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his paper investigates the limitations of traditional visual sensors in challenging 
environments by integrating event-based cameras with visual SLAM (Simultaneous 
Localization and Mapping). The work presents a novel comparison between a visual-only 

SLAM implementation using the state-of-the-art HyperE2VID reconstruction method and 
conventional frame-based SLAM. Traditional cameras struggle in low dynamic range and 
motion blur scenarios, limitations that are addressed by event-based cameras, which offer high 
temporal resolution and robustness in such conditions. The study employs the HyperE2VID 
algorithm to reconstruct event frames from event data, which are then processed through the 
SLAM pipeline and compared with conventional frames. Performance metrics, including 
Absolute Pose Error (APE) and feature tracking performance, were evaluated by contrasting 
visual SLAM implementations on reconstructed images against those from traditional cameras 
across three event camera dataset sequences: Dynamic-6DoF, Poster-6DoF, and Slider depth 
sequence. Experimental results demonstrate that event-based cameras yield higher-quality 
reconstructions, significantly outperforming conventional cameras, especially in scenarios 
marked by motion blur and low dynamic range. Among the tested sequences, the Poster-6DoF 
sequence exhibited the best performance due to its information-rich scenes, while the Slider 
depth sequence faced challenges related to drag and scaling, as it lacked rotational motion. 
Although the APE values for the Slider depth sequence were the lowest, it did experience 
trajectory drift. In contrast, the Poster-6DoF sequence displayed superior overall performance, 
with reconstructions closely aligning with those produced by conventional camera-based SLAM. 
The Dynamic-6DoF sequence showed the poorest performance, marked by high absolute pose 
error and trajectory drift. Overall, these findings highlight the substantial improvements that 
event-based cameras can bring to SLAM systems operating in challenging environments 
characterized by motion blur and low dynamic ranges. 
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Introduction: 
In recent decades, the field of robotics has experienced significant advancements in 

sensors and algorithms, particularly in simultaneous localization and mapping (SLAM). Visual 
sensors are commonly favored in SLAM due to their compact size, lower power consumption, 
greater data richness, and affordability compared to alternatives like LiDAR. However, 
challenges such as motion blur (illustrated in Figure 1a and 1b) and low dynamic range (depicted 
in Figure 1c) can lead to feature loss and blurriness in images, thereby hindering both robot 
localization and efficient environmental mapping. 

 
(a) Motion blur caused by moving sensor 
beside the mirror in the background scene. 

 
(b) Motion blur caused by motion in the 

scene by the falling bottles [1] 

 
(c) Low (left) vs. high (right) dynamic range [2]. High dynamic range can enlighten the 

image, making it capable of efficient feature detection/tracking 
Figure 1. Most occurring issues in visual sensors - Motion Blur and Low Dynamic Range 

To address the challenges faced by traditional visual sensors, neuromorphic retinas—commonly 
referred to as neuromorphic cameras or event-based cameras—were introduced in the mid-2000s. The 
first commercially viable event camera, the Dynamic Vision Sensor (DVS), was developed by the Institute 
of Neuroinformatics in Zurich [3]. Unlike conventional cameras, which capture images at fixed intervals, 
event cameras asynchronously detect pixel-wise brightness changes, generating a continuous stream of 
events, as illustrated in Figure 2 and represented by Equation (1): 

e =  x, y, p, t    (1) 
In this context, \(x\) and \(y\) denote the pixel coordinates, \(p\) represents pixel 

polarity, and \(t\) indicates the time of the event occurrence. A value of \(p = -1\) signifies a 
transition from bright to dark, while \(p = 1\) indicates a transition from dark to light in edge 
intensity. The asynchronous, pixel-wise output of event cameras provides high temporal 
resolution, low power consumption, and enhanced robustness against motion blur and dynamic 
range challenges. 
Literature Review: 

Since the introduction of Mono-SLAM [5] in the early 2000s, SLAM algorithms have 
seen significant advancements in speed and efficiency, with notable examples including ORB-
SLAM, LSD-SLAM, and VINS-Mono. While these algorithms perform well under moderate 
motion and proper lighting conditions, their efficiency is compromised by motion blur and low 
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dynamic range data. This limitation has created a demand for alternative visual sensors better 
suited for high-speed robotics and SLAM applications. References [6] and [7] both present 
event-based visual-inertial odometry techniques that utilize event frames alongside an extended 
Kalman filter (EKF) backend. While [6] demonstrated minimal drift, its reliance on an event-
only sparse frontend limited efficiency due to the availability of features. In contrast, [7] 
addressed this issue by incorporating an Inertial Measurement Unit (IMU) to acquire odometry, 
resulting in reduced pose errors. However, this algorithm still struggled in texture-less and 
motion-less environments, where event generation and feature availability were absent. 

 
Figure 2. Output’s comparison of standard camera with Event camera. (Adapted from [4]). 

A. R. Vidal et al. [8] proposed a visual-inertial odometry pipeline that integrates event 
frames, standard frames, and IMU data. This approach uniquely leverages the complementary 
strengths of both standard and event cameras, enhancing accuracy in both normal and extreme 
motion scenarios. However, its optimization-based backend results in slower processing 
compared to other filter-based methods. Mahlknecht et al. [9] introduced a KLT-VIO [10]-based 
visual-inertial pipeline designed for drone-based planetary exploration. This pipeline 
incorporates event cameras alongside a laser range finder to improve scale estimation, utilizing 
an EKF-based backend that offers faster performance than optimization-based approaches. 
Nevertheless, its reliance on frames for feature extraction limits exploration in cave 
environments to areas illuminated by residual light from the entrance [9]. [11] presents an 
innovative event-based visual-inertial odometry pipeline that utilizes reconstructions of event 
frames through the time surface method, facilitating separate feature tracking and loop closure. 
However, the computational complexity inherent in the graph-based optimization results in 
slower performance. [12] introduces a monocular visual-inertial odometry (VIO) system that 
leverages both point and line features from event cameras. By integrating high-frequency event 
data with IMU measurements, this system improves pose estimation accuracy and robustness, 
particularly in dynamic and low-light conditions, thereby surpassing conventional VIO systems. 
[13] proposes an algorithm that fuses events, visual, and inertial measurements for precise state 
estimation and 3D dense mapping. Through tightly coupled fusion of the event camera and 
IMU, the system integrates feature matching with direct alignment for event-based 2D-2D 
alignment and reprojection, achieving robust real-time performance and making significant 
contributions to visual-inertial SLAM. Conventional computer vision algorithms typically 
require frames to process data, which has led to the development of several reconstruction 
algorithms, such as E2VID [14][15] and Hyper E2VID [16]. This paper specifically focuses on 
evaluating SLAM performance using the HyperE2VID algorithm, a state-of-the-art 
reconstruction method for event-based data. 

To facilitate this evaluation, EVREAL [17] was employed to reconstruct frames from 
the event camera dataset (ECD). Both the reconstructed and real frames underwent feature 
extraction and tracking using the Shi-Tomasi feature detector and ORB descriptor. 
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Subsequently, the performance of SLAM was analyzed using PYSLAM across multiple 
sequences. 
Objectives of the Study: 

The objectives of this research are as follows: 

• To compare the accuracy, efficiency, and robustness of SLAM using real camera frame 
images versus HyperE2VID-reconstructed images. This comparison will involve various 
SLAM metrics, including absolute pose errors and feature stability. 

• To assess the applicability of the state-of-the-art HyperE2VID algorithm for SLAM 
tasks, evaluating whether the reconstructed images from event cameras deliver similar 
or improved performance compared to real images in terms of feature tracking and 
localization accuracy. 

Novelty Statement: 
This research is novel in two key aspects: first, it presents a unique comparison of visual-only 

SLAM implementations using the state-of-the-art HyperE2VID reconstruction method alongside 
conventional frame-based SLAM. No prior work has utilized a visual-only SLAM pipeline in this manner. 
Second, it is the first study to evaluate SLAM performance using HyperE2VID, which has not been 
applied in this context before. 

Methodology: 
This study aims to analyse the performance of various event-based reconstruction 

algorithms for SLAM, using conventional camera frames as a baseline for comparison. The 
experimentation deliberately excludes additional sensors, such as Inertial Measurement Units 
(IMUs), to prevent any undue advantage to the least performing reconstruction algorithm, 
ensuring a clearer and more direct comparison. 
Data Collection: 

Three sequences from the Event Camera Dataset (ECD) [18] were selected: Dynamic-
6DoF, Poster-6DoF, and Slider Depth. The data were collected using the DAVIS-240, a 
dynamic and active-pixel vision sensor that combines both event and conventional camera 
capabilities, featuring a resolution of 240x180 pixels at 24 FPS. These datasets are utilized to 
analyze scenarios involving fast motion and varying dynamic ranges. 
Image Reconstruction: 

Conventional SLAM algorithms necessitate frame-based inputs, which is why the state-
of-the-art event-reconstruction algorithm HyperE2VID is employed to transform event streams 
into frames using the EVREAL framework. HyperE2VID utilizes hyper-networks for E2VID, 
enhancing efficiency by generating per-pixel adaptive filters that improve both memory 
efficiency and the accuracy of the target network. Additionally, the model’s context-aware fusion 
and curriculum learning techniques further enhance output quality while reducing training time 
and complexity. 

Figure 3 presents a comparison between HyperE2VID (left) and the ground truth 
images (right), showing a lower Mean Squared Error (MSE) alongside moderate Structural 
Similarity Index (SSIM) scores. While HyperE2VID exhibits a lower SSIM, it generates human-
interpretable images, as indicated by the higher LPIPS scores, resulting in better-lit and clearer 
scene representations. 

For the comparison analysis, the ground truth information from the ECD dataset was 
set aside due to its higher resolution compared to the HyperE2VID reconstructions. Down-
sampling the ground truth would lead to significant information loss, making it an ineffective 
basis for comparison. Therefore, conventional camera images from the same dataset were 
utilized as a baseline. Both the reconstructed images and the conventional camera images were 
processed through the same SLAM algorithms to facilitate a comprehensive comparison. Figure 
4 presents a qualitative analysis of three sequences, with real camera frames on the left and the 
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HyperE2VID reconstructions on the right. The analysis indicates that the reconstructions are 
well-lit and contain more detailed information than the conventional frames. 
Simultaneous Localization and Mapping Algorithm: 

PYSLAM was chosen for the lightweight implementation of the SLAM algorithm. It 
integrates various feature detection and tracking techniques, enabling experimentation with 
algorithms such as ORB [19], ORB2 [20], SIFT [21], SURF [22], and Shi-Tomasi corners [23]. 

 
Figure 3. Results from EVREAL platform comparing the selected technique on LPIPS, SSIM 

and MSE metrics. 
Shi-Tomasi corners are particularly robust against image noise and rotation, making 

them well-suited for low-resolution environments [23]. In contrast, ORB provides a fast and 
efficient feature tracking mechanism, which is essential for real-time SLAM applications [19]. 
Experimental results confirm that the most accurate outcomes were achieved by combining Shi-
Tomasi corner detection with ORB feature tracking. 

Figure 5 illustrates the experimentation process, which includes the following steps: 

• Processing the Event Camera Dataset: The dataset is converted into a suitable format 
for input into EVREAL. 

• Image Reconstruction: The preprocessed data is sent to the EVREAL tool to 
reconstruct images from the event data. 

• Grouping Reconstructed Images: The reconstructed images are organized into two 
categories: real images and HyperE2VID images. 

• SLAM Pipeline Presentation: Each group is presented to the SLAM pipeline using a 
combination of the Shi-Tomasi feature detector and the ORB feature descriptor. 
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Performance Analysis: 
PYSLAM is applied to both event-reconstructed images and real images, allowing for 

performance analysis across various datasets. 

  (a) 

  (b) 

  (c) 
Figure 4. Comparison of conventional camera frames (left) with HyperE2VID frames (right) 

in three sequences. (a) Dynamic-6DoF, (b) Poster-6DoF, (c) Slider Depth. 
Result and Discussion: 

To analyze the trajectories generated by the SLAM implementations, we employed 
Evolution of Odometry (EVO), an open-source Python library, to compare the resulting 
trajectories and conduct a quantitative analysis. This analysis utilized metrics such as Absolute 
Pose Error (APE), along with mean and standard deviation. Additionally, SLAM performance 
was evaluated in relation to feature matching accuracy and lighting conditions. This section 
presents the findings from the analysis of all three sequences. 
Feature Tracking Analysis: 

PYSLAM, utilizing the Shi-Tomasi feature detector and ORB feature tracker, was 

applied to both HyperE2VID reconstructed images and real frame-based images across all three 

sequences of the ECD dataset. The performance of feature detection and tracking is depicted 

in Figure 6. In this analysis, the black line represents the descriptor distance threshold \ (\phi 

\), which serves as the cutoff for feature matching. When feature distances fall below this 
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threshold, the tracker loses the feature and necessitates a new keyframe. In the dynamic-6DoF 

sequence, feature matching for HyperE2VID reconstructed frames (Figure 6 (b)) frequently 

dipped below the descriptor distance threshold, leading to inadequate feature retention and 

indicating a need for frequent keyframe reinitializations. In contrast, the real frame-based 

tracking (Figure 6 (a)) demonstrated more consistent performance. 

 

Figure 5. Study Flow Diagram of proposed Comparison between Event-based and 
conventional image-based V-SLAM pipeline. 

The parameters for the conducted experimentation are detailed in Table 1. 
The poster-6DoF sequence exhibits a close alignment between the real frames (Figure 6 

(c)) and the reconstructed frames (Figure 6 (d)), thanks to the sequence's highly textured scene, 
which produced rich event data and led to improved reconstructions. Figures 6 (e) and 6 (f) 
display the feature performance graphs for conventional frames and HyperE2VID 
reconstructions, respectively. The reconstructions consistently maintained a higher number of 
features, staying well above the descriptor distance threshold and even outperforming the tracker 
based on real frames. 
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(a)  (b)  

  
(c)  (d)  

  
(e)  (f)  

Figure 6. Feature detector and tracker performance evaluation for Dynamic-6DoF, poster-6 
DoF and slider depth sequences. 

Trajectory and Drift Analysis: 
Figure 7 (a), (b), and (c) present a comparison of 3D trajectories for the dynamic-6DoF, 

poster-6DoF, and slider depth sequences, respectively. The dotted line represents the trajectory 

of conventional frames, while the HyperE2VID reconstructions are depicted in a rainbow 

spectrum, with dark red indicating the farthest trajectory drag and dark blue representing the 

least. In Figure 7 (a), trajectory drag accumulates due to scaling issues, leading to a higher 

Absolute Pose Error (APE). Some sections of the trajectory exhibit minimal drag, while others 
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demonstrate significant scaling problems. Figure 7 (b) illustrates the poster-6DoF sequence, 

where the event-based trajectory (predominantly blue) closely aligns with the conventional 

camera’s dotted path, resulting in a smaller APE and minimal scaling issues. In Figure 7 (c), the 

slider depth sequence shows significant drift and scaling challenges in the reconstruction, 

attributed to the absence of rotational motion. 

Table 1. Parameters for the conducted experimentation. 

Parameter Value 

Detector type Shi-Tomasi (Good Features to Track) 
Descriptor type ORB 
Number of levels 8 
Number of desired features in a single 
frame 

2000 

Scale factor 1.9 
Minimum number of features 500 
Large Window Bundle Adjustment True 

 
(a) 

 
(b) 

 
(c) 

Figure 7. Trajectory and drift analysis of the Dynamic-6DoF, Poster-6DoF and Slider depth 
sequences. Frame based (black dotted line) and Hyper E2VID (rainbow). 

Figure 8 illustrates the trajectory error in two dimensions for both translational and 
rotational components. As depicted, the reconstructed trajectory experiences slight drift and 
scaling issues, with the translational error remaining below five meters, and the rotational drift 
under 25 degrees, as shown in Figures 8 (a) and (b) respectively. 



                                 International Journal of Innovations in Science & Technology 

Oct 2024|Special Issue                                                                              Page |140 

  
(a) (b) 

Figure 8. (a) Translational and (b) rotational drift analysis for the Dynamic-6DoF sequence. 
Similarly, the Poster-6DoF sequence exhibits a comparatively smaller absolute pose 

error of 0.1 meters across the entire trajectory. The results provide insights into the trajectory in 
the translational (x, y, z) directions, as shown in Figure 9 (a), and analyze the rotation (roll, pitch, 
and yaw) in Figure 9 (b). The trajectory of the event camera closely follows the conventional 
frame-based reference trajectory, indicated by the dotted line, in both translational and rotational 
components. It can also be deduced that, in this specific Poster-6DoF sequence, the event 
camera outperformed the conventional camera due to its ability to capture better edges and a 
higher number of events. Consequently, the event-based reconstructions produced much clearer 
images compared to the conventional frames. 

  
(a) (b) 

Figure 9. (a) Translational and (b) rotational drift analysis for the Poster-6DoF sequence. 

  
(a) (b) 

Figure 10. (a) Translational and (b) rotational drift analysis for the Slider depth sequence. 
The third sequence, referred to as slider depth, was analyzed as illustrated in Figure 9. 

This sequence lacks any rotational components and consists solely of lateral translations, 
resulting in less effective reconstruction and significant scaling issues. This is evident in Figures 
10 (a) and 10 (b), which depict the translation and rotational elements, respectively. The 
trajectory based on event frames shows noticeable drift from the traditional camera-based 
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trajectory, primarily due to the absence of rotational motion in the scene. In contrast, during the 
rotational roll, the drift remains minor and does not accumulate significantly, as shown in Figure 
10 (b). 

From this analysis, various metrics—including Absolute Pose Error (APE), Root Mean 
Square Error (RMSE), mean, and standard deviation (std)—were calculated and are presented 
in Figure 11. The results indicate that the APE for the trajectory of the Dynamic-6DoF sequence 
(Figure 11 (a)) fluctuates between 1 and 8 meters, with a mean value of 3.5 meters, a standard 
deviation of approximately 2 meters, and an RMSE of about 4 meters. 

 
(a) 

 
(b) 

 
(c) 

Figure 11. Absolute Pose Error for Dynamic-6DoF, Poster-6DoF and Slider depth sequences. 
Figure 11 (b) illustrates that the Poster-6DoF sequence exhibits an exceptionally low 

APE, attributed to the availability of superior event information and more effective 
reconstructions, yielding a root mean square error of 2.5 meters. The trajectory reflects a mean 
APE value of 2 meters, with a standard deviation of only 1.5 meters. 
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In addition, Figure 11 (c) presents the APE values for the slider depth sequence, which 
fluctuate between 0.5 and 2.5 meters. The analysis reveals a mean absolute pose error (APE) of 
approximately 1.3 meters, an RMSE of 1.4 meters, and a standard deviation of about 0.5 meters. 
Although the APE for the slider depth sequence shows relatively favourable values, the 
trajectory experiences significant drift, diverging considerably from the reference trajectory. 
Discussions: 

The analysis of the visual SLAM algorithm across the three sequences reveals important 
insights into its performance relative to the characteristics of the data used. Notably, the Poster-
6DoF sequence yielded the most favourable results, primarily due to its event-rich and edge-
dense environment. The abundance of edge information facilitates robust feature detection and 
tracking, resulting in a low absolute pose error (APE) of 2.0 meters, a root means square error 
(RMSE) of 2.5 meters, and a standard deviation of 1.5 meters. This underscores the significance 
of comprehensive visual features in enhancing the accuracy of the SLAM algorithm. 

In contrast, the Slider Depth sequence exhibited poorer qualitative performance due to 
its intrinsic limitations, despite achieving the lowest mean APE value of 1.3 meters. Trajectory 
analysis revealed significant scaling and drift issues, primarily stemming from the sequence's lack 
of rotational motion. The RMSE was recorded at 1.04 meters, with a standard deviation of only 
0.5 meters, while the APE for the Slider Depth sequence varied from 0 to 2.5 meters. These 
metrics indicate that, while the absolute error appears favourable, the trajectory's consistency 
and alignment with the reference trajectory were severely compromised, as demonstrated by the 
trajectory analysis. 

With a mean APE of 3.5 meters, an RMSE of 4.0 meters, and a standard deviation of 
2.0 meters, the Dynamic-6DoF sequence exhibited intermediate performance. The dynamic 
conditions during data collection contributed to greater challenges in precise feature tracking 
and odometry estimation, leading to comparatively higher APE values. In summary, the 
performance of the SLAM algorithm is significantly influenced by the nature of the sequences 
employed. A summary of the results is presented in Table 2, highlighting the APE metrics across 
the three sequences. 

Table 2. Absolute Pose Error (APE) for the three sequences showing its mean, RMSE and 
standard deviation. 

Absolute Pose Error 
(APE) (Meters) 

Dynamic-6DoF 
Sequence 

Poster-6DoF 
Sequence 

Slider Depth 
Sequence 

Mean 3.5 2.0 1.3 
RMSE 4.0 2.5 1.4 

Standard Deviation 2.0 1.5 0.5 

Conclusion: 
This work investigates the advancements and challenges associated with vision-based 

Simultaneous Localization and Mapping (SLAM) algorithms, with a particular emphasis on the 
potential of event-based cameras to overcome the limitations of traditional visual sensors, such 
as motion blur and dynamic range issues. The study includes a comprehensive review of state-
of-the-art visual and visual-inertial SLAM algorithms, highlighting their performance under 
various conditions while discussing the limitations inherent in their reliance on conventional 
cameras. 

To address these challenges, this study introduces neuromorphic or event cameras, 
exploring their operation and notable advantages, including high temporal resolution and 
resilience to motion blur. To evaluate the effectiveness of event-based SLAM, the EVREAL 
framework was utilized, and reconstructions were performed using the cutting-edge algorithm 
HyperE2VID to generate images from event data. A visual SLAM pipeline was then 
implemented using the Shi-Tomasi feature detector and ORB feature tracker, allowing for a 
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comparison of results against traditional camera images using metrics such as Absolute Pose 
Error (APE) and feature tracking performance. 

The findings indicate that event-based cameras provide significant improvements, 
yielding more efficient reconstructed frames in scenarios characterized by high-speed motion 
and challenging lighting conditions. The images reconstructed from event data demonstrated 
performance that is comparable, if not superior, in SLAM tasks, thereby validating the feasibility 
and advantages of integrating event-based cameras into SLAM systems. Furthermore, it is 
anticipated that these results could be enhanced by incorporating an IMU or other sensors 
through sensor fusion with event-based cameras, enabling real-time, high-fidelity mapping and 
localization in dynamic environments. Additionally, employing an event-based pipeline, such as 
spiking neural networks for event processing, could offer a computationally efficient and robust 
solution, fully leveraging the capabilities of event cameras. 
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