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he integration of cloud computing with the Internet of Things (IoT) seeks to create 
seamless connections between humans and devices, enhancing applications in areas like 
smart healthcare and home automation. However, this also brings significant security 

challenges. Our study addresses the critical need for an efficient anomaly detection system 
specifically designed for IoT-enabled cloud computing environments, a gap not previously 
explored at this scale. Utilizing the IoT-23 dataset, we evaluated various feature selection 
techniques in conjunction with classification algorithms to develop a lightweight anomaly 
detection model. Our results demonstrate that the decision tree classifier, paired with the 
correlation coefficient method for feature selection, achieved an impressive 99.98% accuracy 
rate, with an average processing time of just 5.2 seconds. This combination proved to be the 
most effective for real-time anomaly detection, presenting a promising approach for ensuring 
robust security in IoT networks as connectivity continues to grow. 
Keywords: Internet of Things (IoT), Intrusion Detection System (IDS), Machine Learning 
(ML), Feature Selection Algorithm, Botnet Detection. 
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Introduction: 
Computing and mobile devices have become an integral part of daily life, with increasing 

dependence on this technology. As we look to the future, technological advancements toward 
the Metaverse are becoming increasingly evident, with a growing desire to adopt these emerging 
technologies. It is clear that future generations will live in a Multiverse [1], where today's mobile 
devices will evolve into a more immersive and interconnected experience. Future technologies 
will integrate a multitude of sensors on the human body and in the surrounding environment to 
augment a virtual experience within the physical world [2]. Moreover, the future will be defined 
by the ability to connect everything, allowing humans to control their environments through 
gestures and to live in multiple virtual and augmented worlds simultaneously. The ongoing 
advancements in 5G, IoT, cloud computing, edge computing, high-performance computing, 
blockchain, and AI hold immense potential to bring the Metaverse to life by connecting various 
IoT devices. However, a significant challenge for current IoT-enabled cloud computing 
environments is addressing security concerns [3], as the rise of these new technologies will 
dramatically expand the attack surface. With the Metaverse's emergence, not only will the attack 
surface increase, but the number of interconnected devices will grow exponentially, adding 
further complexity. Many of these devices are IoT-based, which presents additional difficulties 
in authenticating and authorizing connections [4]. Therefore, 6G and beyond must not only 
focus on network speed but also create a robust network that can support the Metaverse through 
the convergence of these technologies. This includes leveraging blockchain for zero-trust 
authentication and authorization [5][6], as well as incorporating AI at every level of 
communication. AI will play a critical role in the Metaverse, working in tandem with blockchain 
to facilitate a zero-touch environment. This would enable computer vision to interpret human 
gestures, emotions, and commands, machine learning (ML) for routing and end-to-end service 
optimization, AI-driven anomaly detection and mitigation [7], and large language models for 
automated configuration management. As such, AI and ML will be essential for addressing 
security threats in this future technological landscape. 

Smart homes, as part of the larger IoT-enabled cloud computing ecosystem, are an 
important component of the Metaverse and its future applications. These systems enable service 
providers to monitor and control devices such as appliances, doors, windows, and other smart 
equipment, using sensors and processing capabilities to enhance user experience. However, with 
the proliferation of IoT devices, the risk of botnet attacks is growing [8]. Adversaries now have 
access to a variety of tactics and methodologies to launch different types of network attacks. 
This study focuses on evaluating different strategies to mitigate botnet attacks within IoT 
networks, exploring various feature extraction techniques to reduce the complexity of features, 
and applying AI-driven classification methods to distinguish between attack types and normal 
behavior. The IoT-23 dataset, which simulates a smart home environment with devices like door 
lockers, smart LEDs, and Echo IoT devices [9], is used to conduct a series of tests aimed at 
finding the most energy-efficient solution with the highest detection accuracy. This dataset is 
widely used by researchers to evaluate proposed intrusion detection system (IDS) solutions. 
Several IDS-based approaches have been proposed to mitigate internal attacks [10][11][12][13]. 
In our study, we assess feature selection techniques such as manual selection, the chi-square test, 
information gain, correlation coefficient, and random forest, alongside classification algorithms 
like support vector machines (SVM), Naive Bayes, and decision trees. It is crucial to examine 
how each algorithm identifies various attack forms and anomalies to understand their respective 
strengths and limitations. The evaluation is conducted using established performance metrics, 
including accuracy, precision, recall, F1-score, and processing time. Our findings show that the 
combination of the correlation coefficient method and the decision tree classifier offers the best 
performance in terms of accuracy and efficiency. We recommend positioning the IDS agent at 
the fog layer of the IoT-enabled cloud computing environment, as depicted in Figure 1. By 
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analyzing the traffic generated by IoT devices in smart homes at the fog layer, a distributed 
detection system can be established, enabling faster anomaly detection through localized data 
processing and analysis. 

 
Figure 1. Architecture diagram illustrating the implementation of an intrusion detection 

system in an IoT Smart Home system 
Novelty: 

The techniques selected in this study are well-known machine learning (ML) methods, 
but the novelty lies in how they are combined to detect botnets in Internet of Things (IoT) 
networks. These specific combinations have not been explored in previous research. While using 
established performance metrics such as Accuracy, Precision, Recall, and F1-Score is standard 
practice, the innovation in our approach lies in how these metrics are applied to the newly 
generated IoT-23 dataset, employing various combinations of feature selection techniques and 
ML classifiers. Furthermore, unlike most studies that focus primarily on detection accuracy, our 
research emphasizes the importance of time utilization as a critical metric. This is particularly 
relevant for IoT applications, where computational resources and response times are often 
constrained. Our study provides a comprehensive evaluation that balances accuracy and 
computational efficiency, offering valuable insights for securing real-world IoT deployments 
where such trade-offs are essential. 

Although the decision tree (DT) algorithm has been previously used for classification 
on the IoT-23 dataset, it achieved only around 70% accuracy. In contrast, our proposed 
approach improves the accuracy to over 98% by applying a specialized preprocessing technique 
followed by feature selection. Notably, the decision tree achieved the highest accuracy when 
using feature selection methods such as chi-square, random forest, or the correlation coefficient. 
However, the application of the correlation coefficient feature selection method resulted in 
faster processing times compared to chi-square, random forest, and information gain, making it 
a more efficient choice for real-time anomaly detection. 
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Research Objectives: 
The goal is to develop a lightweight, machine learning (ML)-based anomaly detection 

system for IoT-enabled cloud computing environments that achieves high accuracy while 
minimizing time consumption. 
Research Contributions: 

This research makes a significant contribution by thoroughly assessing botnet attacks 
targeting various IoT devices in smart home environments, along with the evolving cybersecurity 
risks associated with IoT systems. The analysis is conducted using the IoT-23 dataset, which 
includes both botnet attack instances and benign samples. The key contributions of this study 
are as follows: 

• A comprehensive comparison and evaluation of well-known feature selection 
techniques, including the Chi-Square test, information gain, correlation coefficient, and 
random forest. 

• Experiments conducted on the state-of-the-art IoT-23 dataset, which is specifically 
designed to represent IoT network behaviors, including both attack and normal traffic. 

• The use of widely recognized machine learning (ML) classification algorithms, such as 
SVM, Naive Bayes, and Decision Tree, following the application of feature selection 
methods, to identify the most effective approach for botnet detection. 

• An evaluation of all combinations of feature selection and classification algorithms 
against established performance metrics, including Accuracy, Precision, Recall, F1-
Score, and Time. 
This paper is structured as follows: Section 2 presents the related work in the field, while 

Section 3 details the proposed methodology and explains its implementation. Section 4 covers 
the performance evaluation system, including the metrics used and the experimental results. 
Finally, Section 5 concludes the paper, summarizing the findings and suggesting potential future 
research directions. 
Related Work: 

Machine learning (ML) models can be trained to detect patterns of botnet activity within 
IoT-enabled cloud computing environments. These models analyze data such as network traffic, 
transactions, and interactions among devices to identify potential botnet behavior. Several ML-
based anomaly detection systems have been proposed for various networking paradigms, 
including wireless sensor networks, software-defined networks, peer-to-peer networks, cyber-
physical systems, and IoT [14]. In addition, deep learning (DL) classification techniques have 
been explored for intrusion detection systems (IDS) in these environments [15]. However, 
intrusion detection in IoT networks remains challenging due to data heterogeneity, device 
constraints, and the wide range of potential applications [16]. The ability of artificial intelligence, 
particularly machine learning, to handle data diversity and velocity has proven to be a powerful 
tool for addressing these IoT security challenges [17]. 

For anomaly-based intrusion detection in IoT backbone networks, Pajouh et al. [18] 
introduced a model with two levels of classification and two layers of dimensionality reduction. 
They applied Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) for 
feature reduction, followed by a certainty-factor k-nearest neighbor classifier as a secondary 
check after the Naïve Bayes classifier categorized the traffic. This system achieved 84.86% 
accuracy, with a false positive rate (FPR) of 4.86%, although the detection time was not 
provided. In [19], the authors focused on Mirai botnet detection, one of the most prevalent IoT 
botnet attacks. They developed a mining-based detection method leveraging deep learning and 
neural network models to identify variations of the Mirai botnet, such as Hakai. Using the IoT-
23 dataset, their model achieved around 90% accuracy. A one-class KNN classifier-based 
approach for detecting IoT botnets in heterogeneous environments was proposed in [20], 
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demonstrating accurate and rapid detection of IoT botnets in their early stages. A combination 
of deep learning and three-level algorithms for fast and accurate attack detection in IoT networks 
was introduced in [21]. Evaluated using the IoT-23 dataset, the method showed significant 
improvements in detection performance over previous approaches. 

In another study, [22] examined the use of computer vision to detect and categorize 
attacks in the IoT-23 dataset. The researchers found that computer vision could perform 
effectively and efficiently on a Jetson Nano platform. For software-defined IoT networks, Li et 
al. [23] proposed an IDS based on the Bat algorithm and artificial intelligence. This flow-based 
IDS recorded network flows to detect attacks, achieving 96.42% detection accuracy with an FPR 
of 0.98%. However, the system's time overhead increased significantly with the number of flows, 
reaching nearly 4.5 seconds for 5104 flows. In [24], the authors introduced a Dense Random 
Neural Network-based intrusion detection framework for IoT networks, achieving detection 
rates of 99.14% for binary classification and 99.05% for multi-class classification. Kamaldeep et 
al. [25] developed IoT-Sentry, an IDS for IoT's cross-layer, which demonstrated a 99.46% 
accuracy rate when tested on a non-standard dataset. However, IoT-Sentry is limited in scope, 
defending against only a small number of threats and relying solely on packet-based 
characteristics, with no detailed description of time overhead. 

Jeelani et al. [26] proposed an IoT anomaly detection system using the IoT-23 dataset, 
utilizing different ML and DL algorithms. Their model achieved 69% accuracy using SVM. This 
result motivated our research to experiment with various ML models in combination with 
feature selection techniques to improve detection accuracy and efficiency, aiming to provide a 
more effective solution for botnet detection in IoT environments 
Material and Method: 

This study proposes a methodology for implementing a machine learning (ML)-driven, 
lightweight botnet detection system, which is evaluated using the IoT-23 dataset. The proposed 
approach is visually outlined in Figure 2, which illustrates the key components and workflow 
of the methodology. 

 
Figure 2. Proposed methodology for detecting botnet attacks in IoT environment. 

Firstly, pre-processing is applied to prepare the data for feature extraction. Secondly, 
feature selection method is applied to find the features that can be only observed to classify 
between multiple classes in the classification phase. The detail of each step is discussed below: 
Pre-Processing: 

Preprocessing is the first crucial step before applying a classification algorithm, as raw 
data typically leads to poor performance. Most algorithms cannot handle string data or missing 
(null) values, which can severely impact the results. In our proposed methodology, we 
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implemented several preprocessing steps to prepare the dataset. First, category encoders are 
applied to convert string values into numeric values. Features with an "object" data type, 
containing string data, are transformed into either float or integer data types, as shown in Table 
1. Since our dataset contains millions of records, it is impractical to manually assign a numeric 
value to each entry. For example, the "uid" feature contains millions of unique IDs, making 
manual encoding unfeasible [27][28]. To address this, we used category encoders, a collection of 
scikit-learn-style transformers designed to convert categorical variables into numeric data using 
different encoding methods. Specifically, we applied the **count encoding** method, which 
transforms categorical variables by assigning them a numeric value based on their frequency in 
the dataset. Common categories receive higher values, while rarer categories are assigned lower 
values. 

Next, null values are removed, and records containing special characters are converted 
to zero. Finally, Min-Max Scaling is applied to rescale the data to a specific range, typically 
between 0 and 1, ensuring that all variables are on a comparable scale. This step standardizes the 
data and prepares it for effective processing by classification algorithms. 

Table 1. Types of data before and after pre-processing in the proposed methodology 

Data Item Type (Before) Type (Before) 

Ts int64 int64 
uid, history, tunnel_parents object int64 

id.orig_h, id.resp_h, proto, service, duration, 
orig_bytes, resp_bytes, conn_state, local_orig, 

local_resp, label, detailed-label 

object float64 

id.orig_p, id.resp_p, missed_bytes, orig_ip_bytes float64 float64 
orig_pkts, resp_pkts, resp_ip_bytes float64 int64 

The sample size used for the analysis consists of 2,449,450 records from the IoT-23 
dataset, representing 12% of the total dataset. This subset includes multiple classes of benign 
and anomalous behavior, such as benign, DDoS, C&C, attack, C&C-heartbeat, okiru, okiru-
attack, and port scan, as detailed in Table 2. After preprocessing, the dataset was split into two 
parts: 80% of the data was used for training, while the remaining 20% was reserved for testing 
the model's performance. 

Table 2. Distribution of attack types in the selected records for analysis 

Attack 
Types 

Port 
Scan 

Okiru Benign DDoS C&C Attack C&C-
Heartbeat 

Count 1377769 500707 286696 264215 15040 4493 481 

Feature Selection (FS): 
Feature selection is a machine learning technique used to enhance accuracy by improving 

the predictive power of algorithms. It achieves this by focusing on the most relevant features 
and removing unnecessary or irrelevant ones, thereby optimizing the model's performance. This 
highlights the importance of feature selection in the overall process. In the second phase of our 
proposed methodology, feature selection is applied to retain only the most meaningful features, 
ensuring that the subsequent classification phase is based on the most informative data. 
Manual Selection: 

Before performing classification, it is essential to select the most important features, as 
this choice significantly influences the classification results. In our proposed methodology, we 
begin by manually selecting features based on our domain knowledge to ensure the most relevant 
and impactful attributes are used. The selected features are listed in Table 3. 
Chi Square Test: 

Multiple machine learning algorithms are applied for feature selection, with the first 
being the Chi-Square method. The Chi-Square test is a statistical technique used to determine 
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whether two events are independent. By comparing the observed count (O) and the expected 
count (E) for two variables, the Chi-Square test calculates the difference between these values. 
When selecting features, our objective is to identify those that are most strongly related to the 
target outcome. If two features are independent, the observed count will closely match the 
expected count, resulting in a smaller Chi-Square value. Conversely, a higher Chi-Square value 
suggests that the independence hypothesis is incorrect, indicating a strong relationship between 
the feature and the outcome. Therefore, features with higher Chi-Square values—reflecting 
greater dependence on the response—are selected for model training. The Chi-Square test 
identifies 12 features, which are listed in Table 3. 

Table 3. Number of selected features by the FS Technique from IoT-23 Dataset 

FS Technique Features Features Selected 

Manual 12 proto, service, duration, orig_bytes, resp_bytes, conn_state, 
missed_bytes, orig_pkts, orig_ip_bytes, resp_pkts, 
resp_ip_bytes, detailed-label 

Chi-Square 12 ts, service, id.resp_p, orig_bytes, resp_bytes, conn_state, 
missed_bytes, id.orig_h, orig_ip_bytes, resp_pkts, id.resp_h, 
history 

Information 
Gain 

13 id.orig_h, id.orig_p, id.resp_h, id.resp_p, Proto, Service, 
conn_state, History, orig_pkts, orig_ip_bytes, Duration, ts, 
detailed-label 

Correlation 
Coefficient 

13 id.orig_h, id.orig_p, id.resp_h, id.resp_p, proto, service, 
duration, orig_bytes, resp_bytes, conn_state, missed_bytes, 
ts, detailed-label 

Random 
Forest 

13 ts, id.orig_p, id.resp_p, duration, orig_pkts, orig_ip_bytes, 
resp_ip_bytes, id.orig_h, id.resp_h, conn_state, history, label, 
detailed_label 

Information Gain: 
Information gain was the third feature selection method we employed. This approach 

evaluates the amount of information each variable contributes in relation to the target variable, 
making it useful for feature selection. It calculates the difference in entropy before and after the 
split, highlighting the imbalance in class distributions. The information gain values for each 
feature are shown in Figure 3. Based on these calculations, the features selected using 
information gain are listed in Table 3. 

 
Figure 3. Information gain values for each feature obtained during the FS process 
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Figure 4. Correlation heat map illustrating the interrelationships and strength of correlations 

Correlation Coefficient: 
The correlation coefficient was also employed to select the most relevant features from 

the dataset. Specifically, we used the Pearson correlation coefficient to measure the relationship 
between two variables. This coefficient quantifies the degree to which two variables are related, 
with values ranging from -1 to +1. A value of zero indicates no correlation, while a value of +1 
signifies a perfect positive correlation. Conversely, a correlation of -1 indicates a perfect negative 
relationship. A heatmap of the correlation coefficients is presented in Figure 4, providing a 
visual representation of the feature correlations. 
Random Forest: 

Random forests are one of the most widely used machine learning methods for feature 
selection. A random forest consists of 400 to 1,200 decision trees, each built using a random 
subset of both features and observations from the dataset. This randomness helps ensure that 
the trees are de-correlated, reducing the risk of overfitting, as some trees do not observe all 
features or data points. Each tree contains a series of binary (yes/no) questions based on one or 
more features, which split the dataset into two "buckets" at each node. These buckets contain 
observations that are more similar to each other and different from those in the other bucket. 
The "purity" of each bucket—how well the observations in it align with the class label—
determines the importance of the features used for the split. The features selected based on their 
high importance in the random forest model are: ts, id.orig_p, id.resp_p, duration, orig_pkts, 
orig_ip_bytes, resp_ip_bytes, id.orig_h, id.resp_h, conn_state, history, label, and detailed_label. 
Result and Discussion: 

The experiments were conducted on a system equipped with an Intel Core i7-5600U 
CPU @ 2.60GHz (quad-core) and 16 GB of RAM. The testing environment included Windows 
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10, Anaconda Jupyter Notebook, and Python 3.8. To evaluate the model's performance, several 
metrics were utilized, which are explained in the following sections. 

• Time: The time taken for an algorithm to execute a machine learning model is an 
important consideration. In an IoT environment, algorithms that require excessive 
processing time would be impractical, as they could hinder real-time performance and 
overall system efficiency. 

• Precision: Precision is a metric used to evaluate the accuracy of positively identified 
instances in a model. It is defined as the ratio of correctly identified positive instances 
to the total number of instances classified as positive, and is given by: 

Precision =   True Positives 
   True Positives + False Positives 

• Recall: Recall is an indicator of the actual number of true positives detected by the 
model. It is evaluated using the following equation: 

Recall =   True Positives 
   True Positives + False Negatives 

• F1 Score: The F1-score calculates the harmonic mean of recall and precision. It is 
considered a more comprehensive metric because it accounts for both false positives 
and false negatives. The F1-score is given by: 

F1 Score =   2 ∗ Precision ∗ Recall 
   Precision + Recall 

In this context, True Positives refer to instances where the model correctly predicts the 
positive class, while False Positives indicate cases where the model incorrectly classifies an 
instance as positive. The details of the experiments, conducted using various combinations of 
feature selection techniques and classification algorithms, are discussed in the following sections. 
Support Vector Machine (SVM): 

Support vectors are created using extreme data points to expand the classifier’s margin, 
which in turn enhances classification accuracy. The number of features used to classify the data 
points determines how many times the SVM algorithm searches for the optimal hyperplane. The 
hyperplane acts as a decision boundary, separating the data points into different categories on 
either side. In our experiments, we applied the SVM algorithm after selecting features using each 
of the feature selection methods individually. The results of the SVM classification are presented 
in Table 4. 

Table 4. Experimental results for Support Vector Machine Classification Algorithm 

Feature Selection Technique Accuracy Precision Recall F1 Score 

Manual 67.97% 64.18% 67.97% 53.50% 
Chi-Square 65.82% 62.12% 65.82% 61.60% 
Information Gain 63.22% 60.11% 63.01% 59.20% 
Correlation Coefficient 64.29% 61.30% 56.00% 52.10% 
Random Forest 65.20% 62.30% 58.47% 53.98% 

The results show that the SVM achieved 67.97% accuracy when using manually selected 
features. In comparison, it classified 65.82%, 63.22%, 64.29%, and 65.20% accurately when 
using features selected by Chi-Square, Information Gain, Correlation Coefficient, and Random 
Forest, respectively. For multi-class classification, we employed the SVM with the One-vs-All 
strategy. 
Naïve Bayes: 

Bayes' Theorem forms the foundation of the Naive Bayes algorithm, a supervised 
learning method commonly applied to classification problems. This algorithm makes predictions 
based on probability, offering a simple yet effective approach for building machine learning 
models. The results of the Naive Bayes classification algorithm are presented in Table 5. 
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Table 5. Experimental results for the Naive Bayes Classification Algorithm 

Feature Selection Technique Accuracy Precision Recall F1 Score 

Manual 65.44% 58.09% 65.45% 53.50% 
Chi-Square 85.00% 87.22% 85.00% 79.90% 
Information Gain 85.15% 87.29% 85.15% 80.02% 
Correlation Coefficient 85.04% 87.33% 85.04% 79.78% 
Random Forest 85.15% 87.32% 85.15% 80.06% 

The findings show that Naive Bayes achieved the highest accuracy of 85.15% when 
features were selected using Random Forest or Information Gain. In comparison, it 
demonstrated classification rates of 65.44%, 85.00%, and 85.04% when applied with Manual 
Selection, Chi-Square, and Correlation Coefficient methods, respectively. 
Decision Trees (DTs): 

Supervised machine learning classifiers, such as decision trees (DT), are used for 
classification tasks where nodes and leaves are connected by branches. The branches represent 
the decision criteria for classification, while the nodes correspond to the dataset's attributes, 
outcomes, and leaf nodes. The results of the DT classification algorithm are presented in Table 
6. The findings indicate that the DT achieved its highest accuracy of 99.99% when feature 
selection was based on Correlation Coefficient, Chi-Square, Information Gain, and Random 
Forest techniques. In contrast, when manual feature selection was used, the classification 
accuracy dropped to 72.37%. 

Table 6. Experimental results for the Decision Tree Classification Algorithm 

Feature Selection Technique Accuracy Precision Recall F1 Score 

Manual 72.37% 72.31% 72.37% 64.14% 
Chi-Square 99.99% 99.99% 99.99% 99.99% 
Information Gain 99.99% 99.99% 99.99% 99.99% 
Correlation Coefficient 99.99% 99.99% 99.99% 99.99% 
Random Forest 99.99% 99.99% 99.99% 99.99% 

Results Comparison: 
We applied multiple feature selection algorithms, each of which returned slightly 

different sets of features. As a result, each classification algorithm yielded different outcomes 
depending on the features used. Figure 5 presents a comparison of the accuracy achieved by 
each classification algorithm after applying the various feature selection methods.  

 
Figure 5. Accuracy scores of different classification algorithms evaluated in the proposed 

methodology for the classification task. 



                                International Journal of Innovations in Science & Technology 

Sep 2024|Vol xxx | Issue xx                                                                               Page |204 

The results from our experimental analysis on the IoT-23 dataset provide valuable 
insights into the effectiveness and efficiency of different feature reduction techniques and 
classification algorithms for anomaly detection in IoT networks. Notably, the Decision Tree 
(DT) algorithm demonstrated exceptional performance, achieving an accuracy rate of 99.99%. 
Furthermore, it exhibited low computational cost, taking only about 5.2 seconds to execute with 
the Correlation Coefficient method. These factors highlight the efficacy of the DT algorithm in 
detecting anomalies within IoT networks. The appeal of using this method lies in its ability to 
capture complex decision boundaries while also providing interpretability, making it a strong 
choice for identifying abnormalities in IoT environments. 

While Figure 6 shows the comparison with respect to time cost achieved by each 
classification algorithm. 

 
Figure 6. Time cost (in seconds) of executing different classification algorithms. 
In summary, the SVM algorithm achieved its highest accuracy of 67.97%, with a 

significant time cost of 4666 seconds when using manual feature selection. The Naive Bayes 
algorithm reached a maximum accuracy of 85.15%, with a minimal time cost of 3.6 seconds 
when utilizing Random Forest for feature selection. For the Decision Tree (DT) algorithm, the 
highest accuracy was 99.99%, with a time cost of just 5.2 seconds when using the Correlation 
Coefficient method for feature selection. Overall, the DT algorithm achieved 99.99% accuracy 
in 5.2 seconds, the Naive Bayes algorithm achieved 85.04% accuracy in 3.2 seconds, and the 
SVM algorithm reached 67.97% accuracy in 193.6 seconds. 
Conclusion and Future Work: 

The primary goal of this research was to enhance the security of the Internet of Things 
(IoT), with a particular emphasis on smart homes and their integration into IoT-enabled cloud 
computing environments. Throughout our investigation, we successfully identified key 
challenges and proposed practical solutions to protect data, detect anomalies, and prevent 
unauthorized access within IoT ecosystems. Our findings highlight the critical need for 
incorporating Intrusion Detection Systems (IDS) into smart homes powered by IoT 
technologies. 
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We evaluated various machine learning algorithms using the IoT-23 dataset to assess 
their performance. Among the algorithms tested, the Decision Tree (DT) algorithm 
demonstrated the highest levels of accuracy and efficiency. In contrast, the Naive Bayes 
algorithm delivered comparatively less favorable results. To further advance our research, we 
recommend exploring datasets with a larger number of features, which will allow for a more 
comprehensive evaluation of the proposed approaches. 

In conclusion, our research underscores the importance of implementing robust security 
protocols, such as IDS, to ensure the security and integrity of IoT-enabled cloud computing 
environments. By addressing the dynamic nature of security challenges within IoT networks, we 
can improve the performance, functionality, and overall capabilities of IoT applications. We look 
forward to future research efforts that will explore these aspects further and contribute to 
advancing IoT security in the context of IoT-enabled cloud computing environments. 
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