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 novel lane detection system is proposed for intelligent vehicles. A key feature of this 
system is its lightweight design, which requires less computational power. Our lightweight 
network (LW Net) for semantic segmentation comprises convolutional and separable 

convolutional layers. We designed a total of six lightweight encoder models (LW Net-A, LW 
Net-B, LW Net-C, LW Net-D, LW Net-E, and LW Net-F), each paired with matching decoders. 
The first group of three models is based on depth D1, while the remaining models are based on 
depth D2. In these models, convolutional layers are either fully or partially replaced by separable 
convolutional layers. The lightweight network LW Net-A achieved an 88% reduction in training 
parameters, along with a 2.45% increase in test accuracy compared to the benchmark Seg Net 
model. Meanwhile, LW Net-F attained a 2% increase in test accuracy and a remarkable 94% 
reduction in training parameters compared to the benchmark Seg Net model. Overall, the 
proposed models are less computationally demanding than other benchmark networks, without 
compromising the pixel accuracy of the semantic model. 
Keywords: Semantic Segmentation, Encoder-Decoder, Lane Detection, Light Weight. 
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Introduction: 
Over the past two decades, there has been a significant increase in the number of cars 

and automobiles on the roads. The primary causes of road accidents include driver inattention, 
excessive speeding, and irresponsible behavior. Intelligent Transportation Systems (ITS) offer a 
promising solution by providing safe, eco-friendly, and efficient transportation that benefits 
society as a whole. 

ITS-based intelligent vehicle systems include Advanced Driver Assistance Systems 
(ADAS), which rely on sensors, cameras, or a combination of both to assist drivers. Features 
integrated into ADAS may include Lane Departure Warning (LDW), Parking Assistance, 
Adaptive Cruise Control (ACC), traffic sign recognition, and obstacle detection. Among these 
features, the detection of lanes and obstacles is a primary objective [1],[2]. However, external 
factors such as fog, rain, lighting variations, and occlusions complicate the design of accurate 
lane detection systems [3]. Traditionally, lane detection relied on handcrafted feature extraction 
methods, including Hough Transform [4], Kalman Filter [5], RANSAC [6], Support Vector 
Machine [7], Linear Vector Quantization (LVQ) [8], UNSCARF [9], SCARF [10], watershed 
transform [11], and Finite State Machine [12]. These methods depend on human expertise to 
design features, which often include color histograms, edges, corners, and textures, making 
feature extraction a tedious task. 

With the advent of neural networks, traditional lane detection methods have increasingly 
been replaced by deep learning technologies, shifting research focus from conventional 
approaches to deep learning techniques. Contemporary lane detection algorithms are based on 
deep learning architectures, such as Deep Neural Networks (DNN), Convolutional Neural 
Networks (CNN), and Recurrent Neural Networks (RNN). 

There are three primary types of lane detection architectures: segmentation-based, object 
detection-based, and classification-based. A significant drawback of classification-based 
networks is their reliance on prior knowledge to obtain lane positions. Additionally, object 
detection approaches use regression bounding boxes to identify lane points, a process that can 
be labor-intensive. In contrast, segmentation techniques classify image pixels into lane and non-
lane categories, demonstrating higher accuracy compared to the other two methodologies. 
Figure 1 presents some popular semantic segmentation-based architectures and their properties. 

In this study, we propose a semantic segmentation-based encoder-decoder design for 
lane detection, comprising preprocessing and feature extraction stages. Our architecture is 
lightweight in terms of training parameters while maintaining high accuracy. The main 
contributions of our research are summarized as follows: 

• In the preprocessing module, we enhanced the algorithm by incorporating a data 
augmentation module to artificially increase the dataset during training. 

• In the lane detection module, we propose a lightweight encoder-decoder structure that 
requires fewer parameters during training, thereby reducing training time. 

• Additionally, we simplify the lane detection module by combining a Convolutional 
Neural Network with a separable convolution network, further minimizing training time. 

The structure of this paper is as follows: The literature review addresses traditional and neural 
network models for lane detection in recent years. The architectural description and 
methodology section details our proposed network, emphasizing its stages and the neural 
network architectures employed. Finally, the results and discussion section provide a 
comprehensive explanation of our findings and compare them with other semantic 
segmentation-based networks. 
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Figure 1. Popular semantic segmentation architectures 

Literature Review: 
Semantic segmentation was first implemented using Fully Convolutional Networks 

(FCN) [13]. However, FCNs face challenges due to reduced resolution caused by pooling layers. 
The significant strides in FCNs necessitate additional layers to capture finer details, resulting in 
increased computational demands and memory usage. To overcome the limitations of FCNs, 
encoder-decoder architectures were introduced for semantic segmentation. The encoder 
component utilizes multiple convolutional and pooling layers to extract features, often drawing 
inspiration from leading image classification networks like Res Net [14] and VGG [15]. The 
decoder's role is to up sample images back to their original dimensions. Notable convolutional 
neural networks for semantic segmentation include U-Net [16], Seg Net [17], Deconv Net [18], 
and Deep Lab [19]. Deconv Net’s extensive parameter count makes it challenging to train end-
to-end, while U-Net requires higher memory due to its lack of pooling index reuse. In contrast, 
Seg Net has demonstrated superior performance among encoder-decoder approaches for 
several reasons: it offers reduced computation time and improved memory efficiency during 
inference. Additionally, Seg Net leverages pre-trained weights from the VGG16 network, 
simplifying the initial training process. 

Researchers have applied established benchmark architectures in semantic segmentation 
to tasks such as lane detection. A notable example is Lane Net, a two-stage deep neural network 
specifically designed for lane detection, comprising a point-wise encoder [20] and an LSTM 
decoder. Yang et al. proposed an alternative approach to semantic segmentation-based lane 
detection, focusing on low computational complexity and utilizing a multi-level feature 
extraction technique inspired by Lane Net. Their method employs the VGG-19 backbone 
network for extracting multimodal features. By reducing the number of decoder layers and 
integrating encoder features, they mitigated additional computational burdens [21]. Yu et al. 
enhanced the Lane Net model with a bilateral network, termed Bi-Lane Net [22], optimizing the 
architecture by integrating the lightweight ENet [23] with Lane Net. 

A similar approach based on the Seg Net architecture was proposed to reduce 
complexity and enhance simplicity [24]. Chan et al. introduced a Lane Marking Detector (LMD) 
that utilizes encoder-decoder semantic segmentation. This network is based on the Seg Net and 
U-Net architectures, incorporating dilated convolution into the encoder to compensate for 
resolution loss caused by pooling layers. The overall speed of the network is improved by 
reducing the size of the decoder component [25]. Another approach employed multi-layer 
perceptrons (MLPs) as an encoder-decoder, as noted in [26]. This method further reduces 
computational costs by replacing convolutional layers with 1D layers. Yoo et al. developed an 
end-to-end (E2E) lane detection network that eliminates the need for complex post-processing 
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following semantic segmentation, as described in [27]. This network is based on the U-Net 
architecture. Additionally, a hybrid network combining CNNs and RNNs was proposed for the 
continuous detection of lane lines on the road [28]. Another approach suggested the fusion of 
an encoder-decoder network with dilated convolution [29], computing the weighted average of 
dilated convolution and encoder-decoder components. A novel loss function was also 
introduced to minimize classification errors for both pixel and non-pixel predictions. 
Objective: 

A novel lane detection system is proposed for intelligent vehicles, aiming to reduce 
human error that can lead to road accidents. 
Novelty Statement: 

The novelty and key feature of this system is that it is lightweight and requires less 
computation. 
Flow of Study Diagram: 

 
Figure 2. Architectural Description of Neural Network Model 

Our proposed lightweight network (LWNet) for semantic segmentation comprises 
convolutional and separable convolutional layers. We designed a total of six lightweight encoder 
models (LWNet-A, LWNet-B, LWNet-C, LWNet-D, LWNet-E, and LWNet-F), each with 
corresponding decoders. The first group of three models is based on depth D1, while the 
remaining models utilize depth D2. In these models, convolutional layers are either fully or 
partially replaced with separable convolutional layers. LWNet-A achieves an 88% reduction in 
training parameters along with a 2.45% increase in test accuracy compared to the benchmark 
SegNet model. Similarly, LWNet-F shows a 2% increase in test accuracy while achieving a 
remarkable 94% reduction in training parameters compared to SegNet. Overall, our proposed 
models are less computationally demanding than other benchmark networks, without 
compromising the pixel accuracy of the semantic model. 

An approach for multi-lane classification employs encoder-decoder networks for lane 
detection, enhancing segmentation accuracy for weak class objects, such as lane boundaries. In 
contrast to multi-class segmentation networks, this binary-class network achieves compactness 
by utilizing fewer convolutional and deconvolutional layers, as discussed in [30]. The Fast-
Hybrid Branch network (Fast-HB Net) tackles a related task by leveraging both global and spatial 
feature extraction. The authors introduced a Hierarchical Feature Learning (HFL) module to 
enhance the decoder's generalization ability, as noted in [31]. 
Architecture and Methodology: 

In this section, we introduce a novel and efficient lane detection architecture, as 
illustrated in Figure 2. The architecture consists of three main modules: a preprocessing block, 
a data augmentation block, and the neural network architecture. The preprocessing block begins 
by applying a tone-mapping algorithm to the images, followed by resizing and shuffling the tone-
mapped images. Next, the pre-processed images move through the data augmentation block, 
where artificial variations are introduced. This augmentation technique is particularly beneficial 



                                 International Journal of Innovations in Science & Technology 

Oct 2024|Special Issue                                                                                Page |85 

when training data is limited. After the augmentation block, the processed images are fed into 
our proposed neural network architecture, which is a streamlined version inspired by the SegNet 
encoder-decoder algorithm. Detailed explanations of each of these modules are provided below. 
Preprocessing: 
Resizing: 

Resizing involves adjusting the dimensions of an image, which is essential in image 
processing for enhancing efficiency and ensuring consistency. Neural networks typically require 
images to be resized to a standard size for optimal performance. Processing large images can be 
challenging; therefore, selecting smaller dimensions, such as 80x160 or 160x320, can significantly 
improve both training and inference speeds. This becomes particularly important for handling 
large datasets and supporting real-time applications. 
Shuffling: 

Shuffling refers to the random rearrangement of images within a dataset, a technique 
that is vital for improving neural network performance. By shuffling the dataset, we mitigate the 
risk of overfitting the model. This randomization allows the neural network to learn from a 
diverse array of data patterns instead of merely memorizing specific sequences. 
Data Augmentation: 

Data augmentation effectively tackles the limitations of small training datasets by 
artificially expanding them through various techniques. Common methods for image data 
augmentation include rotation, flipping, zooming, and adjusting contrast, among others. These 
techniques enhance the robustness and generalization of neural networks by exposing them to 
a broader spectrum of data variations during training. 
Image Rotation: 

Image rotation is a technique employed to expand the image dataset, increasing its size 
and diversity for training purposes. By incorporating rotated images, the model can learn from 
a wider range of examples, thereby enhancing its generalization capabilities. This method 
ultimately improves the model's ability to predict and comprehend a broader array of previously 
unseen images. 
Image Flipping: 

Flipping images is another data augmentation technique utilized to enhance diversity 
within the training dataset. This method increases the robustness of deep learning models by 
exposing them to variations in image orientation. By learning from flipped images, the model 
becomes more adept at recognizing patterns irrespective of orientation, thereby reducing the 
likelihood of overfitting. 
Image Contrast Adjustment: 

Image contrast refers to the difference in brightness between various parts of an image, 
significantly impacting the visibility and clarity of objects within it. Contrast levels are typically 
categorized into two types: high contrast, where objects appear sharp and distinct, and low 
contrast, where objects appear less defined and dull. Randomly adjusting the contrast of training 
images creates a diverse dataset, enhancing the robustness and generalization capabilities of 
neural network models. This augmentation technique exposes the model to a broader range of 
visual variations, enabling it to better adapt to different lighting conditions and ultimately 
improve overall performance. 
Image Zooming: 

Zooming is a technique employed to adjust the scaling of images, thereby adding 
variability to the training dataset. This method modifies the size and position of objects within 
an image. During data augmentation, images can be zoomed in or out. Zooming in magnifies 
specific areas of an image, highlighting details that may occupy only a few pixels within the 
overall composition. This is particularly beneficial for enhancing the model's ability to recognize 
fine details. Conversely, zooming out offers a broader perspective, aiding the model in 
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understanding spatial relationships and context within larger scenes. Collectively, these 
techniques enhance the robustness and performance of neural network models. 
Neural Network Architecture: 

Our neural network architecture integrates encoder and decoder networks. The encoder 
network is designed to extract features from images, processing them at various scales and 
resolutions. In its lower layers, the encoder captures intricate details such as boundaries, textures, 
and local patterns, which are essential for object classification and boundary delineation. The 
higher layers of the encoder focus on. 

 
Figure 3. Semantic segmentation architectures consisting of convolutional and separable 

convolutional layers (a) LW Net-C (b) LW Net-D 
Capturing broader context and relationships between objects in the image, the encoder 

aids in achieving accurate pixel-level predictions. Conversely, the decoder network restores the 
resolution lost during the encoder's max pooling operations, generating a pixel-wise 
segmentation map from the high-level features extracted by the encoder. This ensures that the 
output image aligns with the input size. Our architecture adopts an encoder-decoder semantic 
segmentation approach, with the encoder network inspired by VGG-16 [15]. We utilize 3x3 
convolution filters with a stride of 1 to minimize computational load, effectively reducing both 
training and inference times. This encoder network produces hierarchical features across various 
scales and resolutions, enhancing its capacity to manage diverse visual data. 

For an input image represented as (W, H, C)—where W denotes width, H represents 
height, and C indicates the number of channels—the image resolution decreases following each 
max pooling layer. Figure 3 illustrates our designed neural network architectures. In Figure 3(a), 
a lightweight network architecture is depicted, incorporating both standard convolutional and 
separable convolutional layers. The encoder section initiates with convolutional layers in the first 
four stages, transitioning to separable convolutional layers in subsequent stages to reduce the 
number of trainable parameters. This approach allows the network to remain shallow while 
maintaining efficiency. Figure 3(b) illustrates the lightest encoder network configuration, 
featuring an initial sequence of four convolutional layers followed by three layers of separable 
convolution. This design is optimized for performance with minimal computational overhead. 

Table 1. Kitty Dataset Description 

Type Training Dataset Size Test Dataset Size 

Urban Unmarked (UU) 98 100 
Urban Marked (UM) (two-way road) 95 96 
Urban Marked (UMM) (multi-lines) 96 94 

Dataset & Implementation Details: 
In this section, we begin by discussing the lane detection dataset, KITTI [32]. Following 

this, we outline our implementation strategies. We then evaluate our proposed methods using 
the selected dataset, concluding with a comparison of our results against state-of-the-art 
methods. All models were tested on an NVIDIA platform. 
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We evaluated our model using the Quadro P100 GPU and selected the KITTI dataset, 
a prominent open-access benchmark for road and lane detection. This dataset consists of 600 
labeled images, utilized for both training and testing and encompasses a diverse array of urban 
road scenes, including both marked and unmarked lane lines. Each image in the dataset measures 
375x1242 pixels. The KITTI dataset is divided into three subsets, with approximately 100 
training and 100 test images in each, as summarized in Table 1. 

Our model employs ReLU activation functions and is trained from scratch without any 
pretraining. We use a mini-batch size of 5 and the 'Adam' optimizer during training, which spans 
200 epochs. To enhance the training process, we converted our dataset into low-resolution 
images, opting for two resolution sizes: 80x160 pixels and 160x320 pixels. 
Results and Discussion: 

The evaluation metrics employed in this study include binary accuracy, Area Under the 
Curve (AUC), Intersection over Union (IoU), and the Dice Coefficient. Binary accuracy, 
calculated using Equation 1, measures the percentage of correct predictions made by the 
algorithm relative to the total number of images. It represents the ratio of correct predictions to 
the total number of images.  

Another important metric for assessing segmentation-based detection is Intersection 
over Union (IoU), which quantifies the overlap between two bounding boxes: one representing 
the actual ground truth and the other the predicted bounding box. IoU for a single image can 
be computed using Equation 2. 

We also evaluated our algorithm using the Area Under the Curve (AUC), which is 
commonly used for binary classification tasks involving a single "positive" class. AUC can be 
derived by plotting the Recall value on the x-axis against the Precision on the y-axis. Additionally, 
we utilized the Dice Coefficient, which measures the similarity between two sets. This metric is 
particularly useful for image segmentation tasks. 

Accuracy (Acc) =
Total number of correct predictions

Total numbe of images
 1 

IoU =
Area of overlap

Aea of union
 2 

We have developed several lightweight architectures utilizing convolutional and 
separable convolutional layers, as detailed in Table 2. LW Net (A) consists of 21 layers, including 
10 convolutional layers. In contrast, LW Net (B) mirrors LW Net (A) but replaces conventional 
convolutional layers with separable convolutional layers to reduce computational load. LW Net 
(C) optimizes this approach by integrating four initial convolutional layers followed by six 
separable convolutional layers. Additionally, we created shallower networks without 
compromising accuracy: LW Net (D), LW Net (E), and LW Net (F), each comprising 15 layers 
with seven layers in both the encoder and decoder sections, along with a SoftMax layer. LW Net 
(D) employs convolutional layers, LW Net (E) utilizes separable convolutional layers, and LW 
Net (F) combines both types. 

Experiments were conducted using two sets of low-resolution images, with results 
presented in Table 3 and Table 4 for image resolutions of 80x160 pixels and 160x320 pixels, 
respectively. As shown in Table 3, LW Net (B) and LW Net (E), although lighter in 
computational parameters, achieved lower accuracy and performance metrics compared to other 
models. In contrast, LW Net (C) and LW Net (F), which leverage a mix of convolutional and 
separable convolutional layers, demonstrated superior performance. Specifically, LW Net (C) 
and LW Net (F) excelled in lane detection tasks while also reducing computational demands. 
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Table 2. Lightweight Architectures of LW Net 

A B C D E F 

Encoder Configuration 

Conv3-32 SeparableConv3-32 conv3-32 conv3-32 SeparableConv3-32 conv3-32 
Conv3-32 SeparableConv3-32 conv3-32 conv3-32 SeparableConv3-32 conv3-32 

Max Pooling 

Conv3-64 SeparableConv3-64 conv3-64 conv3-64 SeparableConv3-64 conv3-64 
Conv3-64 SeparableConv3-64 conv3-64 conv3-64 SeparableConv3-64 conv3-64 

Max Pooling 

Conv3-128 SeparableConv3-128 SeparableConv3-128 conv3-128 SeparableConv3-128 SeparableConv3-128 
Conv3-128 SeparableConv3-128 SeparableConv3-128 conv3-128 SeparableConv3-128 SeparableConv3-128 
Conv3-128 SeparableConv3-128 SeparableConv3-128 conv3-128 SeparableConv3-128 SeparableConv3-128 
Conv3-256 SeparableConv3-256 SeparableConv3-256    
Conv3-256 SeparableConv3-256 SeparableConv3-256    
Conv3-256 SeparableConv3-256 SeparableConv3-256    

Table 3. Results of different architectures for Image resolution of (80x160px) 

Network Training Acc Test Accuracy IoU Dice Coeff AUC No. of Parameters 

U net [16] 0.9981 0.96418 0.7689 0.8694 0.919 11.77MB 
LW Net-A (ours) 0.9861 0.9624 0.775 0.8737 0.915 16.82MB 
LW Net-B (ours) 0.9825 0.9531 0.7312 0.844 0.912 10.39MB 
LW Net-C (ours) 0.9870 0.97068 0.8217 0.902 0.9565 10.6MB 
LW Net-D (ours) 0.9911 0.97013 0.819 0.9008 0.9475 3.88MB 
LW Net-E (ours) 0.9882 0.96622 0.773 0.8724 0.923 2.42MB 
LW Net-F (ours) 0.9907 0.9716 0.834 0.9099 0.9469 2.64MB 

Table 4. Results of different architectures for Image resolution of (160x320px) 

Network Training Acc. Test Acc. IoU Dice Coeff AUC No. of Parameters 

Seg Net [17] 0.9224 0.918 - - - 68.58MB 
LW Net-A (ours) 0.9903 0.9716 0.826 0.9048 0.9515 16.82MB 
LW Net-B (ours) 09885 0.9629 0.7848 0.8794 0.9304 10.39MB 
LW Net-C (ours) 0.9885 0.9672 0.803 0.8907 0.9444 10.6MB 
LW Net-D (ours) 0.9926 0.9707 0.8233 0.903 0.9481 3.888MB 
LW Net-E (ours) 0.9855 0.965 0.796 0.886 0.9398 2.42MB 
LW Net-F (ours) 0.9911 0.9700 0.822 0.9026 0.947 2.64MB 
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We compared our architectures with the widely used U-Net algorithm [16], observing 
improvements in test accuracies and the Area Under the Curve (AUC) despite a smaller number 
of parameters, as indicated in Table 3. Predictions from the various LW Net models with an 
image resolution of 80x160 pixels are illustrated in Figure 4. Input images and their 
corresponding labels are shown in Figures 4(a) and 4(b), while predictions are presented in 
Figures 4(c) to 4(h). Notably, improved predictions are observed for designs C and F, as 
illustrated in Figures 4(e) and 4(h). 

 
Figure 4. Predictions from different models of LW Net with 80x160 px image resolution (a) 

Input Picture (b) Labels (c) Design A (d) Design B (e) Design C (f) Design D (g) Design E (h) 
Design F 

Additionally, we benchmarked our models against the state-of-the-art SegNet [17], 
showcasing the predicted lane area images in Figure 4. These results demonstrate the 
effectiveness of our approach to lane detection, highlighting the balance between computational 
efficiency and accuracy. Table 4 presents various metrics for our lane detection model at an 
image resolution of 160x320 pixels. Notably, the number of parameters remains consistent with 
that of the 80x160 pixel resolution case. While image resolution affects training and inference 
times, it does not impact the parameter count. Similar patterns can be observed in Table 4 as in 
Table 3, with LW Net (C) and LW Net (F) achieving significantly better accuracies with minimal 
compromise on the number of parameters compared to the LW Net (B) and LW Net (E) 
models. 

Predictions from various LW Net models with a 160x320 pixel image resolution are illustrated 
in Figure 5. The input images and their corresponding labels are displayed in Figures 5(a) and 5(b), while 
the predictions are presented in Figures 5(c) through 5(h). Notably, improved predictions are achieved 
with designs C and F, as shown in Figures 5(e) and 5(h). The analysis indicates that models operating on 
high-resolution images yield better results. 

 
Figure 5. Predictions from different models of LW Net with 160x320 px image resolution (a) 
Input Picture (b) Labels (c) Design A (d) Design B (e) Design C (f) Design D (g) Design E (h) 

Design F 
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(a) 

 
(b) 

Figure 6. Pixel accuracy comparison chart for our different designed models (a) Image 
resolution (80x160) (b) Image Resolution (160x320) 

 
Figure 7. Comparison of a number of parameters in MB required for training for our 

different architectures. 
This underscores the effectiveness of the LWNet-C and LWNet-F architectures in lane 

detection tasks, emphasizing their potential to reduce computational complexity without 
compromising performance. Figure 6(a) presents graphs for an image resolution of 80x160 
pixels, where the LWNet-F model, known for its lightweight design, achieves the highest pixel 
accuracy. A comparison of pixel accuracies at an image resolution of 160x320 pixels is illustrated 
in Figure 6(b), showing that our models outperform the benchmark SegNet model. This 
demonstrates the superior performance of our architectures in lane detection across various 
image resolutions. Figure 7 visually represents the significant variation in the number of 
parameters required for training among the models. This comparison highlights the diverse 
architectural designs and computational efficiencies of each model, illustrating their impact on 
training complexity and resource utilization. 
Conclusion: 

A semantic segmentation-based lightweight network (LWNet) has been developed, 
consisting of convolutional and separable convolutional layers. Six lightweight encoder 
models—LWNet-A, LWNet-B, LWNet-C, LWNet-D, LWNet-E, and LWNet-F—have been 
designed and their performance evaluated. The LWNet-A model, which relies on traditional 
convolutional layers, achieved an 88% reduction in training parameters along with an 
approximately 2.45% increase in test accuracy compared to the benchmark SegNet model. In 
contrast, LWNet-F, which incorporates initial convolutional layers followed by separable 
convolutional layers, attained about a 2% increase in test accuracy and a remarkable 94% 
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reduction in training parameters relative to the SegNet benchmark. Our proposed models are 
significantly less computationally demanding than other benchmark networks, without 
sacrificing pixel accuracy in the semantic segmentation task. These innovative lane detection 
networks hold promise for applications in intelligent vehicles and advanced driving assistance 
systems. 
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