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otton is a critical crop for the agricultural economy, with its productivity closely tied to 
soil quality, particularly soil nutrient levels and pH. Monitoring and optimizing these 
properties is essential for sustainable cotton cultivation. This study proposes using fine-

tuned Large Language Models (LLMs)—specifically GPT-2 and LLaMA-2—to automate soil 
analysis and produce detailed soil reports with actionable recommendations, addressing the 
limitations of traditional machine learning models in this context. A custom dataset was created 
by extracting key information from cotton-specific resources, focusing on soil nutrient 
interpretation and recommendations across different growth stages. Fine-tuning was applied to 
GPT-2 and LLaMA-2 models (specifically, the Nous Research version LLaMA2-7b-hf from 
Hugging Face), enabling them to generate data-driven reports on cotton soil health. The fine-
tuned GPT-2 model achieved a training loss of 0.093 and an evaluation loss of 0.086, 
outperforming LLaMA-2, which had a training loss of 0.033 and an evaluation loss of 0.25. 
Evaluation with BERT Score showed that GPT-2 scored average Precision, Recall, and F1 
scores of 0.9284, 0.9308, and 0.9296, respectively, highlighting its superior report accuracy and 
contextual relevance compared to LLaMA-2. The generated reports included soil properties and 
actionable nutrient management recommendations, effectively supporting optimized cotton 
growth. Implementing fine-tuned LLMs for soil report generation enhances nutrient 
management practices, contributing to higher yields and more sustainable cotton farming. 
Keywords: Large Language Models (LLMs), Soil Health, Cotton Soil Reports, Cotton Farming, 
Soil Analysis. 
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Introduction: 
Agriculture is a key economic sector for many countries, supporting the livelihoods of 

billions worldwide. Soil is a fundamental component of agriculture, crucial for crop productivity, 
nutrient availability, and ecosystem health, underscoring the need for efficient soil management 
as global food demand rises [1]. Soil degradation is driven by both natural factors and improper 
land use [2], and analyzing soil fertility is essential for effective farming [3]. Soil composition 
directly affects crop productivity [4]. At the start of the sowing season, farmers typically evaluate 
soil quality using a soil quality index, which involves laboratory testing—a process that is both 
costly and time-intensive, especially for those with limited budgets and strict timelines [5]. 

With agriculture being labor-intensive, rising population growth and increased demand 
for agricultural products have made automation increasingly important [6]. Cotton is a major 
crop economically, supporting the textile industry, which significantly influences the global 
economy [7]. Successful cotton cultivation depends on soil quality, making soil assessment 
critical. Traditionally, soil quality assessment has relied on laboratory techniques and expert 
analysis, providing valuable insights but often lacking speed and real-time updates. Faster, data-
driven approaches are therefore essential. 

Recent AI research in agriculture focuses on predicting cotton yield, detecting crop 
diseases, predicting soil properties, and classifying soil quality through traditional machine-
learning techniques. For example, predicting cotton crop yield has been approached using 
Random Forest models based on soil chemical properties [8]. Some studies focus on a single 
crop, such as sugarcane, for which soil quality and fertilizer amounts are classified [3]. Soil 
classification with ML algorithms, such as in [4], identifies soil quality without detailed 
interpretations of soil factors. However, approaches that interpret dominant variables—i.e., the 
factors most affecting soil quality—are limited [9]. Much existing work lacks in-depth 
interpretation or actionable reports to improve soil quality. 

AI, particularly LLMs, offers the potential to transform soil analysis through their ability 
to contextualize data. Pre-trained LLMs are now used in finance [10], biomedical fields [11], and 
agriculture [12], creating opportunities to revolutionize soil data analysis. LLMs can serve as 
trainers and explainers for digital agriculture [13]. This research seeks to integrate LLMs with 
soil quality analysis to produce detailed reports based on cotton soil readings. A custom cotton 
soil report dataset was created, comprising soil properties and improvement recommendations 
for cotton. For fine-tuning, GPT-2 [14] and LLaMA-2 (specifically, the Nous Research 
LLAMA2-7b-hf from Hugging Face) [15] were used. LLaMA-2 achieved a training loss of 0.033 
and an evaluation loss of 0.25, while GPT-2 attained a training loss of 0.0932 and an evaluation 
loss of 0.086. BERT Score evaluations showed that GPT-2 outperformed LLaMA-2 with 
average Precision, Recall, and F1 scores of 0.9284, 0.9308, and 0.9296, respectively. Using LLMs 
for soil analysis reporting aims to bridge existing gaps, offering detailed, data-driven insights for 
cotton soil quality improvement and supporting optimal crop growth through advanced 
technology. 
Novelty Statement: 

This study presents a novel application of fine-tuned Large Language Models (LLMs)—
specifically GPT-2 and LLaMA-2—to automate soil analysis and generate actionable reports for 
cotton farming. Unlike traditional machine learning models, this approach offers detailed 
interpretations and customized recommendations, addressing a critical gap in current soil 
management practices and enabling more efficient, data-driven agricultural decision-making. 
Objectives: 

The primary objectives and contributions of this research include: 
•  Dataset Creation: Developed a robust dataset containing soil nutrient 

interpretations and tailored recommendations, based on nutrient levels and different stages of 
cotton growth, sourced from agricultural resources [1]. 
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• LLM Fine-Tuning for Report Generation: Fine-tuned Large Language Models 
(LLMs) to produce detailed, contextually accurate reports on cotton growth, customized to 
specific soil nutrient inputs [2]. 

• Agricultural Advancement: Pioneered the integration of LLMs into cotton soil nutrient 
management, with the potential to enhance crop yields and promote sustainability in cotton 
farming [1]. 
Literature Review: 

Researchers worldwide are increasingly focused on automating agriculture [3]. Key areas 
of ongoing research include soil quality and health analysis, which are crucial for achieving high 
yields and ensuring sufficient food production. Effective soil management is essential for 
sustainable agriculture, with the first step being the assessment and adjustment of soil nutrient 
levels [16]. Recent advancements in machine learning and AI have significantly improved the 
prediction of soil quality and crop yield. With the rise of generative AI, particularly Large 
Language Models (LLMs), researchers are leveraging these models for various domain-specific 
automation tasks. 
Traditional Machine Learning: 

Traditional machine learning techniques have been widely applied in agriculture for tasks 
such as classification and identification related to soil. For instance, in [8], a Random Forest 
classifier was used to identify the most significant variables affecting cotton yield predictions. 
Soil parameters such as pH, Na, K, and other chemical properties were included as inputs, 
underscoring the importance of chemical soil properties. Another study in this field focused on 
predicting cotton yield using satellite remote sensing images, climate data, and soil parameters, 
applying Explainable Boosting Machines [7]. This research emphasized the importance of 
various features during the cotton growth cycle. Given the direct impact of soil quality on plant 
growth, it is essential to analyze soil to ensure it is suitable for cotton cultivation, which adds 
another dimension to soil-cotton studies.  

In [3], soil quality classification for sugarcane was explored, where a classifier determined 
soil suitability based on data from sensors. The classification results were then used to guide 
nutrient recommendations, suggesting external fertilizers for soil enhancement. Similarly, in [4], 
soil fertility prediction was examined, utilizing parameters such as clay, sand, pH, N, P, and K. 
The study proposed four classification algorithms—Artificial Neural Networks, Decision Trees, 
K-Nearest Neighbors, and Random Forest—to determine soil fertility and predict crop yield. 
Weather also plays a role in agriculture, as demonstrated in [17], which provides daily rainfall 
forecasts and alerts for heavy rainfall up to three days in advance. Real-time soil quality data, as 
discussed in [5], helps farmers make timely decisions based on current soil conditions. 
Additionally, soil quality analysis for suitable crop selection has been performed using image 
processing techniques [2]. AI-driven systems for soil property prediction, irrigation, and 
fertilization, as well as real-time monitoring of key soil parameters like moisture and nutrient 
content, are presented in [1]. Similarly, [16] explored AI applications in soil management, 
including machine learning algorithms for soil property prediction, sensor technologies for real-
time monitoring of soil moisture and pH, and UAV-driven precision agriculture. Most of these 
approaches focus on predicting, identifying, or classifying soil fertility or quality, but they often 
lack a comprehensive interpretation of the soil data. In contrast, [9] took a broader approach by 
not only predicting soil fertility but also providing a waterfall plot interpretation. This 
methodology consists of three layers: the first uses K-means clustering to categorize soil data 
into quality labels, the second layer applies Random Forest for classification, and the third layer 
explains the classification outcomes through the waterfall plot. While this approach highlights 
which variables most influence the classification, it still lacks a more detailed, descriptive analysis 
and actionable remedies. 
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Large Language Models:  
Large language models (LLMs) have demonstrated remarkable effectiveness in 

interpreting and generating text that closely resembles human communication [18]. These 
models are typically trained on extensive corpora and are designed as general-purpose task 
models. A significant recent development is the ability to fine-tune these models for specific 
tasks, which has shown promising results in various domains [10]. For example, in the finance 
domain, LLMs like BERT have been fine-tuned for financial sentiment analysis, creating models 
such as Fin BERT [10]. Similarly, in the biomedical domain, LLMs have been fine-tuned to 
create Bio BERT, which outperforms the base BERT model in biomedical tasks [11]. LLMs 
have also found applications in the fashion industry, with models like GPT-FAR, termed 
FashionReGen, being used for fashion-related tasks [19]. In disaster reporting, LLMs have been 
adapted for flood disaster reporting, branded as Flood Brain [20]. 

Given the success of fine-tuning LLMs in these diverse domains, they are also being 
explored for agricultural applications. In [12], LLMs were evaluated for their performance on 
agriculture-related exams, employing two agents: an answer agent to generate responses and an 
evaluation agent to assess the correctness of those responses. In [21], GPT-3.5 was fine-tuned 
for the agricultural context in Nigeria, enabling farmers to interact with the model to receive 
agricultural information, with a central repository developed to store conversational data. 
Additionally, [18] demonstrates that LLMs, when combined with prompt engineering, 
outperform traditional machine learning models, particularly in enhancing the precision and 
utility of crop yield predictions. LLMs for text generation tasks are typically fine-tuned using 
prompt templates, and in [12], placeholders for questions, answers, and information within 
prompts were used, with GPT-4 outperforming GPT-3.5 and LLaMA.  

While traditional machine learning models have been used to predict soil quality and 
nutrient levels, they often fall short in providing detailed descriptions and comprehensive 
reports. In [22], the integration of AI and the Internet of Things (IoT) in precision farming was 
explored, where IoT sensors monitor soil parameters and nutrient levels, and AI algorithms 
optimize fertilization, irrigation, and pest management practices. However, this research 
primarily relied on classical machine-learning techniques. In contrast, this research employs 
LLMs for specific soil-related tasks, generating detailed, actionable reports for cotton farming 
based on sensor data or predictions from machine learning models, addressing the gap in 
existing methods by providing comprehensive soil reports without requiring user queries. 
Material and Methods: 
Dataset Collection:  

Data was gathered from a variety of sources related to cotton management, including 
cotton reports from research institutes, scholarly articles, and online resources. The documents 
were selected based on their relevance to soil nutrient recommendations for cotton at various 
growth stages, specifically in the Punjab region of Pakistan. Table 1 summarizes the documents 
used for data collection, detailing the reference ID, source title, and source information. 
Data Preparation: 

Soil nutrient values, their interpretations at different stages of cotton growth, and the 
corresponding recommendations for each stage were manually extracted from PDF documents. 
According to [31], there are six stages of cotton growth, as outlined in Table 2. However, our 
dataset includes only five of these stages, excluding the maturity stage, as it represents the point 
when the crop is fully developed and ready for harvest. 

For each stage of cotton growth (excluding the maturity stage) listed in Table 2, we 

prepared interpretations and recommendations for Nitrogen, Potassium, Phosphorus, and pH 

based on their availability in the soil, categorized as either low or optimal. Consistent 

measurement units, specifically kg/ha, were used to quantify the nutrient levels in the soil. 
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According to [23], the optimal ranges for N, P, K, and pH are presented in Table 3. The 

frequency distribution of Nitrogen, Potassium, Phosphorus, and pH levels is depicted in Figure 

1, while the overall frequency distribution of nutrient levels in the dataset is shown in Figure 2. 

Table 1: Summary of Data Sources 

Reference 
ID 

Source Title Source Information 

[23] Pakistan Cotton grower Central Cotton Research Institute, 
Multan, Pakistan 

[24] Fertilizer Role in Sustainable Cotton 
Production 

Central Cotton Research Institute, 
Multan, Pakistan 

[25] Cotton Fertility Management University of Missouri 

[26] Role of proper management of nitrogen 
in cotton growth and development 

International Journal of Biosciences 

[27] Potassium fertilization of cotton Virginia Cooperative Extension 

[28] Inorganic nutrient management for 
cotton production in Mississippi 

Mississippi State University 

[29] Phosphorus application strategies to 
improve cotton productivity under arid 
climatic conditions 

International Journal of Cotton 
Research and Technology 

[30] Integrated Crop Management Advancing Cotton Education Soil 
Fertility, National Cotton Council 

[31] Cotton Crop Development in Central 
Punjab 

Regional Agromet Centre Pakistan 
Meteorological Department 

Table 2. Growth stages of cotton 

No Growth Stage 

1 Sowing 
2 Vegetative 
3 Budding 
4 Flowering 
5 Boll Development 
6 Maturity 

Table 3. Optimal values of N, P, K, and pH 

Nutrient Optimal Value 

Nitrogen 140 kg/ha 
Phosphorus 25 kg/ha 
Potassium 125 kg/ha 

pH 6.5 - 7.5 

 
Figure 1. Frequency Distribution of Nutrients in Dataset 
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Figure 2. Frequency Distribution of Nutrient Levels in Dataset 

Prompt Template: 
To fine-tune a large language model, a prompt template is essential to guide the model 

in learning the desired structure. Figure 3 illustrates the prompt templates we developed using 
data from our dataset. 

 
Figure 3. Prompt Template 

The soil properties include nutrient levels along with labels indicating whether they are 
low or optimal, as well as information about the corresponding growth stage of cotton. The first 
template, designed for soil analysis, provides interpretations of how low or optimal nutrient 
levels affect cotton growth at each specific growth stage. The second template, focused on soil 
recommendations, offers guidance on nutrient management, with recommendations based on 
whether the nutrient level is low or optimal, considering the cotton growth stage. 
Large Language Based Models: 

Large language models (LLMs) have emerged as powerful tools capable of generating 
text and human-like responses. Typically, LLMs are trained on vast corpora and designed as 
general-purpose models. A significant recent advancement is the ability to fine-tune pre-trained 
models for specific tasks, as demonstrated in [10]. The LLMs used in this study are: 

• GPT-2: GPT-2 [14] is a large transformer model with 1.5 billion parameters, trained on 
the WebText dataset, which comprises 8 million web pages. Its architecture consists of 
multiple transformer decoder layers, each incorporating self-attention mechanisms and 
feed-forward neural networks. Key components of the model include self-attention 
mechanisms to capture contextual relationships, feed-forward neural networks to learn 
complex text patterns, and layer normalization combined with residual connections to 
support efficient training and learning. 

• Llama-2: LLaMA 2 7b [15] is a transformer-based model with 7 billion parameters, trained 
on a diverse and extensive dataset consisting of publicly available text data. This vast 
corpus enables the model to develop a broad understanding of language, encompassing a 
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wide range of topics and styles. For this study, we used the Nous Research version, 
LLAMA2-7b-hf, available on Hugging Face. 

Methodology: 
Figure 4 illustrates our methodology. First, we collected data from cotton-related 

documents and then divided it into training and testing sets for fine-tuning the LLM. After 
fine-tuning, we evaluated the model's performance using various evaluation metrics.

 
Figure 4. Methodology followed in this research 

Report Generation: 
The report generation process is iterative. Figure 5 illustrates this iterative process of 

generating a report using the LLM.

 
Figure 5. Report Generation Process 

The nutrient readings are first converted into prompts for each nutrient and the 
corresponding growth stage of cotton. These prompts are then passed to the fine-tuned LLM 
for two purposes: first, to generate a nutrient analysis, and second, to provide recommendations 
for that nutrient. The final step involves merging all the responses generated by the LLM into a 
report template to produce the complete, generated report. 
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Results and Discussion: 
Results: 

In our research, we fine-tuned the GPT-2 and LLaMA-2 models to generate soil reports 
aimed at optimizing cotton growth through soil nutrient values. The dataset was split into two 
parts: 80% for training and 20% for testing. 
GPT Fine Tuning: 

The dataset was initially tokenized using a GPT-2 tokenizer, with the parameters 
specified in Table 4. We then fine-tuned the pre-trained GPT-2 model, and the parameters used 
during the fine-tuning process are listed in Table 5. 

Table 4. GPT-2 Tokenizer Parameters 

Name of Parameter Value 

Vocabulary Size 50257 
Max Length 750 
No repeat n-gram 3 
No return sequences 1 

 
Figure 6. GPT 2 train and test loss 

Figure 6 displays the graph of training and testing loss for the GPT-2 model over 20 
epochs. The training loss begins at 1.12 and decreases to 0.09 by the 20th epoch. Similarly, the 
evaluation loss starts at 0.18 and drops to 0.08 after 20 epochs 

Table 5. Parameters for GPT-2 and Llama2 

Name of Parameter GPT-2 Llama2 

Batch Size 4 4 
Learning Rate 0.0001 0.0001 
Optimizer Adam Adam 
Epochs 20 20 

Llama 2 Fine Tuning: 
The dataset was split into 80% for training and 20% for evaluation. The parameters 

used for fine-tuning LLaMA-2 are provided in Table 5. Figure 7 illustrates the training and 
evaluation loss for LLaMA-2. The training loss begins at 2.02 and decreases to 0.03 after 20 
epochs, while the evaluation loss starts at 1.91 and drops to 0.25 by the 20th epoch. 

The results indicate that GPT-2 outperforms LLaMA-2. Consequently, we used GPT-2 
to generate soil reports based on nutrient values. 
Generated Report by LLM: 

Figure 8 shows a report generated by the LLM using input values (Nitrogen = 150 kg/ha, 
Potassium = 100 kg/ha, Phosphorus = 30 kg/ha, pH = 7, Growth Stage = sowing), which could 
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be derived from field data or predictions made by another model. These inputs follow the report 
generation process outlined in Figure 5, resulting in the final report. 

 
Figure 7. Llama2 train and test loss 

Reports Evaluation: 
We evaluated the reports generated by our fine-tuned models, GPT-2 and Llama-2. 

While BLEU [32], a common metric in machine translation, counts n-gram overlaps between 
generated and reference texts, we did not use it because it fails to account for meaning-preserving 
lexical and compositional diversity [33]. Instead, we employed BERT Score [33], a more 
advanced language generation evaluation metric based on pre-trained BERT contextual 
embeddings. BERT Score measures sentence similarity by summing the cosine similarities 
between token embeddings. Unlike BLEU and ROUGE, which rely on exact token matching, 
BERT Score captures semantic similarity by leveraging BERT's contextual embeddings to assess 
the meaning between generated and reference texts. According to [33], BERT Scores are 
calculated as follows: 
Recall (RBERT): 

 (1) 
This equation calculates the recall of the generated text. For each token xi in the reference text 
x, it finds the maximum similarity with any token xˆj in the generated text xˆ. The recall is then 
averaged over all tokens in the reference text. 
Precision (PBERT): 

   (2) 
This equation calculates the precision of the generated text. For each token xˆj in the 

generated text xˆ, it finds the maximum similarity with any token xi in the reference text x. The 
precision is then averaged over all tokens in the generated text. 
F1 Score (FBERT): 

FBERT = 2PBERT RBERT (3) 
PBERT+RBERT   

This equation calculates the F1 score by computing the harmonic mean between 
precision and recall, offering a single metric that balances both. Table 6 summarizes the 
precision, recall, and F1 scores for the test sets, calculated using BERT Score. The results in 
Table 6 show that the GPT-2 model outperformed the Llama-2 model across all BERT Score 
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metrics, demonstrating higher precision, recall, and F1 scores in generating soil nutrient 
recommendations for cotton growth. 

Table 6. BERT Score Results for GPT-2 and LLama2 Models 

Model Avg. Precision Avg. Recall Avg. F1-Score 

GPT-2 0.92846 0.9308 0.9296 
LLama-2 0.8446 0.8722 0.8581 

 
Figure 8. Generated Report by GPT-2 

Discussion: 
In this research, we fine-tuned the GPT-2 and LLaMA-2 models to generate soil analysis 

reports based on field values. After evaluating the models using BERT Score, GPT-2 achieved 
a higher score, indicating that its generated reports were more contextually relevant. The results 
section provides a detailed breakdown of the evaluation metrics. Additionally, the generated 
reports, as shown in Figure 8, demonstrate that LLMs are capable of producing well-structured 
and informative reports. Traditionally, report generation is a manual process that involves 
analyzing soil nutrient levels and providing recommendations based on agricultural guidelines, 
a task that requires expertise and can be time-consuming. By automating this process, LLMs not 
only reduce the time taken but also offer a solution for real-time soil monitoring and decision-
making. To the best of our knowledge, this is the first application of LLMs to this specific task, 
representing a novel contribution to the field of smart agriculture. 
Conclusion and Future Work: 

This study focuses on generating soil reports for cotton growth using Large Language 
Models (LLMs). We collected a dataset from PDF documents related to cotton and fine-tuned 
the LLM using a custom prompt template. The report generation process is iterative, where the 
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LLM generates responses based on nutrient values and the cotton growth stage, which are then 
merged to form the final report. The training loss of LLaMA-2 is 0.03, with an evaluation loss 
of 0.25. For the fine-tuned GPT-2 model, the training loss is 0.0932, and the evaluation loss is 
0.086. We evaluated the performance of the fine-tuned GPT-2 model using BERT Score, 
achieving average Precision, Recall, and F1 scores of 0.9284, 0.9308, and 0.9296, respectively. 
These results demonstrate that the fine-tuned GPT-2 model performs effectively in generating 
accurate reports for cotton growth. Future work will involve expanding the dataset to include 
other related tasks, such as irrigation management for cotton, based on soil and environmental 
conditions, and further fine-tuning LLMs for these applications. 
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