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Programming is one of the foundational skills essential for 
computer science professionals, yet attaining proficiency in this 
skill is widely acknowledged as a formidable challenge. The 
intrinsic complexity of programming is often cited as the primary 
factor contributing to its difficulty. The choice of programming 
language for IP courses typically relies on past experiences and 
empirical evidence, rather than on a quantitative basis, which can 
affect its effectiveness and suitability for novice learners. The 
study presented in this article conducted a quantitative analysis of 
Java and Python to assess their suitability for use in IP courses. 
The analysis involved evaluating programs based on a total of 210 
elementary programming algorithms using HCM. The results of 
the study indicated that Python programs, compared to Java 
programs, have a reduced reliance on lexical elements, are less 
complex, and have a smaller code size. Additionally, Python was 
found to produce less complex programs and required less effort 
and time for development and maintenance. Moreover, Python 
programs tend to have fewer bugs. Overall, the study concluded 
that Python is better suited for IP courses than Java. The novelty 
of this study lies in its quantitative comparison of Java and 
Python using HCM, revealing that Python is more appropriate 
for IP courses due to its lower complexity, reduced development 
effort, and fewer bugs. 
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Introduction: 
Programming constitutes the core of computer science, and acquiring proficiency in 

programming is crucial for students in information science, computer science, and electrical 
engineering [1]. The significance of programming languages is underscored by the fact that 
programming skills are essential not only for computer science majors but also desirable for 
students pursuing disciplines beyond computer science [2]. 

The significance and global popularity of programming education have grown 
significantly. The cognition of programming logical reasoning, algebra, and vocabulary skills—
predicts programming performance following an introductory computing course [3]. Due to the 
rising significance of programming in the professional realm, there has been a surge in the 
demand for programming education. 

An IP course, often referred to as CS1 [4], is critical for students pursuing STEM degrees 
[5]. In a foundational programming course, novice students are introduced to a range of 
concepts that typically encompass problem-solving skills, fundamental programming principles, 
as well as the syntax and semantics of a programming language. Additionally, they learn how to 
employ this programming language to craft solutions. 

In pedagogical environments, it is widely recognized that the programming environment 
exerts a significant influence on learners' interactions with programming, as well as on the initial 
learning outcomes in computer science classrooms. Teaching programming has become 
increasingly demanding, particularly in introductory courses that often have large enrolments. 
Developing proficiency in writing functional programs is a cognitive skill that many novice 
programmers struggle to acquire. Equally challenging is the task of assessing students' abilities 
in this area. Studies have indicated that students must first learn to read and comprehend 
programs before they can effectively learn to write them [6]. 

Acquiring programming skills is a rewarding career pursuit, yet mastering them proves 
challenging [7] and demanding, as substantiated by numerous studies. In the process of learning 
to program, beginners should emphasize the development of problem-solving abilities alongside 
gaining a deep understanding of programming syntax and semantics [8]. For the majority of 
students, embarking on their initial journey into programming proves to be a formidable 
challenge [9]. The abstract structure, logic, negative perceptions, and anxiety associated with 
programming are viewed as challenges for novice programmers [10]. Anxiety and frustration 
frequently manifest when learners encounter challenges in writing programs [11]. 

A multitude of solutions have been developed to assist students in acquiring 
fundamental programming skills. Nevertheless, there remains a shortage of solutions addressing 
the challenges students encounter while learning programming, primarily due to the abstract 
nature of programming, misconceptions about programming concepts, and a lack of motivation 
[12]. 

The primary objective of teaching programming is to help students become proficient 
in writing computer programs that solve problems. These problems may stem from several 
factors, including the abstract concepts implied by programming, the problem-solving and 
problem-decomposition skills required, the fact that many students have never had the 
opportunity to practice computational thinking or programming, and the requirement for 
students to quickly learn the syntax, semantics, and structure of a new, unfamiliar language [13]. 
Significant advancements have been made in tools, methods, and approaches designed for 
teaching and learning IP [14], but the rates of dropout and failure in these courses remain notably 
high [15][16]. 

The initial choice of a programming language exerts a lasting influence on a 
programmer's development capabilities. The selection of a programming language for teaching 
IP has been a contentious issue within the computer science and information systems 
communities. This decision is guided by several criteria, including compatibility with educational 
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objectives, ease of learning, support for fundamental concepts, industry relevance, institutional 
preferences, resource availability, support for more advanced courses, and the ability to inspire 
students. While these criteria are undoubtedly useful, they may lead to oversimplification, 
limiting exposure to complex concepts and reducing the breadth of students' programming 
skills. A principally quantitative approach that formally analyses the suitability of programming 
languages for a first programming course would be more beneficial. 

Java is a high-level, multi-platform, and object-oriented programming language, widely 
used in computing education [17]. Python, on the other hand, is a powerful, interactive, object-
oriented, and interpreted scripting language [18]. Various studies have been conducted to analyze 
the pedagogical significance of Java and Python in IP from different perspectives. However, 
none has quantitatively examined and compared these languages within the context of IP. 

The primary objective of the study presented in this article is to conduct a quantitative 
analysis of Java and Python to assess their suitability for use in IP courses. Additionally, the 
study aims to provide evidence-based recommendations for educators on the most appropriate 
programming language for teaching fundamental programming concepts to beginners, thereby 
enhancing the effectiveness of IP education. 

The novelty of this study lies in its data-driven quantitative analysis of programming 
languages for pedagogical purposes, which is uncommon in existing literature. This approach 
offers a fresh perspective on language selection, paving the way for more data-driven decision-
making in computer science education. 
Related Work: 

Numerous studies have been undertaken to examine programming languages from 
diverse angles and determine their appropriateness for IP courses. Hijón-Neira et al. [19] 
analysed the effectiveness of introducing foundational programming concepts to first-time 
programming students using a Java-based visual execution environment. In the study, sixty-three 
students participated. According to the findings, students’ comprehension of basic programming 
concepts significantly improved when using the visual execution environment, compared to a 
control group that did not receive instruction with the visual tool. 

Ling et al. [20] compared and analyzed the effects of learning programming with Python 
and Java. Two groups of students participated in the study: one group was taught Java, while the 
other group learned Python. During the analysis, learning performance, motivation, and 
maladaptive cognition were compared to evaluate the differences. The results indicated that 
motivation, computer programming self-efficacy, and the impact of maladaptive cognition on 
learning performance were significantly higher in the Python group. 

A study on the selection of programming languages [21] analysed the implementation of 
novice algorithms in IP courses using C++ and Java. For the study, 200 algorithms were 
selected, and their implementation in C++ and Java was evaluated based on difficulty, effort, 
and time. The results indicated that Java is more complex than C++ and requires more effort 
to implement novice programming algorithms. Furthermore, the time needed to translate the 
selected algorithms into C++ was lower than for Java. The study concluded that C++ is more 
suitable than Java for implementing IP algorithms and is generally more appropriate for IP 
courses. 

Balreira et al. [22] analysed the impact of incorporating the C and Python programming 
languages in IP courses tailored for engineering students. The study involved the university's IP 
course and organized students into two groups based on their use of either C or Python. Student 
data were collected and assessed, incorporating information from questionnaires, assignment 
scores, and inquiries posted by students in the online class forums. This experimental approach 
was replicated over two consecutive semesters. The primary findings indicated a preference for 
Python in terms of students' confidence in learning, motivation, and their overall decisions on 
programming design. In contrast, C was favored for its ease in understanding data structures. 
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Xu and Frydenberg [23] presented the implementation of an introductory Python course 
and enhanced its significance by incorporating topics related to data analytics. The research 
encompassed a survey of 64 undergraduate students enrolled in the course, to understand their 
perceived importance of acquiring Python programming skills as they enter the workforce. The 
study also aimed to explore how course design and various student characteristics influenced 
their perceptions of learning and performance. The findings revealed a high level of motivation 
among students to enroll in Python programming courses, driven by the desire to enhance their 
prospects in the expanding field of data analytics. Additionally, the study uncovered that students 
with no prior programming experience outperformed those with some background in 
programming. This suggests that Python proves to be a suitable choice as a first programming 
language in the context of Information Systems. 

Naveed [24] analysed C and C++ by comparing functionally equivalent programs. For 
the study, 225 algorithms were considered, and their equivalent programs were evaluated by 
comparing difficulty, effort, time, and delivered bugs. The study found that C required less 
effort, and time, and resulted in fewer bugs than C++. However, C++ was found to be less 
difficult than C when developing programs based on the sample algorithms. 

Laura-Ochoa and Bedregal-Alpaca [25] conducted a study aimed at enhancing learning 
in an introductory Python programming course by leveraging programming tools, including 
PSeInt, CodingBat, and the turtle graphic library. Employing a quasi-experimental 
methodological design, the study strategically placed the experimental and control groups in 
separate academic semesters. The control group comprised 41 students, while the experimental 
group consisted of 36 students. Results demonstrated that the integration of supportive 
programming tools, such as PSeInt, CodingBat, and the Python turtle graphic library, along with 
the infusion of computational thinking practices, led to superior learning outcomes for the 
experimental group. The study's findings underscored that utilizing appropriate tools, which 
facilitate the comprehension of programming concepts and foster skills development related to 
computational thinking (such as abstraction and algorithmic thinking), could enhance both 
student performance and motivation in programming courses. 

Viduka et al. [26] conducted a study comparing Java and Python to determine which 
language is more suitable for mastering programming by examining their characteristics. The 
study suggested that Python, with its less steep learning curve, is the optimal choice for mastering 
programming. Additionally, the study indicated that Java is more convenient when used as a 
second language. 
Material and Methods: 

The main objective of this study is the quantitative analysis and comparison of the 
suitability of Java and Python for teaching elementary programming concepts in an introductory 
course. To achieve this objective, the study employs the research methodology outlined in Figure 
1. 

The study began with the search for novice programming algorithms. Initially, 297 
algorithms were identified, and 210 of them were selected for the study. The programming code 
in Java and Python for these chosen algorithms was generated using a high-level code generator 
[18], with consultation from two programming experts. The extracted code was then organized 
as the programming corpus. Afterward, it underwent refinement by removing redundant code, 
resulting in an updated programming corpus repository. The updated code for Java and Python 
was evaluated using (HCM) following the confirmation of Turing equivalence in terms of 
functionality for the comparable programs. 

The HCM is specifically designed to quantify program complexity from source code by 
utilizing the details of operators and operands [27] as elementary information. The elementary 
information needed to be gathered from the source program to calculate Halstead complexity 
is as follows [28]: 
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Figure 1. Research Methodology 

𝑁1 = Total number of operators 

𝑁2 = Total number of operands 

η1 = number of unique (distinct) operators 

η2 = number of unique (distinct) operands 
The HCM was employed to calculate volume, difficulty, effort, time, and the number of 

bugs associated with the implementation of the algorithms in Java and Python, using elementary 
information. Volume represents the information content of the program and defines the scale 
of algorithm implementation. The following formula is used to calculate the volume 

𝑉𝑜𝑙𝑢𝑚𝑒 = (𝑁1 + 𝑁2) ∗  𝑙𝑜𝑔2 (η1 + η2) 
The program’s level of difficulty is directly related to the count of distinct operators 

within it, serving as an indicator of the challenge involved in writing or comprehending the 
program. To compute the difficulty, the following formula is employed 

𝐷𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦 =  (
η1

2
) × (

𝑁2

η2
) 

Effort quantifies the degree of cognitive activity required to transform an existing 
algorithm into an implementation in a specified programming language. This effort 
measurement corresponds to the actual coding time and can be calculated using the following 
formula 

𝐸𝑓𝑓𝑜𝑟𝑡𝑠 = 𝐷𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦 × Volume =  (
η1

2
)  × (

𝑁2

η2
) × ((𝑁1 + 𝑁2) ×  𝑙𝑜𝑔2(η1 +  η2)) 
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The time required for implementing or comprehending a program is directly related to 
the effort involved. Empirical experiments can be employed to calibrate this relationship. 
Halstead discovered that dividing the effort by 18 provides an approximate estimation of time 
in seconds. The following formula is used to calculate the time. 

𝑇𝑖𝑚𝑒 =
𝐸𝑓𝑓𝑜𝑟𝑡𝑠

18
 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 =  

(
η1

2
) × (

𝑁2

η2
)  × ((𝑁1 +  𝑁2) × 𝑙𝑜𝑔2(η1 +  η2))

18
 

The number of delivered bugs is associated with the overall complexity of the software and 
serves as an estimate of the number of errors in the implementation. The following formula is 
used to calculate the time. 

𝐵𝑢𝑔𝑠 =
𝐸𝑓𝑓𝑜𝑟𝑡𝑠

2

3

3000
=  

((
η1

2
)  × (

𝑁2

η2
)  ×  ((𝑁1 +  𝑁2) ×  𝑙𝑜𝑔2(η1 + η2)))

2

3

3000
 

Python (3.4) was used to analyze the Halstead complexity of the sampled programs using 
the formulas mentioned above. Lizard, a simple, straightforward, and ready-to-use Python 
library, was used to analyze Java programs, while Radon, a popular Python library, was utilized 
for Python programs. The findings acquired from the analysis of generated programs in Java 
and Python using HCM were subsequently subjected to statistical analysis performed in SPSS 
(version: 25), and the resulting outcomes were visualized using the R package (4.2.3). 
Results:  
  To achieve the study's objective, 200 algorithms were implemented in both Java and 
Python over two phases. In the first phase, elementary analysis was performed, including lexical 
analysis to identify operators, distinct operators, operands, and distinct operands in each 
program. The results of the elementary analysis are presented in Table 1. 

Table 1. Result of Elementary Analysis 

Elements Language Mean Median Std. Dev Min Max Skewness Kurtosis 

Operators 
Java 86.58 81.00 33.84 33.00 244.00 1.34 3.20 

Python 47.79 41.00 26.52 9.00 172.00 1.44 3.31 
Distinct 

Operators 
Java 30.55 31.00 4.48 20.00 43.00 0.05 -0.38 

Python 16.34 16.00 4.93 5.00 28.00 0.32 -0.58 

Operands 
Java 37.78 34.00 21.21 8.00 156.00 2.02 7.56 

Python 35.99 33.00 20.93 4.00 139.00 1.43 3.34 
Distinct 

Operands 
Java 12.70 12.00 4.07 4.00 26.00 0.65 0.54 

Python 11.78 11.00 4.44 2.00 27.00 0.62 0.42 

The descriptive statistics presented in Table 1 indicate that, in each statistical measure, Python 
programs were significantly smaller than their equivalent Java programs. This observation 
strongly suggests that Python supports concise programming. For a more illustrative 
representation, the results of the elementary analysis are depicted in line charts and can be seen 
in Figure 2. 

The line charts reveal a clear contrast between Java and Python programs in terms of 
operator and operand usage. Java programs exhibit a broader range of operator and operand 
counts with significant variability and several extreme peaks, indicating a more complex and 
diverse set of operations and operands. In contrast, Python programs show smoother, more 
consistent trends with lower counts and less variability, reflecting a minimalistic and efficient 
approach to both operators and operands. This pattern highlights the complexity of Java 
compared to Python’s streamlined coding style. The results obtained from the elementary 
analysis are used in the second phase of the analysis, in which the volume, difficulty, effort, time, 
and bugs were calculated for the programs in the updated programming corpus with the HCM. 
The results obtained from the analysis are shown in Table 2. 
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Figure 2. Line Charts of Elementary Analysis 

Table 2. Result of Detailed Analysis 

Elements Language Mean Median Std. Dev Min Max Skewness Kurtosis 

Volume 
Java 683.71 622.67 322.17 206.72 2277.86 1.52 4.05 

Python 414.31 354.63 259.51 36.50 1580.48 1.37 2.67 

Difficulty 
Java 44.93 41.89 20.69 13.80 195.00 2.50 13.26 

Python 25.18 22.67 13.61 4.67 71.38 1.03 0.94 

Efforts 
Java 16195.92 10238.66 20378.30 1033.58 170839.18 4.55 28.67 

Python 10098.09 5930.41 13472.03 72.99 109843.21 3.64 18.96 

Time 
Java 899.77 568.82 1132.13 57.42 9491.07 4.55 28.67 

Python 561.00 329.47 748.45 4.06 6102.40 3.64 18.96 

Bugs 
Java 0.19 0.16 0.14 0.03 1.03 2.61 11.25 

Python 0.14 0.11 0.11 0.01 0.76 2.07 6.47 

The analysis results obtained using HCM reveal that, across all statistical measures, Python 
programs exhibit lower volume, difficulty, effort, time, and bugs compared to Java programs. 
To provide a clearer illustration, the results are visualized using bean plots generated with the R 
package (version 4.2.3) and presented in Figure 3. 

The results of both phases of the study undergo further statistical analysis. In the 
statistical analysis, the results are initially assessed for normality using the Kolmogorov-Smirnov 
and Shapiro-Wilk tests, and the findings are presented in Table 3. 
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Figure 3. Bean Plots of Detailed Results 

Table 3. Result of Normality Test 

Elements Language 
Kolmogorov-Smirnov Shapiro-Wilk 

Statistic df Sig. Statistic Df Sig. 

Operators Java 0.09 210.00 < .05 0.92 210.00 < .05 
Python 0.12 210.00 < .05 0.90 210.00 < .05 

Distinct 
Operators 

Java 0.06 210.00 0.08 0.99 210.00 0.18 
Python 0.10 210.00 < .05 0.98 210.00 < .05 

Operands Java 0.11 210.00 < .05 0.86 210.00 < .05 
Python 0.10 210.00 < .05 0.91 210.00 < .05 

Distinct 
Operands 

Java 0.10 210.00 < .05 0.97 210.00 < .05 
Python 0.09 210.00 < .05 0.97 210.00 < .05 

Volume Java 0.09 210.00 < .05 0.90 210.00 < .05 
Python 0.11 210.00 < .05 0.90 210.00 < .05 

Difficulty Java 0.11 210.00 < .05 0.86 210.00 < .05 
Python 0.10 210.00 < .05 0.91 210.00 < .05 

Effort Java 0.23 210.00 < .05 0.59 210.00 < .05 
Python 0.23 210.00 < .05 0.64 210.00 < .05 

Time Java 0.23 210.00 < .05 0.59 210.00 < .05 
Python 0.23 210.00 < .05 0.64 210.00 < .05 

Bugs Java 0.13 210.00 < .05 0.79 210.00 < .05 
Python 0.14 210.00 < .05 0.83 210.00 < .05 

Non-normality is observed in most of the results. Therefore, to conduct further analysis 
and comparisons, the non-parametric Mann–Whitney U test is employed. A Mann-Whitney U 
test has revealed a statistically significant difference between Java and Python in terms of 
operators, distinct operators, distinct operands, volume, effort, time, and bugs within 
comparable programs. However, no significant difference was observed in operands between 
comparable Java and Python programs. Specifically, for operators (U = 6842.50; Z = -12.23; p 
< .05), distinct operators (U = 800.50; Z = -17.10; p < .05), operands (U = 20593.50; Z = -1.17; 
p = .24), distinct operands (U = 19089.50; Z = -2.39; p = 0.02), volume (U = 10182.50; Z = -
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9.54; p < 0.05), difficulty (U = 7999.50; Z = -11.30; p < 0.05), effort (U = 15135.00; Z = -5.56; 
p < 0.05), time (U = 15135.50; Z = -5.56; p < 0.05), and bugs (U = 15175.50; Z = -5.53; p < 
0.05). 
Discussion: 

Programming has become of paramount significance and garnered widespread 
popularity on a global scale in the realm of education [29]. Delivering core programming 
principles to novices poses a formidable challenge, prompting the creation of various IP 
languages and platforms tailored to facilitate this learning journey [30]. Educators teaching 
programming subjects frequently grapple with the question of which programming language to 
introduce first [31]. This study was conducted to quantitatively analyze the suitability of Java and 
Python as IP languages. It examined the implementation of novice programming algorithms in 
both languages. The study commenced by identifying operators, distinct operators, operands, 
and distinct operands within programs developed in Java and Python. The average number of 
total operators in Java programs was 86.58, compared to 47.79 in Python programs, indicating 
a percentage difference of 57.74% in operators between Java and Python, demonstrating that 
Python requires fewer operators for implementing the same algorithms. Additionally, there was 
a 60.61% difference in distinct operators, a 4.85% difference in operands, and a 7.52% difference 
in distinct operands, further emphasizing that Python requires less code in terms of distinct 
operators, operands, and distinct operands compared to Java for novice programming algorithm 
implementations. A Mann-Whitney U test revealed a statistical difference in operators, distinct 
operators, and distinct operands, indicating that Java and Python differ significantly in these 
metrics, with Python being superior for novice programming algorithm implementations. The 
average volume of Java programs was 683.71, while it was 414.31 for Python programs, resulting 
in a percentage difference of 40.07. A Mann-Whitney U test identified a statistically significant 
difference in program volume between Java and Python, indicating that Python programs are 
less complex and have a smaller code size compared to their Java counterparts. Regarding 
program difficulty, the average for Java was 44.93, whereas it was 25.18 for Python, resulting in 
a percentage difference of 56.34. The Mann-Whitney U test found a significant statistical 
difference in program difficulty, signifying that Python programs are less challenging, more 
comprehensible, and easier to manage. For program effort, Java programs had an average effort 
of 16195.92, while Python programs had an average of 10098.09, with a percentage difference 
of 46.38. The Mann-Whitney U test detected a statistical difference in effort, indicating that 
Python programs require less effort for development and maintenance. In terms of time, Java 
programs had an average time of 899.77, while Python programs required 561, resulting in a 
percentage difference of 46.38. The Mann-Whitney U test demonstrated a statistical difference 
in the time required for development and maintenance, with Python programs being more time-
efficient. Regarding the number of bugs, Java programs had an average of 0.19, while Python 
programs had an average of 0.14, resulting in a percentage difference of 30.30. The Mann-
Whitney U test identified a statistical difference in the number of bugs, suggesting that Python 
programs tend to have fewer bugs. The study's findings have practical implications, providing 
institutions and instructors with evidence-based recommendations for selecting a programming 
language for introductory courses. By quantitatively comparing Python and Java using HCM, 
the study highlights Python's advantages, including reduced code complexity, less development 
effort, and fewer bugs. These results suggest that Python is better suited for teaching novices, 
as it can simplify the learning process, reduce cognitive load, and improve student performance 
in IP classes. Consequently, adopting Python may enhance student engagement, decrease 
dropout rates, and increase the overall effectiveness of programming education. The overall 
analysis clearly indicates that Python is superior to Java for implementing novice programming 
algorithms. Python's versatility, extensive libraries, and simple, readable syntax contribute to its 
suitability for IP courses. While many studies have explored programming language selection 
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for novice courses, this study stands out for its novel approach of comparing Java and Python 
using quantitative metrics. However, this study has several limitations and validity constraints: 
(i) it is limited to comparing only Java and Python, excluding other languages like C, C++, and 
JavaScript that might be more effective for beginners; (ii) the 210 algorithms used as the sample 
may not fully represent all possible programming scenarios or outcomes; (iii) not all 
programming concepts were covered by the methods used, which may limit the generalizability 
of the results; (iv) the study did not consider how the varying skill levels and backgrounds of 
novice programmers might influence their ability to learn a particular language; (v) relying solely 
on HCM may not provide a comprehensive analysis, and additional metrics, qualitative 
assessments, or expert opinions could be necessary; (vi) the conclusions drawn may not be 
applicable to other programming languages or paradigms; (vii) variations in learners' 
backgrounds, such as age, prior programming experience, or cognitive abilities, were not 
considered, which could impact the effectiveness of a language for beginners; (viii) the results 
may only apply to the controlled setting of the study and might not reflect real-world 
programming environments; (ix) the specific context of the programming course was not taken 
into account, which could affect the appropriateness of a programming language for novice 
learners; and (x) the study does not address how different teaching approaches, such as pair 
programming or project-based learning, might influence the effectiveness of a programming 
language in an educational setting. The study recommends that institutions adopt Python as the 
primary language for IP courses due to its lower complexity, reduced development effort, and 
fewer bugs compared to Java. Python can increase student engagement, reduce dropout rates, 
and improve learning outcomes, as it is beginner-friendly and facilitates a better understanding 
of programming concepts. Curricula should focus on languages with lower learning curves, such 
as Python, to build students' confidence and ease their transition to more advanced topics. As 
part of future work, i) more diverse and extensive algorithms will be added to ensure a broader 
coverage of the programming tasks, ii) more programming shall be added in the study, iii) 
validation of findings with human judgment will be added for deep analysis, iv) additional 
metrics shall be incorporated to provide accurate assessment of programming languages, and v) 
a comprehensive and extended longitudinal study will be undertaken to track the evolution of 
programming languages over time and to assess their suitability for beginners. 
Conclusion: 

Programming plays a pivotal role in the field of computing; however, learning 
programming is a complex intellectual undertaking. The selection of the initial programming 
language for an introductory course has a lasting impact on future dimensions and aptitudes. 
Novice programmers often grapple with understanding IP concepts, contributing to the 
challenges associated with learning to program. The decision to choose the first programming 
language is typically grounded in empirical evidence. The study presented in this article 
conducted an analysis comparing Java and Python to assess their suitability for use in IP courses. 
This assessment involved evaluating the programs designed for a total of 210 elementary 
programming algorithms using HCM. The study's findings indicate that Python is better suited 
for IP when compared to Java. This preference stems from Python's reduced reliance on lexical 
elements and its ability to minimize the effort, time, difficulty, and errors associated with novice 
program implementation. In conclusion, the study suggests that for IP courses, Python is more 
suitable than Java for teaching novice programming concepts. In the future, additional 
algorithms will be incorporated into the study, and various programming languages will be 
employed to facilitate a more comprehensive analysis. 
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