚 = 𝒇(𝒙𝟏, 𝒙𝟐, . . . , 𝒙𝒏, 𝒂𝟏, . . . . 𝒂𝒓, 𝒕) 

𝑮𝒆𝒕 𝒕𝒉𝒆 𝒂𝒑𝒑𝒓𝒐𝒙𝒊𝒎𝒂𝒕𝒊𝒐𝒏 𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏: 𝒙𝒊
(𝟏)

, (𝒊 = 𝟏, 𝟐, . . . , 𝒏) 

Get error values: 𝜺𝒊(𝟏) = 𝒙𝒊 − 𝒙𝒊
(𝟏)

(𝒊 = 𝟏, 𝟐, . . . , 𝒏) 
  𝟎: 𝒇𝒐𝒓 𝒊 = 𝟏 𝒕𝒐 𝒎 𝒅𝒐 
  01: 𝒚 =  𝒇(𝜺𝟏(𝒊), 𝜺𝟐(𝒊), . . . , 𝜺𝒏(𝒊)) 

  02: 𝒊𝒇 𝜺(𝒊) = {∑ |

𝒏

𝒋−𝟏

𝒙𝒊 − 𝒙𝒋
(𝟏)

|} ≤ 𝜹 𝒕𝒉𝒆𝒏 

  03:      show the predicted solution 

  04:     𝒙𝒏 + 𝟏
(𝒎)

= 𝒙𝒏 + 𝟏
(𝒎−𝟏)

+ 𝜺𝒏 + 𝒊(𝒎−𝟏) 
  𝟎𝟓:    Exit 
  06:    else if For some other condition then 
  07:      Repeat for loop 
  08:    end if  
  09:    end for =0 

The flow diagram illustrates the methodology used in the proposed approach.  
Data Input:  

The proposed approach begins with providing failure data based on time for the 
Parametric Software Reliability Growth Model (PSRGM). The input data becomes the basis of 
producing predicted values concerning reliability in software. 
Application of PSRGM:  

The PSRGM takes the input data and generates predicted values. The software 
reliability growth models predicted values and actual values which gives residual errors 

𝜀𝑖(𝑘)(𝑖 = 1,2, . . . . , 𝑛, 𝑘 = 1,2, . . . , 𝑚) are another source of information that we can model. 
These residual errors form nonlinear data sequences. 
Expected Accuracy:  

It is used to obtain the model’s accuracy up to an expected level by using specific criteria 
parameters such as MSE. The repeated computation of residual errors by SRGMs improves 
and corrects the prediction accuracy up to the expected level. 
Application of ANFIS:  

If the expected accuracy is not met, the residual error value will pass on to the ANFIS 
to get the residual error approximation. This approximated error will then be passed on to the 
PSRGM to refine the predictions and come as close to the expected accuracy level as possible. 
The predicted failure value ANFIS is used for assessing PSRGMs predicted values residual 
errors. We have modeled residual error series using the ANFIS model. ANFIS is considered a 
powerful tool to model the nonlinear data series[22] and deals with both negative and positive 
sign values. The ANFIS function is used to ANFIS from the Matlab Fuzzy Logic Toolbox. To 
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model the residual error data in ANFIS, the two input variables are selected. The first input (ei) 
denotes the error number. The second input (e2) contains residual error series. The ANFIS 
model is used for training the FIS model to assess training data presented to it by altering the 
parameters of the membership function according to the particular criterion. After training the 
ANFIS model, the outputs are predicted for the trained data. In the next step, prediction is also 
calculated using the trained ANFIS model.  
The HPEIAM is demonstrated through a flow diagram in Figure 2. 

 
Figure 2. Flow diagram of HPEIAM using ANFIS technique 

Get Final Predicted values:  
By continuing the aforementioned multiple error iterative process, we obtained the 

predicted values closer to the exact values The results of the predicted value, as calculated 
through PSRGM, and modified residual errors by ANFIS will be added to give a better 
forecasting.   
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Numerical Illustration: To denote the efficacy of the proposed method, we used six classical 

PSRGMS as shown in Table 1. The HPEIAM is applied for each model to achieve a more 

precise and optimal solution. In this study, all model parameters are estimated by the maximum 

likelihood estimation, as compared with the least square method, which can provide unbiased 

results.  

Data Description: 

To validate the proposed model results, we chose three different datasets collected for 

the real-time command and control systems in actual software development projects. The first 

dataset (DS-1) is 38 fault-detection given in [23] observed during 14 weeks. The second dataset 

(DS-2) is collected from a web-based and integrated accounting ERP system [24]. There are 

146 errors detected within 60 months. The third dataset is also given in [23]. It was reported by 

Musa, Iannino, and Okumoto based on failure data from the Real-time command and Control 

system (RTC and CS), which observed failures through system testing for 25 hours of CPU 

time. 

Performance Evaluation Criteria: 

To better illustrate the model’s performance of our proposed method and other 

PSRGMs, we evaluated based on two main criteria: goodness-of-fit and predictive power. 

Goodness-of-fit criterion: 
We use four goodness-of-fit criteria commonly used to evaluate the performance of 

SRMs. The criteria are described as follows 
Table 1. Parametric Software Reliability Growth Models 

Models Name Mean value function Description 

Geol-Okumoto 
NHPP model [11] 

𝑚(𝑡) = 𝑎(1 − 𝑒
𝑏𝑡

) It is called an exponential software 
reliability model. 

Delayed S-shaped 
model[8] 

𝑚(𝑡) = 𝑎(1(1 + 𝑏𝑡)𝑒(𝑏𝑡) A change of NHPP model to make 
it shaped 

Schneidewind 
model[11] 

𝑚(𝑡) =
𝑎

𝑏
(1 − 𝑒

𝑏𝑡
) 

This model incorporates the idea 
that the current fault rate might be 
of higher importance than the 
distant past. 

Weibull model [9] 
𝑚(𝑡) = 𝑎(1 − (1 +

𝑡

𝑏
)1−𝛼 

Depending on the value of the 
shape parameter, it can take the 
characteristics of other types of 
distributions. 

Pham and Zhang 
Model [10] 

𝑚(𝑡)

=
1

(1 + 𝛽 𝑒𝑥𝑝−𝑏𝑡)
((𝑐 + 𝑎) 

(1 − 𝑒𝑥𝑝 − 𝑏𝑡)

−
𝑎𝑏

𝑏 − 𝑎
(𝑒𝑥𝑝𝛼 𝑒𝑥𝑝 − 

It assumes the fault introduction 
rate as an exponential function of 
the testing time and the fault 
detection rate as non-decreasing. 

Chang et al. ’s 
model[25] 

𝑚(𝑡) = 𝑎(1 − (1 +
𝑡

𝛽
)1−𝛼 

It assumes fault content as constant 
and integrate the testing coverage 
function into the software reliability 
model. 

• The mean square error (MSE) measures the deviation between the actual and predicted 

values,  defined as[26]: 
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𝑀𝑆𝐸 =
1

𝑛 − 𝑁
∑(𝑎𝑐𝑡𝑢𝑎𝑙𝑖

𝑛

𝑖=1

− 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖)2 

Where n and N denote the number of predicted values and the parameters respectively. 

• The R square (R2) indicates the correlation index of the regression curve which is 

denoted as [27]: 

𝑅2 = 1 −
∑ (𝑎𝑐𝑡𝑢𝑎𝑙𝑖𝑛

𝑖=1 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖)2

∑ (𝑎𝑐𝑡𝑢𝑎𝑙𝑖𝑛
𝑖=1 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖)

 

• The predictive power (PP) calculates the difference of the prediction from the real data  

with the predicted data [10]: 

𝑃𝑃 = ∑(
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖 − 𝑎𝑡𝑢𝑐𝑎𝑙𝑖

𝑎𝑐𝑡𝑎𝑢𝑙𝑖

𝑛

𝑖=1

)2 

The predictive ratio risk (PPR) calculates the difference between the prediction from 
the actual data against the estimated values and is described in [10] 

𝑃𝑅𝑅 = ∑(
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖 − 𝑎𝑡𝑢𝑐𝑎𝑙𝑖

𝑎𝑐𝑡𝑎𝑢𝑙𝑖

𝑛

𝑖=1

)2 

Predictive power comparison criterion: 
Two methods are used to compare the predictive power of SRGMs. The criteria are 

described as follows. 
The sum of square (SSE) criteria is used to assess the predictive performance of SRGMs. It is 
described in [28]: 

𝑆𝑆𝐸 = ∑(𝑎𝑡𝑢𝑎𝑙𝑖 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖)2

𝑛

𝑖=1

 

Where n denotes the number of predicted values. 
Data and Performance Analysis: 

The application of the proposed technique is evaluated on several existing classical 
SRGMs based on three datasets collected from software products. 
Dataset 1: 

The well-known dataset (DS-1) [29][30] is used which is described above. The detailed 
data is recorded in Table 2 

Table 2. Failure Dataset (DS-1) 

Failure Time Failure No Failure Time Failure No 

1 12 10 2 
2 11 11 2 
3 20 12 7 
4 21 13 3 
5 20 14 2 
6 13 15 4 
7 12 16 3 
8 2 17 3 
9 1   

The DS-1 recorded 38 failures within 14 weeks. We divide the dataset into two parts. 
The first 90% of data points are used for the estimation of the parameters and to find the 
model’s goodness-of-fitting ability and the remaining data points are to compare the predictive 
power of the improved models. Our proposed technique is applied iteratively on the same 
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model based on the error data points of the previously predicted results. The residual errors 
from the SRGMs predicted data provide the source to ANFIS that can be modeled iteratively. 

The first part of the dataset is used for parameter estimation and goodness-of-fitting 
comparison. The calculated criteria values for goodness-of-fitting such as MSE, R2, PPR, PP, 
and SSE (fit) are shown in Table 3. From Table 3, it can be seen that compared to all models 
using all five criteria, the HPEIAM technique when applied to each model provides better 
results, i.e. the significantly best goodness-of-fit power. We can see that the goodness-of-fitting 
criteria values such as MSE (fit), PPR, PP, and SSE (fit) values of all improved models (GO, 
Yamada, Weibull, Schneide wand, Pham, and Chang’s) are less than the basic (GO, Yamada, 
Weibull, Schneide wand, Pham and Chang’s) models. The R2 criteria value is higher for every 
improved model. Considering all model's fitting criteria, we find that the applied HPEIAM 
technique on SRGMs shows better fitting results for every model. For the predictive power 
comparison, the estimated results of 10% of DS-2 by using SSE are also listed in Table 3. It 
shows that the predictive results are also improved and show better results when HPEIAM 
technique is applied. The HPEIAM technique can obtain good fitting and predictive results 
that have universality. 

Figure 3 illustrates the predicted results of six software reliability models such as GO, 
Yamada, Schneid wand, Weibull, Pham’s, and Chang’s models, and their improved results by 
using the proposed technique. Each figure shows a fitting comparison of all models for DS-1 
from point 1 (failure time) to point 14 (failure time). It can be seen clearly that the proposed 
technique has improved the prediction accuracy of all models. The predictive power 
comparison of the last two models (Pham and Chang’s models) shows higher predictive 
accuracy than the first four models (G-O, Yamada, Schneide wand, and Weibull). We found 
that our technique works best with the error data which can demonstrate the predicted values 
well. From the overall evaluation of fitting and predictive results, it can be seen that the 
proposed technique works well for DS-1. 

Table 3. Predictive Results Comparison of all Selected Models Using HPEIAM 
Technique for DS-1 

Model MSE R2 PPR PP SSE(fit) SSE(predict) 

G-O Model 63.011 0.971020 0.401 0.984 805.685 13.458 
Improved-G-O 
Model 

0.686 0.999647 0.004 0.004 7.924 0.991 

Yamada Model 26.198 0.987217 0.246 0.139 305.237 35.337 
Improved-
Yamada Model 

0.422 0.999805 2.98E-
04 

2.88E-
04 

4.01E-12 5.491 

Schneide’s Model 62.883 0.972552 0.399 0.948 815.825 1.659 
Improved-
Scheide’s Model 

0.180 0.999907 2.80E-
04 

2.80E-
04 

2.154 0.182 

Weibull’s Model 1375.959 0.932477 3.949 1.602 15866.040 2021.430 
Improved-
Weibull’s Model 

0.097 0.999949 1.79E-
04 

1.80E-
04 

1.218 0.050 

Pham’s Model 34.116 0.983113 0.135 0.202 414.198 29.312 
Improved-Pham’s 
Model 

0.090 0.999954 1.39E-
04 

1.39E-
04 

1.080 0.089 

Chang’s Model 0.265 0.999947 0.001 0.001 3.274 0.166 
Improved-
Chang”s Model 

0.003 0.999999 1.88E-
06 

1.87E-
06 

0.00E+00 0.036 

Dataset 2: 
In this section, we evaluate models using another dataset (DS-2)[29][30]. This dataset 

is also widely used in many papers. Compared to other datasets which are used in this paper, 
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DS-2 has a larger time series with 60 observations. The detailed data is shown in Table 4. There 
are 146 failures were detected in 60 months. The dataset is divided into two parts; the first 90% 
of the data is used to estimate parameters and goodness-of-fit power for comparison. The other 
10% of data is used for predictive power comparison. Table 5 gives a summary of the criteria 
values of MSE, R2 PPR, PP, and SSE (fit) for DS-2 based on all basic models and the improved 
results of each model using HPEAIM technique.  

From Table 5, we can see that the improved models’ criteria values such as MSE, PPR, 
PP, and SSE (fit) show lower values than the other basic models. The R2 criterion values of all 
improved models also show larger values (near one) than other basic models. Comparing all 
the criterion values for fitting, we found that the proposed technique improves the performance 
of every model. 

For the predictive power comparison, the first part of the dataset is used to estimate 
parameters and then the remaining part of the dataset to compare the predictive power. The 
SSE (predict) value for every improved model based on HPIEAM technique shows smaller 
values than the basic SRGMs. This may indicate the predictive power of every model is 
improved using the proposed technique. 

Figure 4 demonstrates the predicted results of fundamental models such as GO, 
Yamada, Schneid wand, Weibull, Pham’s, and Chang’s models. It also shows the improved 
results by using the proposed technique. Each figure demonstrates the predicted values and 
real values from point 1 (failure time) to point 60 (failure time). Figure 4 conclude that our 
model shows better fitting results for every PSRGMs, and in some cases, the prediction 
accuracy is higher than existing models but little improved. It is due to the iterations we selected 
to make the accuracy level. In this paper, we have iterated the model only once. The prediction 
accuracy is further improved by iterating the same process more times.  
Dataset 3: 

In this section, we evaluate models using another dataset (DS-3)[29][30]. The detailed 
data is shown in Table 6. The dataset is also divided into two parts; the first 90% of the data is 
used to estimate parameters and to estimate goodness-of-fit power for comparison. The other 
10% of data is used for predictive power comparison. Table 7 gives a summary of the criteria 
values of MSE, R2 and PPR, PP, and SSE (fit) for DS-3 based on all basic models such as GO, 
Yamada, Schneide wand, Weibull, Pham, and Chang’s Software reliability models. The 
Improved results of each model using HPEAIM technique are also shown in the same table. 
From Table 7, we can see that the improved models’ criteria values such as MSE, PPR, PP, and 
SSE (fit) also show lower values than the other basic models for DS-3. The R2 criterion values 
of all improved models also show larger values (near to one) than other basic models. 
Comparing all the criteria values for fitting, we also discovered that the proposed technique 
improves the performance of every model. 

For the predictive power comparison, the first 90% of the dataset is used for estimating 
parameters and training residual errors, and then we use the remaining 10% of the dataset to 
compare the predictive power and testing of residual errors. The SSE (predict) value of every 
improved model based on HPIEAM technique almost shows smaller values than the basic 
SRGMs. This also indicates that the proposed technique improves the predictive power of 
every model. 

Figure 5 illustrates the predicted results of six software reliability models such as GO, 
Yamada, Schneidwand, Weibull, Pham’s and Chang’s models and improved results using the 
proposed technique. Each figure demonstrates the fitting comparison of all models for DS-3 
from point 1 (failure time) to point 25 (failure time). From the overall evaluation of fitting and 
predictive results, it can be seen that proposed technique yields almost best fitting results using 
DS-3. 
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Table 4. Failure Dataset (DS-2) 

Failure 
Time 

Failure 
No 

Failure 
Time 

Failure 
No 

Failure 
Time 

Failure 
No 

1 1 21 2 41 1 
2 6 22 0 42 2 
3 0 23 0 43 0 
4 2 24 0 44 6 
5 0 25 0 45 4 
6 0 26 0 46 0 
7 3 27 0 47 0 
8 6 28 0 48 0 
9 0 29 0 49 1 
10 0 30 0 50 1 
11 0 31 0 51 3 
12 3 32 1 52 1 
13 1 33 2 53 0 
14 0 34 2 54 2 
15 5 35 1 55 16 
16 3 36 1 56 12 
17 15 37 3 57 8 
18 2 38 7 58 1 
19 2 39 1 59 10 
20 2 40 0 60 7 

 

  
(A) Predicted values of g-o model and 
improved-g-o model using HPEIAM 

(B) Predicted values of YAMADA’s model and 
improved YAMADA’s model using HPEIAM 
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(C) Predicted values of Schneide’s model and 
improved Schneide’s model using HPEIAM 

(D) Predicted values of Weibull’s model and 
improved Weibull’s model using HPEIAM 

  
(E) Predicted values of PHAM’s model and 
improved Pham’s model using HPEIAM 

(F) Predicted values of Chang’s model and 
improved Chang’s model using HPEIAM 

FIGURE. 4: Comparison of Predicted Results of PSRGMS And Improved Results of Every 
PSRGM By applying Proposed HPEIAM Method using DS-2 

 

Table 3. Comparison of Predictive Results of all Selected Models Using HPEIAM Technique for 
DS-1 

Model MSE R2(fit) PPR PP(fit) SSE(fit) SSE(predict) 

G-O Model 156.551 0.913709 2.630 2.716 9079.931 7351.426 
Improved-G-O Model 108.009 0.937415 1.443 7.543 6264.524 5985.550 
Yamada Model 171.619 0.870499 97.365 4.506 9953.879 4347.690 
Improved-Yamada 
Model 

115.538 0.932069 1.433 3.495 6701.222 3769.988 

Weibull’s Model 273.337 0.912739 4.715 3.010 15853.547 6169.454 
Improved-Weibull’s 
Model 

107.510 0.937516 1.465 3.446 6235.565 3475.411 
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Schneide Model 138.738 0.912115 2.327 2.964 8046.790 3823.724 
Improved-Scheide 
Model 

109.655 0.936166 1.282 2.913 2.913 3557.542 

Pham’s Model 562.830 0.934307 4.161 10.950 32644.157 87.422 
Improved-Pham’s 
Model 

14.209 0.992911 0.057 0.046 824.127 7.86E-20 

Chang’s Model 61.280 0.927225 3.006 2.426 3554.213 1641.775 
Improved-Chang’s 
Model 

3.426 0.997262 0.672 2.757 198.710 2.637 

 

Table 6. Failure Dataset (DS-3) 

Failure No TBF TBF Failure No TBF Failure No TBF 

1 27 11 4 21 2 
2 16 12 7 22 1 
3 11 13 2 23 2 
4 10 14 5 24 1 
5 11 15 5 25 1 
6 8 16 6   
7 1 17 0   
8 5 18 5   
9 3 19 1   
10 1 20 1   

 

  
(A) Predicted values of g-o model and 
improved-g-o model using HPEIAM 

(B) Predicted values of Yamada’s model and 
improved Yamada’s model using HPEIAM 
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(C) Predicted values of Schneide’s model and 
improved Schneide’s model using HPEIAM 

(D) Predicted values of Weibull’s model and 
improved Weibull’s model using HPEIAM 

  
(E) Predicted values of Pham’s model and 
improved Pham’s model using HPEIAM 

(F) Predicted values of Chang’s model and 
improved Chang’s model using HPEIAM 

Figure 5. Comparison of Predicted Results of PSRGMS And Improved Results of Every 
PSRGM By Applying Proposed HPEIAM Method using DS-3 

Discussion and Limitations: 
The failure number based on HPEIAM, is likely computed through the iterative process 

of comparing predicted failures with actual observed failures during the software testing phase. 
The objective is to optimize the prediction of remaining software 
failures in general by enhancing the accuracy of SRGM predictions using residual 
errors from previous models as new input to a non-parametric model like ANFIS. 

This study examines the applicability of the proposed HPEIAM based on ANFIS on 
the existing six PRRGMs: GO, Yamada, Schneide wand, Weibull, Pham, and Chang’s model. 
This study focuses on the improvement of the prediction accuracy of PSRGMs. The prediction 
capabilities of six PSRGMs have been examined along with MSE, R2 PPR, PP, and SSE for the 
different types of datasets. The fitting results indicate that the PSRGMs performance can be 
improved up to an expected level using the proposed HPEAIM technique. Table 3, 5 and 7 
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show that the proposed technique can improve the fitting and predictive power of existing 
PSRGMs. The fitting criterion values (MSE, R2 and PPR, PP and SSE (fit)) based on our 
proposed technique are better than those of existing models. Moreover, the predictive SSE 
values of the proposed technique are less than those of existing models. 

To reiterate, performance improvement is achieved by combining the most powerful 
prediction models: PSRGMs, ANN, and FIS. The Improve model is capable of obtaining better 
predictive results. Moreover, it is universal and does not rely on the nature of a historical dataset 
and/or a particular environment. The problems that arise from the PSRGMs assumptions are 
also overcome using the proposed technique. In this study, instead of adding SRGM to a large 
number of existing models, we tried to propose a new optimized technique to improve the 
performance of existing PSRGMs. However, owing to a basic limitation of space, only 90% for 
fitting and 10% predictive power for every dataset is calculated. Another limitation arises due 
to experimentation with a limited quantity and type of datasets. Further research is needed to 
evaluate the applicability of the proposed method to more historical datasets and in a different 
environment. 
Conclusion: 

This paper proposes a new high-precision error iterative accuracy method and analyzes 
the method in detail by applying it to classical PSRGMs. The proposed technique combines 
residual errors with the classical PSRGMs. Furthermore, a comparison of the applied technique 
results on different PSRGMs has also been provided in terms of five criteria values: MSE, R2, 
PP, PPR, and SSE on three datasets. Experimental results show that HPEIAM method can 
effectively improve and optimize the performance of every existing PSRGM by providing 
better goodness-of-fit and predictive power. The results of every iteration can be improved by 
the previously predicted solution. Our proposed HPEIAM techniques have combined the 
advantages of the most powerful software reliability models: PSRGM, ANN, and FIS, and 
overcome the disadvantages. It is considered a very flexible and universal technique for 
improving the performance of different software reliability growth models. The results show 
that this method can yield more accurate predicted values than the classical PSRGMs and also 
solves the problem resulting from having an unrealistic assumption.  

The proposed HPEIAM has practical applicability in several areas related to software 
reliability and assurance during the testing phase. It helps developers to better allocate 
resources, optimize testing schedules, and improve overall software quality. Predicting the 
remaining number of failures more accurately, it enables better management of the testing 
phase, minimizing unnecessary testing. 

Moreover, we used only PSRGMs with our proposed technique to enhance 
performance. Thus, further research is needed to give a broader validation. In the future, we 
will also use the same technique to improve the performance of non-parametric models. 
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