
 International Journal of Innovations in Science & Technology

Dec 2024|Vol 6 | Issue 4 Page |1956

Pedagogical Suitability: A Software Metrics-Based Analysis of
Java and Python

 Muhammad Shumail Naveed1
1Department of Computer Science & Information Technology, University of Balochistan,
Quetta, Pakistan.
*Correspondence: dr.shumail.cs@um.uob.edu.pk
Citation|Naveed. M. S, “Pedagogical Suitability: A Software Metrics-Based Analysis of Java
and Python”, IJIST, Vol. 06 Issue. 04 pp 1956-1967, Dec 2024
Received| Oct 15, 2024 Revised| Nov 23, 2024 Accepted| Nov 28, 2024 Published| Dec
01, 2024.

Programming is one of the foundational skills essential for
computer science professionals, yet attaining proficiency in this
skill is widely acknowledged as a formidable challenge. The
intrinsic complexity of programming is often cited as the primary
factor contributing to its difficulty. The choice of programming
language for IP courses typically relies on past experiences and
empirical evidence, rather than on a quantitative basis, which can
affect its effectiveness and suitability for novice learners. The
study presented in this article conducted a quantitative analysis of
Java and Python to assess their suitability for use in IP courses.
The analysis involved evaluating programs based on a total of 210
elementary programming algorithms using HCM. The results of
the study indicated that Python programs, compared to Java
programs, have a reduced reliance on lexical elements, are less
complex, and have a smaller code size. Additionally, Python was
found to produce less complex programs and required less effort
and time for development and maintenance. Moreover, Python
programs tend to have fewer bugs. Overall, the study concluded
that Python is better suited for IP courses than Java. The novelty
of this study lies in its quantitative comparison of Java and
Python using HCM, revealing that Python is more appropriate
for IP courses due to its lower complexity, reduced development
effort, and fewer bugs.

Key to Read

Science,
Technology,
Engineering,
and
Mathematics

Introductory
Programming

Halstead
Complexity
Metrics

STEM

IP

HCM

Keywords: IP; Programming Language Comparison, HCM; Java; Python.

 International Journal of Innovations in Science & Technology

Dec 2024|Vol 6 | Issue 4 Page |1957

Introduction:
Programming constitutes the core of computer science, and acquiring proficiency in

programming is crucial for students in information science, computer science, and electrical
engineering [1]. The significance of programming languages is underscored by the fact that
programming skills are essential not only for computer science majors but also desirable for
students pursuing disciplines beyond computer science [2].

The significance and global popularity of programming education have grown
significantly. The cognition of programming logical reasoning, algebra, and vocabulary skills—
predicts programming performance following an introductory computing course [3]. Due to the
rising significance of programming in the professional realm, there has been a surge in the
demand for programming education.

An IP course, often referred to as CS1 [4], is critical for students pursuing STEM degrees
[5]. In a foundational programming course, novice students are introduced to a range of
concepts that typically encompass problem-solving skills, fundamental programming principles,
as well as the syntax and semantics of a programming language. Additionally, they learn how to
employ this programming language to craft solutions.

In pedagogical environments, it is widely recognized that the programming environment
exerts a significant influence on learners' interactions with programming, as well as on the initial
learning outcomes in computer science classrooms. Teaching programming has become
increasingly demanding, particularly in introductory courses that often have large enrolments.
Developing proficiency in writing functional programs is a cognitive skill that many novice
programmers struggle to acquire. Equally challenging is the task of assessing students' abilities
in this area. Studies have indicated that students must first learn to read and comprehend
programs before they can effectively learn to write them [6].

Acquiring programming skills is a rewarding career pursuit, yet mastering them proves
challenging [7] and demanding, as substantiated by numerous studies. In the process of learning
to program, beginners should emphasize the development of problem-solving abilities alongside
gaining a deep understanding of programming syntax and semantics [8]. For the majority of
students, embarking on their initial journey into programming proves to be a formidable
challenge [9]. The abstract structure, logic, negative perceptions, and anxiety associated with
programming are viewed as challenges for novice programmers [10]. Anxiety and frustration
frequently manifest when learners encounter challenges in writing programs [11].

A multitude of solutions have been developed to assist students in acquiring
fundamental programming skills. Nevertheless, there remains a shortage of solutions addressing
the challenges students encounter while learning programming, primarily due to the abstract
nature of programming, misconceptions about programming concepts, and a lack of motivation
[12].

The primary objective of teaching programming is to help students become proficient
in writing computer programs that solve problems. These problems may stem from several
factors, including the abstract concepts implied by programming, the problem-solving and
problem-decomposition skills required, the fact that many students have never had the
opportunity to practice computational thinking or programming, and the requirement for
students to quickly learn the syntax, semantics, and structure of a new, unfamiliar language [13].
Significant advancements have been made in tools, methods, and approaches designed for
teaching and learning IP [14], but the rates of dropout and failure in these courses remain notably
high [15][16].

The initial choice of a programming language exerts a lasting influence on a
programmer's development capabilities. The selection of a programming language for teaching
IP has been a contentious issue within the computer science and information systems
communities. This decision is guided by several criteria, including compatibility with educational

 International Journal of Innovations in Science & Technology

Dec 2024|Vol 6 | Issue 4 Page |1958

objectives, ease of learning, support for fundamental concepts, industry relevance, institutional
preferences, resource availability, support for more advanced courses, and the ability to inspire
students. While these criteria are undoubtedly useful, they may lead to oversimplification,
limiting exposure to complex concepts and reducing the breadth of students' programming
skills. A principally quantitative approach that formally analyses the suitability of programming
languages for a first programming course would be more beneficial.

Java is a high-level, multi-platform, and object-oriented programming language, widely
used in computing education [17]. Python, on the other hand, is a powerful, interactive, object-
oriented, and interpreted scripting language [18]. Various studies have been conducted to analyze
the pedagogical significance of Java and Python in IP from different perspectives. However,
none has quantitatively examined and compared these languages within the context of IP.

The primary objective of the study presented in this article is to conduct a quantitative
analysis of Java and Python to assess their suitability for use in IP courses. Additionally, the
study aims to provide evidence-based recommendations for educators on the most appropriate
programming language for teaching fundamental programming concepts to beginners, thereby
enhancing the effectiveness of IP education.

The novelty of this study lies in its data-driven quantitative analysis of programming
languages for pedagogical purposes, which is uncommon in existing literature. This approach
offers a fresh perspective on language selection, paving the way for more data-driven decision-
making in computer science education.
Related Work:

Numerous studies have been undertaken to examine programming languages from
diverse angles and determine their appropriateness for IP courses. Hijón-Neira et al. [19]
analysed the effectiveness of introducing foundational programming concepts to first-time
programming students using a Java-based visual execution environment. In the study, sixty-three
students participated. According to the findings, students’ comprehension of basic programming
concepts significantly improved when using the visual execution environment, compared to a
control group that did not receive instruction with the visual tool.

Ling et al. [20] compared and analyzed the effects of learning programming with Python
and Java. Two groups of students participated in the study: one group was taught Java, while the
other group learned Python. During the analysis, learning performance, motivation, and
maladaptive cognition were compared to evaluate the differences. The results indicated that
motivation, computer programming self-efficacy, and the impact of maladaptive cognition on
learning performance were significantly higher in the Python group.

A study on the selection of programming languages [21] analysed the implementation of
novice algorithms in IP courses using C++ and Java. For the study, 200 algorithms were
selected, and their implementation in C++ and Java was evaluated based on difficulty, effort,
and time. The results indicated that Java is more complex than C++ and requires more effort
to implement novice programming algorithms. Furthermore, the time needed to translate the
selected algorithms into C++ was lower than for Java. The study concluded that C++ is more
suitable than Java for implementing IP algorithms and is generally more appropriate for IP
courses.

Balreira et al. [22] analysed the impact of incorporating the C and Python programming
languages in IP courses tailored for engineering students. The study involved the university's IP
course and organized students into two groups based on their use of either C or Python. Student
data were collected and assessed, incorporating information from questionnaires, assignment
scores, and inquiries posted by students in the online class forums. This experimental approach
was replicated over two consecutive semesters. The primary findings indicated a preference for
Python in terms of students' confidence in learning, motivation, and their overall decisions on
programming design. In contrast, C was favored for its ease in understanding data structures.

 International Journal of Innovations in Science & Technology

Dec 2024|Vol 6 | Issue 4 Page |1959

Xu and Frydenberg [23] presented the implementation of an introductory Python course
and enhanced its significance by incorporating topics related to data analytics. The research
encompassed a survey of 64 undergraduate students enrolled in the course, to understand their
perceived importance of acquiring Python programming skills as they enter the workforce. The
study also aimed to explore how course design and various student characteristics influenced
their perceptions of learning and performance. The findings revealed a high level of motivation
among students to enroll in Python programming courses, driven by the desire to enhance their
prospects in the expanding field of data analytics. Additionally, the study uncovered that students
with no prior programming experience outperformed those with some background in
programming. This suggests that Python proves to be a suitable choice as a first programming
language in the context of Information Systems.

Naveed [24] analysed C and C++ by comparing functionally equivalent programs. For
the study, 225 algorithms were considered, and their equivalent programs were evaluated by
comparing difficulty, effort, time, and delivered bugs. The study found that C required less
effort, and time, and resulted in fewer bugs than C++. However, C++ was found to be less
difficult than C when developing programs based on the sample algorithms.

Laura-Ochoa and Bedregal-Alpaca [25] conducted a study aimed at enhancing learning
in an introductory Python programming course by leveraging programming tools, including
PSeInt, CodingBat, and the turtle graphic library. Employing a quasi-experimental
methodological design, the study strategically placed the experimental and control groups in
separate academic semesters. The control group comprised 41 students, while the experimental
group consisted of 36 students. Results demonstrated that the integration of supportive
programming tools, such as PSeInt, CodingBat, and the Python turtle graphic library, along with
the infusion of computational thinking practices, led to superior learning outcomes for the
experimental group. The study's findings underscored that utilizing appropriate tools, which
facilitate the comprehension of programming concepts and foster skills development related to
computational thinking (such as abstraction and algorithmic thinking), could enhance both
student performance and motivation in programming courses.

Viduka et al. [26] conducted a study comparing Java and Python to determine which
language is more suitable for mastering programming by examining their characteristics. The
study suggested that Python, with its less steep learning curve, is the optimal choice for mastering
programming. Additionally, the study indicated that Java is more convenient when used as a
second language.
Material and Methods:

The main objective of this study is the quantitative analysis and comparison of the
suitability of Java and Python for teaching elementary programming concepts in an introductory
course. To achieve this objective, the study employs the research methodology outlined in Figure
1.

The study began with the search for novice programming algorithms. Initially, 297
algorithms were identified, and 210 of them were selected for the study. The programming code
in Java and Python for these chosen algorithms was generated using a high-level code generator
[18], with consultation from two programming experts. The extracted code was then organized
as the programming corpus. Afterward, it underwent refinement by removing redundant code,
resulting in an updated programming corpus repository. The updated code for Java and Python
was evaluated using (HCM) following the confirmation of Turing equivalence in terms of
functionality for the comparable programs.

The HCM is specifically designed to quantify program complexity from source code by
utilizing the details of operators and operands [27] as elementary information. The elementary
information needed to be gathered from the source program to calculate Halstead complexity
is as follows [28]:

 International Journal of Innovations in Science & Technology

Dec 2024|Vol 6 | Issue 4 Page |1960

Figure 1. Research Methodology

𝑁1 = Total number of operators

𝑁2 = Total number of operands

η1 = number of unique (distinct) operators

η2 = number of unique (distinct) operands
The HCM was employed to calculate volume, difficulty, effort, time, and the number of

bugs associated with the implementation of the algorithms in Java and Python, using elementary
information. Volume represents the information content of the program and defines the scale
of algorithm implementation. The following formula is used to calculate the volume

𝑉𝑜𝑙𝑢𝑚𝑒 = (𝑁1 + 𝑁2) ∗ 𝑙𝑜𝑔2 (η1 + η2)
The program’s level of difficulty is directly related to the count of distinct operators

within it, serving as an indicator of the challenge involved in writing or comprehending the
program. To compute the difficulty, the following formula is employed

𝐷𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦 = (
η1

2
) × (

𝑁2

η2
)

Effort quantifies the degree of cognitive activity required to transform an existing
algorithm into an implementation in a specified programming language. This effort
measurement corresponds to the actual coding time and can be calculated using the following
formula

𝐸𝑓𝑓𝑜𝑟𝑡𝑠 = 𝐷𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦 × Volume = (
η1

2
) × (

𝑁2

η2
) × ((𝑁1 + 𝑁2) × 𝑙𝑜𝑔2(η1 + η2))

 International Journal of Innovations in Science & Technology

Dec 2024|Vol 6 | Issue 4 Page |1961

The time required for implementing or comprehending a program is directly related to
the effort involved. Empirical experiments can be employed to calibrate this relationship.
Halstead discovered that dividing the effort by 18 provides an approximate estimation of time
in seconds. The following formula is used to calculate the time.

𝑇𝑖𝑚𝑒 =
𝐸𝑓𝑓𝑜𝑟𝑡𝑠

18
 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 =

(
η1

2
) × (

𝑁2

η2
) × ((𝑁1 + 𝑁2) × 𝑙𝑜𝑔2(η1 + η2))

18

The number of delivered bugs is associated with the overall complexity of the software and
serves as an estimate of the number of errors in the implementation. The following formula is
used to calculate the time.

𝐵𝑢𝑔𝑠 =
𝐸𝑓𝑓𝑜𝑟𝑡𝑠

2

3

3000
=

((
η1

2
) × (

𝑁2

η2
) × ((𝑁1 + 𝑁2) × 𝑙𝑜𝑔2(η1 + η2)))

2

3

3000

Python (3.4) was used to analyze the Halstead complexity of the sampled programs using
the formulas mentioned above. Lizard, a simple, straightforward, and ready-to-use Python
library, was used to analyze Java programs, while Radon, a popular Python library, was utilized
for Python programs. The findings acquired from the analysis of generated programs in Java
and Python using HCM were subsequently subjected to statistical analysis performed in SPSS
(version: 25), and the resulting outcomes were visualized using the R package (4.2.3).
Results:
 To achieve the study's objective, 200 algorithms were implemented in both Java and
Python over two phases. In the first phase, elementary analysis was performed, including lexical
analysis to identify operators, distinct operators, operands, and distinct operands in each
program. The results of the elementary analysis are presented in Table 1.

Table 1. Result of Elementary Analysis

Elements Language Mean Median Std. Dev Min Max Skewness Kurtosis

Operators
Java 86.58 81.00 33.84 33.00 244.00 1.34 3.20

Python 47.79 41.00 26.52 9.00 172.00 1.44 3.31
Distinct

Operators
Java 30.55 31.00 4.48 20.00 43.00 0.05 -0.38

Python 16.34 16.00 4.93 5.00 28.00 0.32 -0.58

Operands
Java 37.78 34.00 21.21 8.00 156.00 2.02 7.56

Python 35.99 33.00 20.93 4.00 139.00 1.43 3.34
Distinct

Operands
Java 12.70 12.00 4.07 4.00 26.00 0.65 0.54

Python 11.78 11.00 4.44 2.00 27.00 0.62 0.42

The descriptive statistics presented in Table 1 indicate that, in each statistical measure, Python
programs were significantly smaller than their equivalent Java programs. This observation
strongly suggests that Python supports concise programming. For a more illustrative
representation, the results of the elementary analysis are depicted in line charts and can be seen
in Figure 2.

The line charts reveal a clear contrast between Java and Python programs in terms of
operator and operand usage. Java programs exhibit a broader range of operator and operand
counts with significant variability and several extreme peaks, indicating a more complex and
diverse set of operations and operands. In contrast, Python programs show smoother, more
consistent trends with lower counts and less variability, reflecting a minimalistic and efficient
approach to both operators and operands. This pattern highlights the complexity of Java
compared to Python’s streamlined coding style. The results obtained from the elementary
analysis are used in the second phase of the analysis, in which the volume, difficulty, effort, time,
and bugs were calculated for the programs in the updated programming corpus with the HCM.
The results obtained from the analysis are shown in Table 2.

 International Journal of Innovations in Science & Technology

Dec 2024|Vol 6 | Issue 4 Page |1962

Figure 2. Line Charts of Elementary Analysis

Table 2. Result of Detailed Analysis

Elements Language Mean Median Std. Dev Min Max Skewness Kurtosis

Volume
Java 683.71 622.67 322.17 206.72 2277.86 1.52 4.05

Python 414.31 354.63 259.51 36.50 1580.48 1.37 2.67

Difficulty
Java 44.93 41.89 20.69 13.80 195.00 2.50 13.26

Python 25.18 22.67 13.61 4.67 71.38 1.03 0.94

Efforts
Java 16195.92 10238.66 20378.30 1033.58 170839.18 4.55 28.67

Python 10098.09 5930.41 13472.03 72.99 109843.21 3.64 18.96

Time
Java 899.77 568.82 1132.13 57.42 9491.07 4.55 28.67

Python 561.00 329.47 748.45 4.06 6102.40 3.64 18.96

Bugs
Java 0.19 0.16 0.14 0.03 1.03 2.61 11.25

Python 0.14 0.11 0.11 0.01 0.76 2.07 6.47

The analysis results obtained using HCM reveal that, across all statistical measures, Python
programs exhibit lower volume, difficulty, effort, time, and bugs compared to Java programs.
To provide a clearer illustration, the results are visualized using bean plots generated with the R
package (version 4.2.3) and presented in Figure 3.

The results of both phases of the study undergo further statistical analysis. In the
statistical analysis, the results are initially assessed for normality using the Kolmogorov-Smirnov
and Shapiro-Wilk tests, and the findings are presented in Table 3.

 International Journal of Innovations in Science & Technology

Dec 2024|Vol 6 | Issue 4 Page |1963

Figure 3. Bean Plots of Detailed Results

Table 3. Result of Normality Test

Elements Language
Kolmogorov-Smirnov Shapiro-Wilk

Statistic df Sig. Statistic Df Sig.

Operators Java 0.09 210.00 < .05 0.92 210.00 < .05
Python 0.12 210.00 < .05 0.90 210.00 < .05

Distinct
Operators

Java 0.06 210.00 0.08 0.99 210.00 0.18
Python 0.10 210.00 < .05 0.98 210.00 < .05

Operands Java 0.11 210.00 < .05 0.86 210.00 < .05
Python 0.10 210.00 < .05 0.91 210.00 < .05

Distinct
Operands

Java 0.10 210.00 < .05 0.97 210.00 < .05
Python 0.09 210.00 < .05 0.97 210.00 < .05

Volume Java 0.09 210.00 < .05 0.90 210.00 < .05
Python 0.11 210.00 < .05 0.90 210.00 < .05

Difficulty Java 0.11 210.00 < .05 0.86 210.00 < .05
Python 0.10 210.00 < .05 0.91 210.00 < .05

Effort Java 0.23 210.00 < .05 0.59 210.00 < .05
Python 0.23 210.00 < .05 0.64 210.00 < .05

Time Java 0.23 210.00 < .05 0.59 210.00 < .05
Python 0.23 210.00 < .05 0.64 210.00 < .05

Bugs Java 0.13 210.00 < .05 0.79 210.00 < .05
Python 0.14 210.00 < .05 0.83 210.00 < .05

Non-normality is observed in most of the results. Therefore, to conduct further analysis
and comparisons, the non-parametric Mann–Whitney U test is employed. A Mann-Whitney U
test has revealed a statistically significant difference between Java and Python in terms of
operators, distinct operators, distinct operands, volume, effort, time, and bugs within
comparable programs. However, no significant difference was observed in operands between
comparable Java and Python programs. Specifically, for operators (U = 6842.50; Z = -12.23; p
< .05), distinct operators (U = 800.50; Z = -17.10; p < .05), operands (U = 20593.50; Z = -1.17;
p = .24), distinct operands (U = 19089.50; Z = -2.39; p = 0.02), volume (U = 10182.50; Z = -

 International Journal of Innovations in Science & Technology

Dec 2024|Vol 6 | Issue 4 Page |1964

9.54; p < 0.05), difficulty (U = 7999.50; Z = -11.30; p < 0.05), effort (U = 15135.00; Z = -5.56;
p < 0.05), time (U = 15135.50; Z = -5.56; p < 0.05), and bugs (U = 15175.50; Z = -5.53; p <
0.05).
Discussion:

Programming has become of paramount significance and garnered widespread
popularity on a global scale in the realm of education [29]. Delivering core programming
principles to novices poses a formidable challenge, prompting the creation of various IP
languages and platforms tailored to facilitate this learning journey [30]. Educators teaching
programming subjects frequently grapple with the question of which programming language to
introduce first [31]. This study was conducted to quantitatively analyze the suitability of Java and
Python as IP languages. It examined the implementation of novice programming algorithms in
both languages. The study commenced by identifying operators, distinct operators, operands,
and distinct operands within programs developed in Java and Python. The average number of
total operators in Java programs was 86.58, compared to 47.79 in Python programs, indicating
a percentage difference of 57.74% in operators between Java and Python, demonstrating that
Python requires fewer operators for implementing the same algorithms. Additionally, there was
a 60.61% difference in distinct operators, a 4.85% difference in operands, and a 7.52% difference
in distinct operands, further emphasizing that Python requires less code in terms of distinct
operators, operands, and distinct operands compared to Java for novice programming algorithm
implementations. A Mann-Whitney U test revealed a statistical difference in operators, distinct
operators, and distinct operands, indicating that Java and Python differ significantly in these
metrics, with Python being superior for novice programming algorithm implementations. The
average volume of Java programs was 683.71, while it was 414.31 for Python programs, resulting
in a percentage difference of 40.07. A Mann-Whitney U test identified a statistically significant
difference in program volume between Java and Python, indicating that Python programs are
less complex and have a smaller code size compared to their Java counterparts. Regarding
program difficulty, the average for Java was 44.93, whereas it was 25.18 for Python, resulting in
a percentage difference of 56.34. The Mann-Whitney U test found a significant statistical
difference in program difficulty, signifying that Python programs are less challenging, more
comprehensible, and easier to manage. For program effort, Java programs had an average effort
of 16195.92, while Python programs had an average of 10098.09, with a percentage difference
of 46.38. The Mann-Whitney U test detected a statistical difference in effort, indicating that
Python programs require less effort for development and maintenance. In terms of time, Java
programs had an average time of 899.77, while Python programs required 561, resulting in a
percentage difference of 46.38. The Mann-Whitney U test demonstrated a statistical difference
in the time required for development and maintenance, with Python programs being more time-
efficient. Regarding the number of bugs, Java programs had an average of 0.19, while Python
programs had an average of 0.14, resulting in a percentage difference of 30.30. The Mann-
Whitney U test identified a statistical difference in the number of bugs, suggesting that Python
programs tend to have fewer bugs. The study's findings have practical implications, providing
institutions and instructors with evidence-based recommendations for selecting a programming
language for introductory courses. By quantitatively comparing Python and Java using HCM,
the study highlights Python's advantages, including reduced code complexity, less development
effort, and fewer bugs. These results suggest that Python is better suited for teaching novices,
as it can simplify the learning process, reduce cognitive load, and improve student performance
in IP classes. Consequently, adopting Python may enhance student engagement, decrease
dropout rates, and increase the overall effectiveness of programming education. The overall
analysis clearly indicates that Python is superior to Java for implementing novice programming
algorithms. Python's versatility, extensive libraries, and simple, readable syntax contribute to its
suitability for IP courses. While many studies have explored programming language selection

 International Journal of Innovations in Science & Technology

Dec 2024|Vol 6 | Issue 4 Page |1965

for novice courses, this study stands out for its novel approach of comparing Java and Python
using quantitative metrics. However, this study has several limitations and validity constraints:
(i) it is limited to comparing only Java and Python, excluding other languages like C, C++, and
JavaScript that might be more effective for beginners; (ii) the 210 algorithms used as the sample
may not fully represent all possible programming scenarios or outcomes; (iii) not all
programming concepts were covered by the methods used, which may limit the generalizability
of the results; (iv) the study did not consider how the varying skill levels and backgrounds of
novice programmers might influence their ability to learn a particular language; (v) relying solely
on HCM may not provide a comprehensive analysis, and additional metrics, qualitative
assessments, or expert opinions could be necessary; (vi) the conclusions drawn may not be
applicable to other programming languages or paradigms; (vii) variations in learners'
backgrounds, such as age, prior programming experience, or cognitive abilities, were not
considered, which could impact the effectiveness of a language for beginners; (viii) the results
may only apply to the controlled setting of the study and might not reflect real-world
programming environments; (ix) the specific context of the programming course was not taken
into account, which could affect the appropriateness of a programming language for novice
learners; and (x) the study does not address how different teaching approaches, such as pair
programming or project-based learning, might influence the effectiveness of a programming
language in an educational setting. The study recommends that institutions adopt Python as the
primary language for IP courses due to its lower complexity, reduced development effort, and
fewer bugs compared to Java. Python can increase student engagement, reduce dropout rates,
and improve learning outcomes, as it is beginner-friendly and facilitates a better understanding
of programming concepts. Curricula should focus on languages with lower learning curves, such
as Python, to build students' confidence and ease their transition to more advanced topics. As
part of future work, i) more diverse and extensive algorithms will be added to ensure a broader
coverage of the programming tasks, ii) more programming shall be added in the study, iii)
validation of findings with human judgment will be added for deep analysis, iv) additional
metrics shall be incorporated to provide accurate assessment of programming languages, and v)
a comprehensive and extended longitudinal study will be undertaken to track the evolution of
programming languages over time and to assess their suitability for beginners.
Conclusion:

Programming plays a pivotal role in the field of computing; however, learning
programming is a complex intellectual undertaking. The selection of the initial programming
language for an introductory course has a lasting impact on future dimensions and aptitudes.
Novice programmers often grapple with understanding IP concepts, contributing to the
challenges associated with learning to program. The decision to choose the first programming
language is typically grounded in empirical evidence. The study presented in this article
conducted an analysis comparing Java and Python to assess their suitability for use in IP courses.
This assessment involved evaluating the programs designed for a total of 210 elementary
programming algorithms using HCM. The study's findings indicate that Python is better suited
for IP when compared to Java. This preference stems from Python's reduced reliance on lexical
elements and its ability to minimize the effort, time, difficulty, and errors associated with novice
program implementation. In conclusion, the study suggests that for IP courses, Python is more
suitable than Java for teaching novice programming concepts. In the future, additional
algorithms will be incorporated into the study, and various programming languages will be
employed to facilitate a more comprehensive analysis.
Acknowledgment. The author extends gratitude to Muhammad Tahaam for invaluable
assistance in selecting algorithms and developing programs. Additionally, the author
acknowledges and appreciates the support and guidance provided by Muhammad Aayaan in the
analysis and composition of the article.

 International Journal of Innovations in Science & Technology

Dec 2024|Vol 6 | Issue 4 Page |1966

Author’s Contribution. The article is single-authored.
Conflict of interest. Publication of this research article has no conflict of interest.
Project details. Nill.
REFERENCES
[1] J. C.-C. and F. P. M. Tupac-Yupanqui, C. Vidal-Silva, L. Pavesi-Farriol, A. Sánchez Ortiz,

“Exploiting Arduino Features to Develop Programming Competencies,” IEEE Access, vol. 10,
pp. 20602–20615, 2022, doi: 10.1109/ACCESS.2022.3150101.

[2] E. R. and S. Stenbom, “Engineering Students’ Experiences of Assessment in Introductory
Computer Science Courses,” IEEE Trans. Educ., vol. 66, no. 4, pp. 350–359, 2023, doi:
10.1109/TE.2023.3238895.

[3] M. R. I. L. Graafsma, Serje Robidoux, Lyndsey Nickels, Vince Polito, Judy D. Zhu, “The
cognition of programming: logical reasoning, algebra and vocabulary skills predict programming
performance following an introductory computing course,” J. Cogn. Psychol., vol. 35, no. 3, pp.
364–381, 2023, doi: https://doi.org/10.1080/20445911.2023.2166054.

[4] M. S. Naveed and M. Sarim, “Two-Phase CS0 for Introductory Programming: CS0 for CS1,”
Proc. Pakistan Acad. Sci. A. Phys. Comput. Sci., vol. 59, no. 1, pp. 59–70, Jun. 2022, doi:
10.53560/PPASA(59-1)710.

[5] S. R. Sobral, “Teaching and Learning to Program: Umbrella Review of Introductory
Programming in Higher Education,” Mathematics, vol. 9, no. 15, p. 1737, 2021, doi:
10.3390/math9151737.

[6] A. M. B. Emil Stankov, Mile Jovanov, “Smart generation of code tracing questions for
assessment in introductory programming,” Comput. Appl. Eng. Educ., vol. 31, no. 1, pp. 5–25,
2023, doi: https://doi.org/10.1002/cae.22567.

[7] Á. F. José Carlos Paiva, José Paulo Leal, “PROGpedia: Collection of source-code submitted to
introductory programming assignments,” Data Br., vol. 46, p. 108887, 2023, doi:
https://doi.org/10.1016/j.dib.2023.108887.

[8] J. J. Sohail Iqbal Malik, Roy Mathew, Abir Al Sideiri, “Enhancing problem‐solving skills of
novice programmers in an introductory programming course,” Comput. Appl. Eng. Educ., vol. 30,
no. 1, pp. 174–194, 2022, doi: 10.1002/cae.22450.

[9] P. K. C. I. & C. David Wong-Aitken, Diana Cukierman, “’It Depends on Whether or Not I’m
Lucky, How Students in an Introductory Programming Course Discover, Select, and Assess the
Utility of Web-Based Resources,” ITiCSE ’22 Proc. 27th ACM Conf. Innov. Technol. Comput. Sci.
Educ., vol. 1, pp. 512–518, 2022, doi: https://doi.org/10.1145/3502718.3524751.

[10] F. Demir, “The effect of different usage of the educational programming language in
programming education on the programming anxiety and achievement,” Educ. Inf. Technol., vol.
27, pp. 4171–4194, 2022, doi: https://doi.org/10.1007/s10639-021-10750-6.

[11] M. C. L. I. & C. Zahra Atiq, “A Qualitative Study of Emotions Experienced by First-year
Engineering Students during Programming Tasks,” ACM Trans. Comput. Educ., vol. 22, no. 3,
pp. 1–26, 2022, doi: https://doi.org/10.1145/350769.

[12] K. M. Y. and W. N. L. C. Wee, “iProgVR: Design of a Virtual Reality Environment to Improve
Introductory Programming Learning,” IEEE Access, vol. 10, pp. 100054–100078, 2022, doi:
10.1109/ACCESS.2022.3204392.

[13] J. F. and F. García-Peñalvo, “Teaching and Learning Tools for Introductory Programming in
University Courses,” 2021 Int. Symp. Comput. Educ. (SIIE), Malaga, Spain, pp. 1–6, 2021, doi:
10.1109/SIIE53363.2021.9583623.

[14] A. I. Idongesit Eteng, Sylvia Akpotuzor, Solomon O. Akinola, “A review on effective approach
to teaching computer programming to undergraduates in developing countries,” Sci. African,
vol. 16, p. 01240, 2022, doi: https://doi.org/10.1016/j.sciaf.2022.e01240.

[15] F. J. G.-P. José Figueiredo, “Design science research applied to difficulties of teaching and
learning initial programming,” Univers. Access Inf. Soc., vol. 23, pp. 1151–1161, 2024, doi:
https://doi.org/10.1007/s10209-022-00941-4.

[16] M.-L. H. & W.-Y. C. Chia-Wen Tsai, Michael Yu-Ching Lin, Yih-Ping Cheng, Lynne Lee, Chih-
Hsien Lin, Jian-Wei Lin, “Integrating online partial pair programming and socially shared
metacognitive regulation for the improvement of students’ learning,” Univers. Access Inf. Soc.,

 International Journal of Innovations in Science & Technology

Dec 2024|Vol 6 | Issue 4 Page |1967

2024, doi: https://doi.org/10.1007/s10209-024-01127-w.
[17] M. K. I. & C. Neil C. C. Brown, Pierre Weill-Tessier, Maksymilian Sekula, Alexandra-Lucia

Costache, “Novice Use of the Java Programming Language,” ACM Trans. Comput. Educ., vol.
23, no. 1, pp. 1–24, 2023, doi: https://doi.org/10.1145/3551393.

[18] M. S. N. Kashif Munawar, “The Impact of Language Syntax on the Complexity of Programs: A
Case Study of Java and Python,” Int. J. Innov. Sci. Technol., vol. 4, no. 3, pp. 683–695, 2022, doi:
10.33411/IJIST/2022040310.

[19] M. D. Raquel Hijón-Neira, Celeste Pizarro, John French, Pedro Paredes-Barragán, “Improving
CS1 Programming Learning with Visual Execution Environments,” Information, vol. 14, no. 10,
p. 579, 2023, doi: 10.3390/info14100579.

[20] W.-C. H. Hsiao-Chi Ling , Kuo-Lun Hsiao, “Can Students’ Computer Programming Learning
Motivation and Effectiveness Be Enhanced by Learning Python Language? A Multi-Group
Analysis,” Front. Psychol., vol. 11, p. 600814, 2021, doi: 10.3389/fpsyg.2020.600814.

[21] M. S. Naveed, “Comparison of C++ and Java in Implementing Introductory Programming
Algorithms,” Quaid-E-Awam Univ. Res. J. Eng. Sci. Technol. Nawabshah., vol. 19, no. 1, pp. 95–103,
Jun. 2021, doi: 10.52584/QRJ.1901.14.

[22] J. A. W. Silveira, Thiago L. T. da, Dennis Balreira, “Investigating the impact of adopting Python
and C languages for introductory engineering programming courses,” Comput. Appl. Eng. Educ.,
vol. 31, no. 1, 2022, doi: 10.1002/cae.22570.

[23] J. X. and M. Frydenberg, “Python Programming in an IS Curriculum: Perceived Relevance and
Outcomes,” Inf. Syst. Educ. J., vol. 19, no. 4, pp. 37–54, 2021, [Online]. Available:
https://files.eric.ed.gov/fulltext/EJ1310052.pdf

[24] M. S. Naveed, “Measuring the Programming Complexity of C and C++ using Halstead
Metrics,” Univ. Sindh J. Inf. Commun. Technol., vol. 5, no. 4, pp. 158–165, 2021.

[25] L. L.-O. Norka Bedregal-Alpaca, “Incorporation of Computational Thinking Practices to
Enhance Learning in a Programming Course,” Int. J. Adv. Comput. Sci. Appl., vol. 13, no. 2, pp.
194–200, 2022, doi: http://dx.doi.org/10.14569/IJACSA.2022.0130224.

[26] V. K. and B. L. D. Viduka, “A Comparative Analysis of the Benefits of Python and Java for
Beginners,” QUAESTUS Multidiscip. Res. J., vol. 1, no. 19, pp. 318–327, 2021.

[27] N. A. Khan B, “Evaluating the effectiveness of decomposed Halstead Metrics in software fault
prediction,” PeerJ Comput Sci, vol. 27, no. 9, p. 1647, 2023, doi: 10.7717/peerj-cs.1647.

[28] K. A. Onyango, “A comparative study of the lexicographical complexity of Java, Python and C
languages based on program characteristics,” J. Innov. Technol. Sustain., vol. 1, no. 1, pp. 42–67,
2023, [Online]. Available:
https://www.academia.edu/122346019/A_comparative_study_of_the_lexicographical_comple
xity_of_Java_Python_and_C_languages_based_on_program_characteristics

[29] I. L. Graafsma, “The cognition of programming: logical reasoning, algebra and vocabulary skills
predict programming performance following an introductory computing course,” J. Cogn.
Psychol., vol. 35, no. 3, pp. 364–381, 2023, doi:
https://doi.org/10.1080/20445911.2023.2166054.

[30] R. P. and B. C. P. Perera, G. Tennakoon, S. Ahangama, “A Systematic Mapping of Introductory
Programming Languages for Novice Learners,” IEEE Access, vol. 9, pp. 88121–88136, 2021,
doi: 10.1109/ACCESS.2021.3089560.

[31] A. C. and M. L. E. Lokkila, “A Data-Driven Approach to Compare the Syntactic Difficulty of
Programming Languages,” J. Inf. Syst. Educ., vol. 34, no. 1, pp. 84–93, 2023, [Online]. Available:
https://aisel.aisnet.org/jise/vol34/iss1/7/

Copyright © by authors and 50Sea. This work is licensed under
Creative Commons Attribution 4.0 International License.

