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This study investigates the application of deep learning 
models, namely CNN, RNNs, and MLP, for the early 
prediction of CKD. Early detection of CKD is critical 
for initiating timely treatment, as the disease can 
advance with few symptoms. The research leverages a 
preprocessed Kaggle dataset, divided for training and 
testing, to assess model performance. Among the 
models, CNN achieved an impressive 99% accuracy, 
highlighting its strong feature extraction capabilities. 
The RNN and MLP models also demonstrated high 
accuracy, reinforcing the potential of deep learning in 
enhancing CKD screening processes. This approach 
can support more personalized and preventive 
healthcare, potentially improving patient outcomes 
through earlier interventions. 
Keywords: RNN, CKD, Deep Learning, CNN, ANN, 
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Abbreviation Full Form 

CKD Chronic Kidney 
Disease 

CNN Convolutional 
Neural Network 

RNN Recurrent Neural 
Network 

MLP Multi-Layer 
Perceptron 

ANN Artificial Neural 
Network 

LSTM Long Short-
Term Memory (a 
type of RNN) 
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Introduction: 
Chronic Kidney Disease (CKD) is a significant global public health issue, with 

prevalence on the rise due to aging populations and increasing rates of diabetes, hypertension, 
and lifestyle changes [1]. If untreated, CKD progressively worsens, ultimately leading to End-
Stage Renal Disease (ESRD), where kidney function is severely compromised, often 
necessitating dialysis or kidney transplantation to sustain life [2]. Affecting approximately 10% 
of the global population, CKD’s impact is expected to grow as risk factors like obesity and 
diabetes become more common [3]. The disease also leads to reduced quality of life, with high 
morbidity and mortality rates, as well as significant healthcare costs [4]. Thus, early and 
accurate diagnosis of CKD is crucial to enable timely treatment and prevent progression to 
advanced stages. 

Early detection of CKD allows for prompt interventions, which can positively 
influence patient outcomes and slow disease progression. Preventive measures, including 
lifestyle changes, blood pressure control, and medication, can be implemented early, 
potentially reducing the need for more costly treatments later on [5]. However, CKD’s silent 
progression, often without early symptoms, makes early detection challenging. Traditional 
CKD diagnostics rely on laboratory markers, such as serum creatinine and blood urea nitrogen 
levels, along with clinical evaluations of symptoms and risk factors [6]. While effective, these 
methods can be invasive, time-consuming, and costly, and may not always detect CKD in its 
earliest stages [7]. 

Advances in technology have enabled the development of predictive models that 
analyze patient data to identify individuals at risk of CKD before symptoms appear [8]. Such 
models offer the potential for proactive interventions and personalized treatment, which can 
improve patient quality of life while also reducing long-term healthcare costs [9]. Deep 
learning has revolutionized medical diagnostics, enabling more sophisticated data analysis. 
Models such as CNN, RNNs, and MLP have demonstrated exceptional performance in 
various medical applications by automating the feature extraction process and leveraging 
patient data [10]. 

CNNs, in particular, excel with structured data and images, making them valuable for 
tasks such as analyzing X-rays and MRIs, where they detect local patterns and spatial 
relationships through convolution layers [11]. This capacity to recognize subtle patterns makes 
CNNs well-suited for diagnosing complex diseases like CKD [12]. RNNs, especially (LSTM) 
networks, are specialized for sequential data, making them beneficial for analyzing time-series 
data in patient monitoring due to their ability to capture temporal dependencies [13][14]. 
Meanwhile, simpler architectures like MLPs, with densely connected layers, can effectively 
classify data given proper feature engineering, making them useful for structured data like 
patient records [15]. 

The use of deep learning models for CKD prediction can significantly enhance 
diagnostic performance without requiring manual feature extraction. These models can 
manage large datasets and reveal hidden associations that may not be apparent with standard 
statistical analysis, thus fostering new strategies for early detection and patient stratification 
[16]. Healthcare stands to benefit substantially from the ongoing integration of deep learning 
methods, which promise to drive improvements in patient outcomes over time. 

Traditional CKD diagnostic methods, including laboratory tests and clinical 
evaluations, are not only invasive and costly but also limited in detecting early-stage CKD[17]. 
This study underscores the need for more sensitive, non-invasive, and accurate predictive 
tools. By applying deep learning models—such as CNNs, RNNs, and MLPs—this research 
aims to improve CKD prediction by uncovering subtle patterns in complex medical data that 
might otherwise go undetected[18]. The goal is to advance early CKD detection, allowing for 
timely intervention and potentially extending or saving patient lives. 
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The main contributions of this research include: 
• Evaluating the performance of CNN, RNN, and MLP models for CKD prediction to 

determine the most accurate model. 
• Identifying key features influencing CKD prediction to improve model interpretability 

and diagnostic insights. 
• Developing an integrated forecasting model combining CNNs, RNNs, and MLPs to 

enhance prediction accuracy for CKD. 
The remainder of this paper is organized as follows: Section 2 reviews previous 

research on CKD prediction and the application of deep learning in medical diagnostics. 
Section 3 describes the dataset, including feature selection, preprocessing, and the rationale 
behind the chosen models. This section also provides an overview of the methodology, 
detailing the architectures and implementation of CNN, RNN, and MLP models for CKD 
prediction. Section 4 presents experimental results, comparing the models and evaluating their 
effectiveness using various metrics. Section 5 discusses the results and explores their 
implications for clinical practice and future research. The conclusion summarizes the study's 
key findings, contributions, and recommendations for advancing CKD prediction. 
Related Work: 

This study conducts an in-depth review of machine learning applications for predicting 
CKD, focusing on how these methods enhance diagnostic precision, treatment, and preventive 
strategies[19]. The review evaluates a range of algorithms, including decision trees, support 
vector machines (SVMs), ensemble methods, and deep learning techniques, to highlight 
current gaps and challenges in CKD prediction. The goal is to explore the potential for 
machine learning to provide more accurate, objective, and less invasive early detection 
methods[20][21][22]. 

CKD is a significant global health issue due to its progressive nature and its impact on 
quality of life[23]. Traditional diagnostic methods, such as lab tests and clinical assessments, 
often require invasive procedures, presenting a need for more efficient predictive tools that 
can improve early detection without compromising patient comfort become a valuable tool in 
CKD prediction by leveraging large datasets to identify complex patterns within patient 
data[24]. Machine learning as decision trees, SVMs, and ensemble techniques have shown 
promise in CKD prediction. Decision trees offer a straightforward approach by categorizing 
patients based on clinical characteristics, though they may struggle with wiensional data. SVMs, 
known for accurately distinguishing between classes, have demonstrated good results in CKD 
classification, though they are computationally demanding and sensitive to hyperparameter 
settings[25][26]. Ensemble models, like Random Forest Machines, combine multiple models to 
increase predictive accuracy and mitigate overfitting, particularly in data with complex feature 
interactions. 

CKD affects over 10% of the world’s population and progages, with early detection 
being critical for successful management. Although serum creatinine and blood urea nitrogen 
(BUN) are commonly used inail to detect early-stage CKD[27].  New diagnostic tools are 
essential to facilitate early intervention, improve patient outcomes, and reduce healthcare costs 
[28]. Deep learning techniques, which automatically perform feature extraction on complex 
data, offer solutions for CKD prediction by minimizing the need for manual data 
preprocessing. CCNN, which excels in analyzing medical images, has shown effectiveness in 
kidney scans, making them useful for CKD detection. RNNs, especially (LSTM) networks, 
capture temporal dependencies, making things sequential patient data over time [29]. 

This study leverages the strengths of CNNs, RNNs, and MLP to predict CKD. RNNs 
capture temporal patterns within patient CNNs process medical imaging data, and MLPs 
interpret non-linear relationships in structured clinical data. By integrating these models, we 



          International Journal of Innovations in Science & Technology 

Nov 2024|Vol 6| Issue 4                             Page|1865 

aim to enhance prediction accuracy and overcome previous limitations in feature extraction 
and model adaptability[30]. 

Our review shows significant advancements in machine learning models for CKD 
diagnosis, though gaps remain in combining different deep learning approaches to maximize 
predictive power[31][32]. This study addresses these gaps by integrating RNNs, CNNs, and 
MLPs, combining each model's unique advantages to improve early CKD detection, accuracy, 
and reliability across diverse clinical environments. This unified model not only boosts 
diagnostic capability but also sets a foundation for new approaches in CKD management and 
patient care[33]. 
Material and Methods: 

This section details the dataset, proposed architecture, preprocessing steps, and the 
three deep learning techniques implemented to predict CKD and evaluate model performance. 
This study leverages deep-learning models specifically designed for kidney disease prediction. 
Proposed Architecture: 

The proposed architecture for CKD prediction integrates multiple deep learning 
models, each chosen to optimize predictive accuracy by targeting specific characteristics of the 
clinical dataset. This architecture combines CCNN, RNNs and MLP, with each model applied 
based on its strengths in handling different data types. 

CNNs, typically used for image data, are adapted here for tabular data to capture 
complex hierarchical features and non-linear relationships within CKD parameters. The CNN 
structure includes one-dimensional convolutional layers, which detect local dependencies 
between features, combined with pooling layers to improve computational efficiency. LSTM 
networks, as part of the RNN model, are applied to capture temporal dependencies, modeling 
changes in patient health over time—an essential factor in CKD prediction. MLPs focus on 
structured clinical data, identifying intricate relationships (e.g., between blood pressure and 
serum creatinine levels). 

This architecture employs a unified framework in which outputs from the CNN, RNN, 
and MLP models are combined using a soft voting scheme, providing a weighted average for 
the final prediction. By integrating these models, the proposed approach maximizes the 
strengths of each technique, improving both accuracy and reliability in CKD prediction. Figure 
1 provides an overview of the model’s design, illustrating the flow of information and the 
decision-making process within the proposed model. 

 
Figure 1. Proposed Architecture 
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CKD Dataset: 
This study utilizes a CKD dataset available on Kaggle, a reputable platform for diverse 

and high-quality datasets. The CKD dataset includes essential clinical and demographic 
information relevant to CKD diagnosis and management, such as blood pressure, serum 
creatinine, blood urea, hemoglobin levels, and indicators for conditions like diabetes and 
hypertension. Feature selection is based on each parameter's clinical significance in assessing 
kidney function and its relevance to CKD risk stratification. 
Table 1 provides a detailed description of the dataset, covering numerical features like age, 
blood pressure (BP), and serum creatinine (SC), as well as categorical variables such as the 
presence of diabetes mellitus (DM) and coronary artery disease (CAD). 

Table 1. Dataset Parameters 

Parameter Description Parameter Description 

id Unique identifier assigned 
to each patient record 

sod Serum Sodium; abnormal 
levels may be influenced 
by kidney function 

age Patient's age, critical for 
understanding CKD 
prevalence and progression 

pot Serum Potassium; levels 
may be affected by kidney 
function 

bp Systolic blood pressure, a 
key measure related to 
kidney disease risk 

hemo Hemoglobin levels; 
anemia is common in 
CKD patients 

sg Specific Gravity of urine; 
abnormal values may 
suggest kidney dysfunction 

pcv Packed Cell Volume; low 
levels may indicate anemia 
related to kidney disease 

al Albumin in urine; elevated 
values can indicate kidney 
damage 

wc White Blood Cell count; 
high counts may suggest 
inflammation or infection 
affecting kidney function 

su Sugar in urine; high levels 
may signal diabetes, a 
common cause of kidney 
disease 

rc Red Blood Cell count; 
indicates blood health and 
kidney function 

rbc Red Blood Cells in urine; 
abnormal levels may 
indicate kidney damage or 
other conditions 

htn Hypertension, a common 
risk factor for kidney 
disease, recorded as binary 
(yes/no) 

pc Pus Cells in urine; presence 
may indicate inflammation 
or infection affecting 
kidney function 

dm Diabetes Mellitus, another 
risk factor, recorded as 
binary (yes/no) 

pcc Pus Cell Clumps in urine; 
may indicate severe 
infection or inflammation 

cad Coronary Artery Disease, 
a condition linked to 
CKD risk, recorded as 
binary (yes/no) 

ba Bacteria in urine; may 
suggest a urinary tract 
infection affecting kidney 
function 

appet Appetite level, which can 
be affected by kidney 
disease, categorized as 
good or poor 

bgr Blood Glucose Random; 
high levels may indicate 

pe Pedal Edema presence; 
fluid retention can be a 
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This dataset provides a thorough collection of features for CKD modeling, 
encompassing both clinical measurements and patient demographics. The inclusion of such a 
wide array of parameters allows for a comprehensive analysis of the factors contributing to 
CKD and supports the development of predictive models for better diagnosis and 
management. 
Data Preprocessing (Label Encoder): 

Data preprocessing is a critical step in preparing the dataset for machine learning 
models, particularly when working with clinical data such as CKD. This process involves 
cleaning, transforming, and structuring the raw data to ensure that it is suitable for training 
models, which can ultimately improve the accuracy of predictions. 
Handling Missing Data: 
Imputation: 

The dataset may contain missing values, which can lead to biased or inaccurate model 
outcomes. For numerical features, such as age, blood pressure, or serum creatinine, missing 
values are imputed using the mean of the existing data for that feature. For categorical 
variables (e.g., diabetes mellitus or hypertension), the mode (most frequent category) is used 
for imputation. This ensures that the dataset remains complete and usable for training the 
models. 
Removal of Incomplete Records:  

In instances where a large proportion of a record is missing, or the missing values 
cannot be reliably imputed, such records are removed from the dataset to maintain data 
integrity. 
Normalization of Numerical Features: 
Scaling:  

Features in the dataset (such as age, serum creatinine, and blood pressure) can vary 
significantly in magnitude. To prevent any one feature from disproportionately affecting model 
performance, normalization is applied. This step scales each numerical feature to a range 
between 0 and 1, ensuring that all features contribute equally to the model’s learning process. 
Benefits:  

Normalization speeds up model training by enabling faster convergence and improving 
the accuracy of predictions. It ensures that features with larger scales do not overshadow those 
with smaller scales. 
Label Encoding of Categorical Variables: 
Label Encoding:  

Since machine learning models require numerical input, label encoding is used to 
convert categorical variables into numerical format. Binary variables such as hypertension 
(htn), diabetes mellitus (dm), and the target classification (CKD or non-CKD) are encoded as 
1 (Yes) or 0 (No). For example, the presence of hypertension (htn) might be encoded as 1 
(present) and 0 (absent). 

 

diabetes, a significant risk 
factor for kidney disease 

symptom of CKD 

bu Blood Urea; elevated levels 
may indicate impaired 
kidney function 

ane Anemia, common in 
CKD patients, recorded 
as binary (yes/no) 

sc Serum Creatinine; high 
levels often correlate with 
reduced kidney function 

Classification Target variable indicating 
CKD presence, 
categorized as 'ckd' (with 
CKD) or 'notckd' 
(without CKD) 
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Impact on Model Training:  
Label encoding transforms categorical data into a format that can be efficiently 

processed by machine learning models, thus allowing the model to recognize and learn 
patterns associated with each category. Through these preprocessing steps, the data is 
transformed into a clean, normalized, and encoded format, ready for input into machine 
learning models. This approach ensures that the models can make predictions with greater 
accuracy and generalize better to unseen data. 
Splitting the Dataset into Training and Testing: 

To properly evaluate the performance of the deep learning models and ensure they 
generalize well to new, unseen data, it is essential to split the dataset into training and testing 
subsets. This process prevents overfitting and ensures that the models are not simply 
memorizing the training data but instead learning patterns that can be applied to new cases. 
Training and Testing Split: 
Training Set:  

Typically, 80% of the data is used for training the models. This portion is used to teach 
the CNN, RNN, and MLP models to recognize patterns within the data, such as relationships 
between clinical features (e.g., blood pressure, serum creatinine) and the likelihood of CKD. 
Testing Set:  

The remaining 20% of the data is held out for testing purposes. This data is used to 
evaluate the model’s performance on new, unseen examples. The testing set serves as an 
unbiased estimate of the model’s predictive ability. 
Preventing Overfitting: 

By ensuring that the model is trained on one subset of the data and tested on another, 
we can assess whether the model is overfitting. Overfitting occurs when a model performs 
exceptionally well on training data but fails to generalize to new data. Testing on a separate 
dataset allows us to detect overfitting and adjust the model to improve its generalization 
capabilities. 
Consistent Evaluation: 

To ensure fairness in evaluating different models, the same data split is used for each 
model (CNN, RNN, and MLP). This consistent testing methodology allows for a direct 
comparison of the performance of each model on the same testing data, providing insights 
into which model performs best for predicting CKD. The careful splitting of the dataset into 
training and testing subsets is essential for assessing the model’s ability to generalize to real-
world clinical applications. It provides a realistic estimate of how the models will perform 
when deployed in practice. 
Model Training Using CNN, RNN, And MLP: 

In this research, three different deep learning models—CCNN, RNNs, and MLP—are 
used to predict CKD  from clinical datasets. These models each bring unique strengths in 
learning from clinical features and medical data. 
CCNN: 
Application to Tabular Data:  

Although CNNs are traditionally used for image processing, they can also be adapted 
to work with tabular data, such as clinical records. The CNN model in this study learns 
hierarchical features from the input data and captures complex patterns associated with CKD 
progression. By using one-dimensional convolution layers, the model automatically detects 
dependencies between clinical features, such as the relationship between blood pressure and 
serum creatinine levels. 
Advantages: CNNs can effectively identify local patterns and non-linear relationships in the 
dataset, making them well-suited for capturing intricate dependencies in CKD-related clinical 
parameters. 



          International Journal of Innovations in Science & Technology 

Nov 2024|Vol 6| Issue 4                             Page|1869 

RNNs : 
Modeling Temporal Dependencies:  

RNNs, specifically (LSTM) networks, are used to model temporal dependencies within 
the data. Since CKD progression depends on a patient’s medical history and changes over 
time, LSTMs are well-suited for this task. These networks excel in learning from sequential 
data, where the order of events is important. 
Benefits:  

LSTMs can retain information over long sequences, making them effective in 
predicting CKD based on a patient’s medical history. The model can capture patterns such as 
how past health conditions (e.g., hypertension, diabetes) influence CKD progression. 
Multi-Layer Perceptrons : 
Learning Non-Linear Relationships:  

MLPs are a class of feedforward neural networks that consist of multiple layers of 
neurons. They are used to learn non-linear relationships between input features. In the context 
of CKD, MLPs process structured clinical data (e.g., age, serum creatinine, and blood pressure) 
and identify interactions between variables. 
Strength:  

 
Figure 2. Neural Network Models 

MLPs are highly effective in learning complex, non-linear associations, which is crucial 
when dealing with medical datasets that involve numerous factors influencing CKD risk. Each 
model is trained separately using the training dataset, where they learn from the patterns 
present in the clinical features. Once trained, the models are evaluated using the testing dataset 
to determine their predictive power in diagnosing CKD. 
Choosing the Best Model for Prediction and Model Testing: 

Based on the performance metrics, it is clear that the selected model exhibits high 
accuracy and excels in other key evaluation metrics, including precision, recall, and F1 score. 
These metrics collectively indicate that the model is highly effective for predicting CKD. In 
particular, the balance between sensitivity and specificity is optimal, suggesting that the model 
is well-suited for real-world clinical applications where both false positives and false negatives 
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need to be minimized. After selecting the best-performing model, further refinements are 
made through hyperparameter tuning and additional testing on the training dataset. This fine-
tuning process enhances the model's performance, ensuring that it has strong calibration and 
can effectively adapt to real-world variations in the data. This step is crucial for improving the 
robustness of the model, making it less sensitive to minor changes or shifts in data when 
deployed in clinical environments. Once these optimizations are complete, the model 
undergoes a rigorous testing phase using a completely separate, blind dataset. This external 
validation ensures that the model performs well on new, unseen data, providing an assessment 
of its ability to generalize beyond the training and validation datasets. The testing phase is vital 
for confirming the model’s predictive power in practical, real-world scenarios, where it will 
often be applied to patient populations that were not included in the training data. 
The results from this phase validate the model’s ability to achieve a high level of predictive 
accuracy while minimizing both false positives and false negatives. Successful testing confirms 
that the model is ready for deployment in clinical settings, where it can be trusted to deliver 
reliable and accurate results at scale. Given the potential impact on healthcare applications, 
particularly in improving CKD diagnosis and treatment management, the model’s ability to 
generalize effectively across different patient groups is essential for ensuring better healthcare 
outcomes and more informed decision-making. 
RESULTS AND DISCUSSION: 

The experiments for our proposed CKD prediction model were executed on Google 
Colab, a powerful and accessible environment for training and evaluating machine learning 
models. Using the resources available on Colab, we developed and tested deep learning 
models, including CCNN, RNNs, and MLP. In this section, we present the performance of 
these models and compare them to other approaches in predicting CKD. 
Loading the Necessary Libraries: 

The first step in the analysis and model development involved importing the necessary 
libraries. We utilized pandas and numpy for data processing, while matplotlib.pyplot and 
seaborn were used for visualizing the data. The train_test_split, StandardScaler, and 
LabelEncoder functions from sklearn were employed to split the dataset, scale the features, 
and encode categorical variables, respectively. The classification_report and confusion_matrix 
from sklearn allowed for evaluating the classification model's performance. Additionally, the 
models were saved using joblib. For building and training the deep learning models, we used 
tensorflow.keras with functions such as Sequential, Dense, Conv1D, MaxPooling1D, Flatten, 
LSTM, and Dropout. The to_categorical function was used to convert the class labels into a 
format suitable for classification. 
Loading the CKD Dataset: 

The next step involves loading the CKD dataset, which is stored as a CSV file named 
‘data.csv’ in the content directory. We used the pd.readcsv function to load the dataset into a 
pandas DataFrame. This initial step sets up the data for further cleaning and analysis. 
Visualization of the CKD Dataset: 

After loading the dataset, we proceeded to explore and visualize the distribution of the 
data. Using Seaborn'scountplot function, we plotted the number of CKD and non-CKD 
instances in the dataset. This graph, labeled "Count of CKD and Non-CKD," provides 
insights into the class distribution within the dataset. The distribution is shown in Figure 3, 
helping us understand the balance (or imbalance) between the two classes, which is crucial for 
model evaluation and further analysis. The visualization process aids in identifying potential 
issues such as class imbalance that might need to be addressed before model training. 
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Figure 3. Count of CKD and Non-CKD 

To better understand the age distribution in the dataset, we used Seaborn’s histplotwith 
the kde=True parameter, which overlays a smooth Kernel Density Estimate (KDE) curve 
onto the histogram. This combination offers a clearer view of the age distribution among the 
patients and highlights the probability density. The plot is titled 'Age Distribution' and is 
displayed using Pl. Show (). This visualization is valuable for identifying the specific age range 
of the patients and understanding how the ages are spread across the dataset, as shown in 
Figure 4. 

Figure 
4.Age Distribution 

This snippet includes a few additional libraries that are necessary for the analysis and 
uses a LabelEncoder to convert the categorical columns in the dataset to numeric values. 
Afterward, the modified dataset is outputted, and the correlation matrix is calculated to 
explore the relationships between the features. Finally, Figure 5 displays the correlation matrix 
as a heatmap, which visually represents the strength and direction of the relationships between 
the features. 
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Figure 5. Correlation Matrix
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Dataset Preparation and Preprocessing for Model Training: 
To prepare the dataset for model training and testing, we first separate the dataset into 

feature variables (X) and the target variable (Y). Any missing values are identified and handled, 
with numerical columns being imputed using the mean and categorical columns filled using the 
mode. After handling missing data, categorical variables are encoded numerically. Next, the 
StandardScaler is applied to scale the features, and the target variable is also encoded for 
consistency. Finally, the dataset is split into training and testing sets in an 80% to 20% ratio for 
model evaluation. 
Model Training for CKD Prediction: 

The dataset undergoes necessary transformations to make it suitable for training with 
different deep learning models, including CCNN and RNNs. For CNN training, an additional 
axis is added to the testing dataset to accommodate the 1D convolutional layers. The CNN 
model architecture consists of sequential layers, including convolutional layers, max pooling, 
flattening, and dense layers. The model is compiled using the Adam optimizer and binary 
cross-entropy as the loss function, and it is trained for 5 epochs with 20% of the data reserved 
for validation. 

For the RNN model, the data is transformed appropriately to work with LSTM layers. 
The RNN model is composed of one LSTM layer and two dense layers, and it is compiled 
using the Adam optimizer and binary cross-entropy loss. The model is trained for 5 epochs, 
with 20% of the data used for validation. For the Multi-Layer Perceptron (MLP) model, no 
additional reformatting of the data is needed, as the dataset remains in its initial form. The 
MLP model consists of dense layers with drop-out regularization, and it is compiled with the 
Adam optimizer and binary cross-entropy loss function. The training is conducted for 5 
epochs, with 20% reserved for validation. 
Model Evaluation and Classification Reports: 

After training the three models (CNN, RNN, and MLP), they are evaluated using the 
test dataset. Predictions are made for each model, where values greater than 0.5 are considered 
as belonging to the positive class. Performance metrics, such as accuracy, precision, recall, and 
F1-score, are calculated and detailed in the classification reports. These results provide insights 
into how well each model performs in predicting CKD, and the classification reports (Tables 
2, 3, and 4) offer a comparison of the performance of the CNN, RNN, and MLP models in 
terms of their ability to accurately predict CKD. 

Table 2: Classification Report of CNN 

Class Precision Recall F1-Score Support 

0 (Non-CKD) 0.98 1.00 0.99 52 

1  1.00 0.96 0.98 28 

Accuracy 
  

0.99 80 

Macro Avg 0.99 0.98 0.99 80 

Weighted Avg 0.99 0.99 0.99 80 

Table 3: Classification Report of RNN 

Class Precision Recall F1-Score Support 

     

0 (Non-CKD) 0.91 0.77 0.83 52 

1  0.67 0.86 0.75 28 

Accuracy 
  

0.80 80 

Macro Avg 0.79 0.81 0.79 80 

Weighted Avg 0.82 0.80 0.80 80 

Table 4: Classification Report of MLP 
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Class Precision Recall F1-Score Support 

0 (Non-CKD) 0.98 1.00 1.00 52 

1  1.00 0.99 0.96 28 

Accuracy 
  

0.99 80 

Macro Avg 1.00 1.00 1.00 80 

Weighted Avg 1.00 1.00 1.00 80 

These tables clearly display the classification metrics (Precision, Recall, F1-Score, and 
Support) for each class (Non-CKD and CKD) for the CNN, RNN, and MLP models, as well 
as the overall accuracy, macro average, and weighted average for the models. 
Accuracies Comparison of Models: 

In this section, we evaluate the performance of three deep learning models—CNN, 
RNN, and MLP—using accuracy as the primary evaluation metric. The models are tested 
using the test dataset, and their respective accuracies are obtained through the evaluation 
process. For this comparison, reshaped test data is used for both the CNN and RNN models, 
while the original test data is utilized for the MLP model. 

The accuracies for each model are stored in a dictionary, where the model names—
CNN, RNN, and MLP—serve as the keys, and their corresponding accuracy values are the 
values. This dictionary is then used to generate a bar chart with the help of the 
matplotliblibrary. The chart displays the model names on the x-axis and their accuracy values 
on the y-axis, providing a clear visual representation of how each model performs in predicting 
CKD. 

The bar chart, shown in Figure 6, offers a comparative analysis of the three models, 
highlighting which one achieves the highest accuracy in CKD prediction. This comparison will 
be used to determine the best-performing model for future CKD detection tasks. 

 
Figure6. Accuracy ComparisonofModels 

Conclusion: 
This study focused on predicting CKD  using deep learning algorithms, specifically 

CNN, RNN, and MLP, which were trained on clinical data. Through data preprocessing, 
model training, and performance evaluation, we demonstrated the advantages of each model. 
The CNN model excelled at capturing hierarchical features, the RNN model effectively 



          International Journal of Innovations in Science & Technology 

Nov 2024|Vol 6| Issue 4                             Page|1875 

handled temporal relationships, and the MLP model showed strong performance with 
structured data. 

These models were implemented in a practical setting using Flask. Our findings 
indicate that combining these models provides a deeper understanding of CKD prediction, 
contributing to better patient care. We observed differences in performance across the models: 
the CNN model achieved the highest accuracy and predictive ability for CKD detection, while 
the RNN model was more efficient at capturing sequential dependencies. The MLP model 
proved effective with structured clinical data. 

Key preprocessing techniques, such as normalization and encoding of categorical 
variables and handling missing values, were critical in improving model performance and 
ensuring their generalization to new data. Additionally, deploying the models through Flask 
allowed real-time testing, confirming their clinical applicability. 

The study highlighted that integrating different deep learning models can lead to 
improved CKD prediction, with potential applications in early diagnosis and patient 
management in clinical practice. For future work, we plan to expand our training and testing 
datasets to further enhance model accuracy by reducing patient condition variability. We also 
aim to incorporate techniques such as ensemble learning and transfer learning to further 
improve prediction performance. Ultimately, the goal is to enhance the accuracy and timeliness 
of CKD detection, enabling earlier intervention and better patient outcomes. 
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