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xploring the impact of integrating an explicit state model checker into the learning-
based testing (LBT) framework presents an intriguing challenge. Traditionally, LBT 
has leveraged symbolic model checkers such as NuSMV and SAL, which use Binary 

Decision Diagrams (BDDs) to analyze multiple states concurrently. In contrast, explicit state 
model checkers evaluate one state at a time, a key distinction that suggests potential 
advantages for explicit state checking in the context of LBT. Thus, it is valuable to investigate 
how integrating an explicit state model checking algorithm might influence the performance of 
LBT. Model checkers explore the state space to verify conformance with user-defined 
correctness requirements, typically represented as Linear Temporal Logic (LTL) formulas. If a 
property violation is detected, it is presented as a counterexample. NuSMV and SAL employ 
different algorithms for generating and displaying counterexamples. This paper specifically 
examines the effect of SPIN-generated counterexamples on the LBT process. Evaluation 
metrics include Total LBT Iterations, First Bug Reporting Time (in milliseconds), 
Counterexample Length, Precision, and Efficiency, among others. Total Model Checking 
Time (in milliseconds) captures the cumulative time spent verifying the model over all 
iterations. SPIN consistently requires the least time for all specifications compared to other 
model checkers. As a result, experiments demonstrate that SPIN is more efficient when 
integrated with LBT, leading to faster convergence of the LBT hypothesis to the target System 
Under Test (SUT) in comparison to NuSMV and SAL. 
Keywords: Software Testing; Explicit State Model Checking; Learning-Based Testing; 
Counterexamples. 
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Introduction 
Software testing aims to identify errors in a system, using a variety of techniques. 

White-box testing, for example, involves testing with knowledge of the system’s internal 
structure. In contrast, black-box testing [1] focuses on evaluating the software without any 
insight into its internal workings. Learning-based testing (LBT) [6], a form of black-box 
testing, utilizes automaton learning algorithms in combination with model checkers [8]. In the 
realm of formal verification, model checkers are employed to verify that a system's model 
conforms to specified requirements [21]. When a system meets these formal specifications, its 
behavior is considered verified. However, if a discrepancy is found, the model checker 
generates a counterexample, which serves as proof of non-conformance. A counterexample 
represents a sequence of states starting from the initial state, where the system's behavior 
violates the specified property [31]. 

The challenge of integrating an explicit state model checker into the LBT framework 
offers an intriguing opportunity for further exploration. Historically, LBT has relied on 
symbolic model checkers such as NuSMV and SAL, which use Binary Decision Diagrams 
(BDDs) to analyze multiple states simultaneously. In contrast, explicit state model checkers 
evaluate one state at a time. This difference suggests that explicit state checking may present 
both distinct advantages and challenges for LBT. It is therefore important to investigate how 
the inclusion of an explicit state model checking algorithm influences the performance of 
LBT. This paper focuses specifically on the role of SPIN-generated counterexamples in the 
LBT process, evaluating metrics such as Total LBT Iterations, First Bug Reporting Time (in 
milliseconds), counterexample length, Precision, and Efficiency. Additionally, Total Model 
Checking Time (in milliseconds) aggregates the time taken to verify the model across all 
iterations. SPIN consistently outperforms NuSMV and SAL in terms of time efficiency across 
all specifications. Consequently, the experiments show that SPIN, when integrated with LBT, 
leads to faster convergence of the LBT hypothesis to the target System Under Test (SUT) 
compared to the other two model checkers. 
Literature Review: 

The Learning-based Testing (LBT) framework [6] was previously developed and 
integrated with two symbolic model checkers, NuSMV and SAL [23]. In the LBT approach, 
the System Under Test (SUT) is treated as a black-box. LBT generates test cases by 
incrementally model-checking hypotheses of the SUT, which are constructed using automaton 
learning algorithms, against formal requirements. As the hypotheses are refined through each 
step of the incremental learning process, the generated test cases are also refined, thanks to the 
feedback loop inherent in the LBT framework. However, LBT has not previously been applied 
with the SPIN model checker, which is an explicit state model checker. Unlike symbolic model 
checkers, SPIN uses a nested depth-first search technique to explore the state space of a 
system model. 

Model checking algorithms rely on a specific input language, and models must be 
encoded in this language for verification. Each model checking algorithm requires a 
compatible specification language to define the system’s requirements. For instance, SAL 
intermediate language, SMV, and Promela are commonly used specification languages for 
reactive systems in SAL, NuSMV, and SPIN model checkers [9]. To verify the system, the 
properties to be checked must be formally specified, typically using property specification 
languages like Computation Tree Logic (CTL) or Linear Temporal Logic (LTL) [10]. Model 
checkers are formal verification (FV) tools designed to ensure that systems behave according 
to their specifications. While counterexamples are generally considered undesirable in the FV 
community, they can be valuable as test cases for the testing community. Previous research has 
explored counterexample generation and their utility for testing purposes [23]. Next, we will 
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review several model checkers, highlighting the key differences in their approaches as 
discussed above. 
SPIN: 

The SPIN model checker is primarily used for verifying asynchronous systems [11]. It 
incorporates techniques such as abstraction and message passing through channels to model 
system behavior. SPIN is particularly effective at achieving logical consistency in its 
verifications. To perform requirement verification, SPIN translates the property specification, 
typically expressed in Linear Temporal Logic (LTL), into a Büchi automaton. A property 
violation is identified when the intersection of the Büchi automaton and the system model is 
non-empty. SPIN’s model checking approach is based on the explicit representation of the 
entire state space, where it explores the states forward to detect potential property violations. 
In this context, a counterexample generated by SPIN is essentially a path from the initial state 
to a state where the property violation occurs [25]. 
NuSMV: 

NuSMV is a symbolic model checker (SMV) that relies on Binary Decision Diagrams 
(BDDs) for model verification [12]. It was the first model checker to use BDDs as the 
foundation for its verification process. To test a given specification, NuSMV accepts a model 
of the System Under Test (SUT) in the SMV language and employs an Ordered Binary 
Decision Diagram (OBDD) to derive a transition system. The search algorithm it uses to 
verify whether the specification is satisfied is also based on OBDDs. If the model does not 
conform to the specified requirements, NuSMV generates a counterexample in the form of a 
trace, illustrating the path that leads to the violation. 
SAL: 

SAL [13] was developed through a collaboration between Stanford, Verimg, and 
Berkeley in 2013. It is built on a blackboard architecture [14], integrating a variety of 
specialized tools and algorithms to verify and specify the transition properties of a System 
Under Test (SUT). The SAL intermediate language is used to describe the system based on its 
transition model, and it has a unique syntax tailored to this purpose. SAL's validation tools 
leverage a combination of model checking, theorem proving, and other techniques to ensure 
the correctness of the system’s behavior. 
Proposed Approach: 

This paper explores the feasibility of generating test cases for Learning-Based Testing 
(LBT) using the SPIN model checker by integrating two Systems Under Test (SUTs) with an 
incremental automaton learning algorithm [25], [26]. SPIN is a promising candidate for LBT 
due to its efficiency, explicit state verification capabilities, and robust counterexample 
generation features [21]. One of the SUTs is a cruise controller, an embedded device 
commonly found in modern vehicles, which has been previously tested using NuSMV and 
SAL within the context of LBT. The other SUT is a three-floor elevator system. The proposed 
approach is illustrated in Figure 1 below: 
Vehicle Cruise Controller (5 Bit): 

A vehicle cruise control system, as the name suggests, is a safety-critical system [25], 
[28], [30] designed to automatically regulate the speed of a vehicle. The cruise control function 
significantly enhances the driver's convenience by adjusting the throttle according to a user-
defined setting. This function can be disabled when not needed and must be explicitly 
activated when automatic cruise control is desired. Such a system can be modeled as a 
deterministic Kripke model. A simplified version of the cruise control model uses five inputs: 
Σ = {brake, decelerate, accelerate, gas, button}, and outputs a five-bit vector, where bit 1 and 
bit 2 represent the mode, bit 3 and bit 4 represent the speed, and bit 5 represents the button 
status. 
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• Brake: The brake is used by the driver to reduce the vehicle's speed. 

• Decelerate: Deceleration represents an external factor affecting speed, such as when 
the vehicle is going uphill. 

• Accelerate: Acceleration is another external factor impacting speed, typically when the 
vehicle is going downhill. 

• Gas: Gas indicates the value of the throttle or accelerator pedal. 

• Button: The button is a physical switch that toggles the cruise control feature on or 
off. 

 
Figure 1. Proposed Framework of LBT 

 
Figure 2. A 5-bit Cruise Controller Model 
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The safety requirements of the Cruise Controller, expressed as LTL (Linear Temporal 
Logic) formulae [10], [12], are as follows: Req 1 G (mode = cruise & speed = 1 & in = dec → 
X (speed = 1)) 

Req 2 G (mode = cruise & speed = 1 & in = acc → X (speed = 1)) 
Req 3 G (mode = cruise & in = brake → X (mode = disengaged)) 
Req 4 G (mode = cruise & in = gas → X (mode = disengaged)) 

Requirement 1 states that when the cruise controller is in "cruise" mode and the 
vehicle's speed is within the designated cruise range, the speed should remain within the cruise 
range even if the vehicle begins to go uphill. Requirement 2 specifies that when the cruise 
controller is in "cruise" mode and the speed is within the cruise range, the speed should remain 
within the cruise range even if the vehicle starts going downhill. In other words, the cruise 
control function is expected to maintain the set cruise speed regardless of the vehicle's incline. 
Requirement 3 states that when the vehicle is in "cruise" mode and the driver applies the 
brake, the cruise controller should be disengaged. Lastly, Requirement 4 specifies that when 
the vehicle is in "cruise" mode and the driver presses the gas pedal, the cruise controller 
should also be disengaged. 
A Three-Floor Elevator (8 Bit Abstracted): 

This section elaborates the detailed functionality of the three-floor elevator. The model 
has 38 states. Its output is an 8-bit vector. The input set comprises four inputs: {c1, c2, c3, 
tick}. 

• c1: representing a call to the first floor; 

• c2: representing a call to the second floor; 

• c3: representing a call to the third floor; 

• Tick: representing the clock-ticks indicating passage of time. 
The output vector of the elevator is an 8-bit string: {w1, w2, w3, cl, stop, @1, @2, 

@3}. These bits represent different output values and are explained below: 

• w1: represents a queued call to the first floor; 

• w2: represents a queued call to the second floor; 

• w3: represents a queued call to the third floor; 

• cl: represents the fact that the elevator door is closed; 

• cl: represents the fact that the elevator door is open; 

• stop: represents the fact that the elevator is halted at a particular point in time; 

• stop: represents the fact that the elevator is in motion at a particular point in time; 

• @1: represents the fact that the elevator is on the first floor; 

• @2: represents the fact that the elevator is on the second floor; 

• @3: represents the fact that the elevator is at third floor. 
There are three safety properties that are crucial to the functionality of the elevator. 

These are listed as LTL Formula: 
Req 1 G (! stop → cl) 

Req 2 G (stop & X (! stop) → X (! cl)) 
Req 3 G (stop & @1 & cl & in = c1 & X (@1) → X (! cl)) 

Req 4 G (! @ 1 &! @2 & !@3 → !stop) 
Requirement 1 is a safety property that ensures the elevator door remains closed 

whenever the elevator is in motion. Requirement 2 specifies that when the elevator is stopped 
at a floor, its door should automatically open. Requirement 3 states that the elevator door can 
be opened by pressing the floor 1 button, but only when the elevator is stationary at floor 1. 
Finally, Requirement 4 defines that the elevator will remain in motion while traveling between 
floors. 
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Experiment Design: 
The analysis of the two Systems Under Test (SUTs) can be broadly categorized into 

three groups: the Combined Category, the Learning Category, and the Model Checking 
Category. The first category, Combined Category, includes parameters that are relevant to both 
model checking and learning. The second category, Learning Category, contains measures that 
pertain specifically to the learning infrastructure. The third category, Model Checking 
Category, focuses on parameters related to model checking and the testing of Learning-Based 
Testing (LBT). In the following sections, we will examine each category in detail and explain 
the role of each measure. 
Combined Category: 

• Total LBT Iterations: LBT undergoes a series of iterations in each experiment before 
the model learning process can be considered complete. The total number of these 
iterations is recorded in this measure. 

• Single LBT Iteration Execution Time (Millisecond): This parameter records the 
time taken by LBT to complete a single iteration, with the time measured in 
milliseconds (ms). 

• First Bug Reporting Time (Millisecond): This measure records the time at which 
the first counterexample is encountered. After LBT generates a model, it is passed to 
the model checker for verification against the specified requirements. The first instance 
where the model fails to meet the specification is captured by this parameter. 

• Bug Discovery Duration: This measure captures the time interval between the 
discovery of one bug and the next. It reflects the time lapse between these events and 
serves as an indicator of the effectiveness of each iteration in refining the system 
model. The values recorded for this measure provide insight into the progress of the 
learning process. 

• Length of the Counterexample: This parameter stores the length of a 
counterexample returned by the model checker. Specifically, it records the length at the 
point when the model checker generates a counterexample during the verification 
process. 

• Total True Negatives: A true negative is a counterexample correctly identified by the 
model checker, indicating that the model satisfies the specification. This measure 
records the total count of true negatives observed during a single experiment. 

• Total False Negatives: A false negative is a counterexample identified by the model 
checker that is incorrect or does not actually violate the specification. This measure 
tracks the total number of such false negatives encountered during a single experiment. 

• Total Unique True Negatives: Unique true negatives refer to counterexamples that 
are distinct and not repeated from previous iterations. In other words, each 
counterexample represents a new and unique path in the state space. The total count 
of these unique true negatives is recorded in the "Total Unique True Negatives" 
parameter. 

• Uniqueness in Generated True Negatives: Uniqueness in generated true negatives 
is the ratio of the total unique true negatives to the total true negatives. This measure 
reflects the extent to which a model checker generates unique counterexamples, 
highlighting its ability to explore diverse paths in the state space without repetition. 

• Random Queries: A random query is a membership query generated by a random 
string generator. This measure records the total number of random queries made 
during a single LBT experiment, providing insight into the exploratory behavior of the 
testing process. 
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• LBT Execution Duration (Millisecond): LBT execution duration refers to the total 
time required for the LBT framework to fully execute and learn a model. This value is 
measured in milliseconds. 

• Precision: The precision of a model checker is determined by dividing the number of 
true negatives by the total number of counterexamples generated. The resulting value 
is recorded in this measure. 

• Efficiency: This measure evaluates the efficiency of a model checker by dividing the 
time taken to report the first bug by the total LBT execution time. It reflects how 
quickly the model checker can detect the first bug. The resulting values are recorded in 
this parameter. 

Learning Category: 

• Single Hypothesis Construction Time (Millisecond): Single hypothesis time refers 
to the duration taken by LBT to generate a single hypothesis instance. This value is 
recorded in this measure, with the time unit being milliseconds. 

• Maximum Hypothesis Size: Maximum hypothesis size refers to the size of the 
largest hypothesis generated during an LBT experiment. The resulting value is 
recorded in this measure. 

• Average Hypothesis Size: Among the many hypotheses generated by LBT in a single 
experiment, the average hypothesis size provides a mean value for analyzing 
performance. This parameter stores the average size of the hypotheses produced 
during the experiment. 

• Internal Query: This type of membership query requests an input string, where the 
condition is that the input string must be generated by the learning algorithm itself. 
The total count of such internal queries is recorded in this parameter. 

• External Query: Input strings can be generated from sources other than the learning 
algorithm itself, such as the model checker or a random string generator. A 
membership query that requests an input string generated by these external sources is 
referred to as an external query. The total count of such external queries is recorded in 
this measure. 

Model Checking Category: 

• Total MCQs (Model Checking Queries): When LBT learns a model during an 
iteration, the model is subsequently sent to the model checker for verification against a 
specific formal property. The total number of times this verification process occurs is 
recorded in this measure. 

• Model Checking Time Over a Single Iteration (Milliseconds): When the model 
checker receives the learned model from LBT and verifies it against the specification, 
the result of this verification is then returned to LBT. The amount of time taken for 
this verification process in a single iteration is referred to as the model checking time, 
and it is recorded in milliseconds. 

• Total Model Checking Time (Milliseconds): This measure records the cumulative 
time spent verifying the model across all iterations. Upon completion of the learning 
process, it captures the total time taken for model checking throughout the entire 
experiment. 

Results and Discussion: 
We conducted a series of experiments with LBT to evaluate its performance using the 

SPIN model checker. The results obtained by integrating SPIN with LBT provide insights into 
how LBT performs with this new model checker, compared to its previous implementation 
with NuSMV and SAL. While LBT had previously been tested with both NuSMV and SAL, 
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our experiments with SPIN focused on the IKL model inference algorithm, one of the two 
algorithms used in prior studies (the other being DKL). We specifically tested IKL within the 
LBT framework. Figure 3 presents the results of various experiments conducted with this 
setup using IKL. For comparison purposes, the performance scores of NuSMV and SAL have 
been retained to contrast with the results achieved using the SPIN model checker. 

 
Figure 3. Experimental setup of Learning-based Testing with model checkers. 

Cruise Controller as SUT: 
In this section, we evaluate the results obtained from experiments using the SPIN 

model checker, comparing them with the earlier results from NuSMV and SAL. The learning 
algorithm used for these experiments is IKL. Various performance metrics were employed to 
assess SPIN's effectiveness, and through comparative analysis, we were able to determine 
which model checker performs best with IKL. Our focus is to observe how these parameters 
behave with the cruise control (CC) system as the SUT. 

First, we examine the total LBT iterations. The results indicate that SAL requires the 
highest total number of iterations, followed by NuSMV, with SPIN requiring the fewest 
iterations. This suggests that SPIN facilitates IKL with the least number of iterations, enabling 
faster learning of the SUT (CC). 

Next, we look at the time taken for a single LBT iteration. SAL takes significantly 
longer than NuSMV to perform a single iteration, and when we test SPIN on the same 
measure, it shows even lower values than NuSMV for three out of four specifications. This 
finding implies that SPIN is much more efficient than both SAL and NuSMV in terms of 
iteration time. Specifically, SPIN’s implementation of the Vardi-Wolper framework [15] for 
automata-theoretic verification is more efficient than the SMT solver used by SAL and the 
SAT-solvers used by NuSMV for state-space exploration. 

For the time to encounter the first counterexample, the pattern is similar to the single 
iteration time. SAL takes the longest to return a counterexample, which requires additional 
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time for the LBT framework to confirm whether it is a true negative. NuSMV, on the other 
hand, identifies the first counterexample much faster than SAL, but SPIN performs even 
better, providing the lowest time across all three-model checkers for this measure. In the 
fourth specification, SPIN’s performance is almost identical to NuSMV, with a difference of 
just two milliseconds. 

When we examine the length of the counterexample, we find that SAL’s 
counterexamples are generally shorter and more consistent, indicating a potentially repetitive 
state-space exploration process. NuSMV’s counterexamples are slightly longer and more 
variable, while SPIN’s counterexamples fall between the lengths observed for SAL and 
NuSMV. Additionally, SPIN shows the lowest count of false negatives among the three-model 
checkers. This suggests that SPIN produces more correct counterexamples with fewer 
instances of unlearned parts of the model, especially when compared to SAL and NuSMV, 
where false negatives are more prevalent. 

The count of unique true negatives (counterexamples) is higher for SAL than for 
NuSMV, indicating that SAL finds new counterexamples in each iteration rather than 
repeating the same ones. However, SPIN surpasses both SAL and NuSMV, producing the 
highest total number of unique counterexamples. This is indicative of SPIN’s ability to explore 
the state space using multiple traversal routes, a feature facilitated by the use of active 
procedure types in Promela [11], which allows for the execution of all procedures with equal 
probability. This design forces LBT to build a new hypothesis in each iteration. Since 
uniqueness depends on the ratio of unique true negatives to total true negatives, SPIN 
outperforms both SAL and NuSMV in terms of this measure, suggesting that SPIN is more 
effective at generating unique counterexamples. 

The total execution time of LBT is another critical measure. Here, SAL takes the 
longest to learn the SUT, while NuSMV takes less time, and SPIN achieves the lowest 
execution time across all four specifications. This is consistent with the finding that SPIN has 
the smallest hypothesis size, followed by NuSMV, with SAL requiring the largest hypothesis 
size. 

Finally, we look at the precision and efficiency measures, which are computed as ratios 
of the above parameters. While all three-model checkers—SPIN, NuSMV, and SAL—
demonstrate similar levels of efficiency in facilitating learning, SPIN performs better in terms 
of efficiency in the fourth specification of the SUT. In this specification, the ratio of the first 
bug reporting time to total LBT execution time is higher for SPIN than for the other two 
model checkers, indicating superior efficiency. 

In conclusion, while all three-model checkers facilitate learning in the LBT framework, 
SPIN consistently outperforms NuSMV and SAL in several key metrics, including iteration 
time, bug reporting time, and counterexample uniqueness, making it a highly efficient and 
effective choice for LBT. 
Three-floor Elevator as SUT: 

In this sub-section, we analyze the results obtained from experiments using the three-
floor elevator system as the SUT, comparing the performance of SPIN with the previously 
recorded results from NuSMV and SAL. By examining predefined parameters, we aim to 
assess the efficiency of SPIN as a model checker. 

We begin by looking at the total LBT iterations. Notably, SAL consistently requires the 
highest number of iterations across all three specifications of the elevator system, compared to 
NuSMV. Higher iteration counts imply an increase in the number of MC (model checking) 
queries, which is evident from the results. In contrast, SPIN performs better by requiring 
fewer total LBT iterations. This suggests that SPIN produces more unique counterexamples, 
allowing LBT to explore the state space more effectively and discover previously unlearned 
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parts of the system with fewer iterations. Consequently, LBT reaches a complete model with 
SPIN in fewer iterations than with NuSMV or SAL. 

Next, we analyze the time taken for a single LBT iteration. The values for NuSMV and 
SAL are similar, with SAL showing a slight improvement over NuSMV. However, SPIN 
significantly reduces the time required for each iteration. This indicates that SPIN is more 
efficient in terms of the time taken to perform state-space exploration, allowing LBT to 
complete each iteration faster than with the other two model checkers. 

Moving on to the length of counterexamples, we observe that SAL generates the 
shortest counterexamples, NuSMV the longest, and SPIN's counterexamples fall in between. 
The shorter counterexamples produced by SAL suggest fewer missing loops or lasso 
structures, which accelerates state-space exploration. SPIN, on the other hand, generates both 
shorter and longer counterexamples, leading to slightly longer LBT execution times compared 
to SAL but shorter times than NuSMV. This is consistent with the counterexample length 
data, where SPIN's counterexamples exhibit a balance between the brevity of SAL and the 
lengthier ones from NuSMV. 

For the uniqueness of counterexamples, NuSMV generates the least number of unique 
counterexamples, as its counterexamples tend to be reused over multiple iterations, reducing 
their uniqueness. SAL produces slightly more unique counterexamples, while SPIN 
outperforms both, generating the most unique counterexamples across all specifications. This 
indicates that SPIN is more effective at exploring different parts of the state space, making the 
LBT process more thorough. 

Next, we consider the maximum and average hypothesis sizes. Both measures are 
lower when using SAL compared to NuSMV. With SPIN, the hypothesis sizes fall somewhere 
in between the two, reflecting the balance between the shorter counterexamples of SAL and 
the longer ones of NuSMV. Since SAL generates the smallest counterexamples, it leads to the 
smallest hypothesis sizes, while SPIN's performance is more balanced. 

The number of model-checking queries is another key measure. SAL requires the 
highest number of queries, followed by NuSMV, with SPIN requiring the fewest queries. The 
number of queries is closely linked to the likelihood of encountering false negatives: as the 
number of queries increases, so does the probability of a false negative. This trend is reflected 
in the data, where SAL has the highest count of false negatives, followed by NuSMV, and 
SPIN shows the lowest count of false negatives. 

In terms of precision, an analysis of the results for Specification 2 and Specification 3 
reveals that SPIN achieves the best precision among the three-model checkers, followed by 
NuSMV and then SAL. SPIN's higher precision suggests that it more accurately identifies true 
negatives, resulting in fewer incorrect counterexamples. 

Finally, we examine efficiency. SPIN proves to be the most efficient model checker in 
two out of three specifications, with NuSMV coming in second. This is particularly evident in 
the way SPIN achieves a balance of fast iteration times, fewer queries, and higher precision 
compared to SAL and NuSMV, making it the most efficient option overall for LBT. 

In conclusion, SPIN consistently outperforms both NuSMV and SAL across multiple 
metrics, including total LBT iterations, time per iteration, counterexample uniqueness, 
hypothesis size, and efficiency. These findings confirm that SPIN is a highly efficient model 
checker for LBT, providing faster and more precise results compared to the other two model 
checkers. 
Findings: 
Faster State Space Exploration by SPIN (on-the-Fly): 
 NuSMV takes less time to explore the state space compared to SAL. However, SPIN 
outperforms both by being the fastest model checker, thanks to its use of the nested depth-
first search algorithm. This approach allows SPIN to efficiently explore the state space without 
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relying on extensive memory consumption, which is typically required for evaluating 
acceptance conditions in a Büchi automaton. 
More Unique Counterexamples: 
 The counterexamples generated by SPIN exhibit a higher degree of uniqueness, which 
enables LBT to produce more refined hypotheses of the system after each iteration. As a 
result, LBT can learn the black-box model of the system more quickly and efficiently. 
Faster Convergence by SPIN: 

The length of counterexamples generated by SPIN is generally consistent across all 
specifications and, in most cases, does not exceed the length of those produced by NuSMV. 
This factor contributes to a reduction in the overall LBT execution time when using SPIN. 
Conclusion: 

In this paper, we explore the feasibility of generating test cases for Learning-Based 
Testing (LBT) using the SPIN model checker by integrating two Systems Under Test (SUTs) 
with an incremental learning algorithm [25], [26]. To ensure consistency, we maintained the 
same experimentation platform across all tests. The results clearly demonstrate that when used 
in conjunction with the LBT framework, the SPIN model checker outperforms the other two 
model checkers, NuSMV and SAL. Specifically, SPIN enables LBT to converge faster, 
meaning that the architecture is able to generate intermediate hypotheses, which are refined 
after each iteration. This contrasts with NuSMV and SAL, which do not produce the same 
level of efficiency. The primary difference lies in the way these model checkers generate the 
state space. SPIN's state space generation is more manageable due to its use of techniques 
such as syntax error reports, interactive simulation, and the verifier generator [38]. 

Furthermore, SPIN's counterexample-generating algorithm is more efficient than those 
used in NuSMV and SAL. This is due to SPIN's use of the nested depth-first search algorithm, 
which does not require large amounts of memory for evaluating acceptance conditions from 
the Büchi automaton [16]. As a result, its on-the-fly procedure makes state space exploration 
more efficient compared to the other two model checkers. Experimental results on all four 
specifications for model checking total time show the following values: for SPIN, the total 
time is 30.7, 35.54, 42.3, and 23.4 milliseconds, respectively, compared to NuSMV's 34.12, 
39.5, 43.5, and 29.8 milliseconds, and SAL's 195.73, 209.69, 236.57, and 184.14 milliseconds. 
These initial results indicate that SPIN converges faster on smaller case studies, although 
further investigation is needed to assess its performance on larger case studies. 

The counterexamples produced by SPIN also exhibit a greater degree of uniqueness, 
allowing LBT to generate more refined hypotheses of the system after each iteration. This, in 
turn, enables faster learning of the black-box model of the system. Overall, the results 
demonstrate that SPIN is more efficient than NuSMV and SAL in the context of explicit state 
model checking within the LBT framework. 
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