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In recent years, the utilization of solar energy has grabbed 
attention in the industrial and domestic zones. The existing 
systems to use the services of solar cells are conventional. These 
systems require parameters (irradiance and temperature) for 
desirable results that are unknown to the end user. These 
parameters change with regions and human to human. Therefore, 
an Artificially Intelligent, Control and Processing System is 
designed to get more accurate results with the unique feature of 
empowering the end user, which uses the parameters assembled 
on different regions. The proposed system has an improved PV 
model based on (ANN) that resembles experimental results with 
a few readily available, reprogrammable input parameters from the 
PV module datasheet. The developed system uses regional 
irradiation data which exhibits minimal fluctuations. In the model 
presented here; to avoid overburdening problems, loads were 
divided into manageable chunks MK. In this case load chunks 
(needed) were moved from solar to utility more stably and 
economically. Briefly stated the suggested solution provides a 
complete package for integrating solar energy systems with the 
grid in an automated and resilient way. 
Keywords: Consumer-Based Load Profiles, Load Curves, Solar 
Capacity, AI Energy Systems. 
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Introduction: 
Traditional residential energy systems are frequently inefficient and rely largely on fossil 

fuels, resulting in environmental pollution and energy waste [1]. Smart grids, which use 
advanced information and communication technology, are critical for handling the complexities 
of incorporating renewable energy sources such as solar power into the electricity system [2]. 
There is an increasing demand for energy systems that can incorporate renewable energy 
sources, optimize energy use, and facilitate the development of smart networks. Smart homes 
use modern technologies like (AI), (IoT) devices, smart meters, and home automation systems 
to manage and control energy usage. Integrating smart energy systems in homes can result in 
significant energy savings, increased energy security, and lower greenhouse gas emissions [3]. 

The recent advancement in information technology has benefited people in all 
aspects of life. It has brought automation and control to one’s hand through software 
and mobile applications [4].  Today switching of devices like generators and power-
generating plants through mobile software is common. The same idea exists when 
considering a Smart Home [5]. The concept of a smart home includes independent 
generation. So, it must have automation and control in both generation and usage [6]. 
Electrical load management systems are common today. The evolution of renewable 
energies demands these systems to be modified [7]. The use of renewable energy sources 
like solar panels and wind turbines in smart homes can intelligently switch between grid 
power and renewable sources based on real-time energy needs and availability [8]. 
Automated lighting and remote appliance management not only improve comfort but 
also motivate homeowners to decide on more environment-friendly routines [9]. The 
concept of the smart home includes both load management and renewable energy 
systems [10].  
Objectives 
The objectives of this research are: 

▪ To predict load based on consumer experience. 

▪ Divide loads into multiple manageable chunks (MK) to move towards the 
utility to avoid overload problems. 

▪ To develop one consumer-friendly application as a comprehensive solution for 
integrating solar energy systems with the grid in an automated and reliable way. 
Novelty of Work: 

The current research introduces a simpler and more flexible system compared to 
previous studies. This study is real-time based and has minimum losses with increased power 
generation. Current research also aims to provide a solution to overloading. The manuscript 
is organized as follows: - Section 2 presents the literature on “AI-Driven Control and 
Processing Systems for Smart Homes with Solar Energy”. The methodology section details 
how the research was conducted, including the participants, materials, and data collection 
procedures.  The results section presents the findings of the study, including data analysis and 
key observations. Finally, the conclusion summarizes the main points of the research and 
suggests directions for future investigation. 
Literature Review: 

Solar energy is an important component of sustainable energy solutions for smart 
homes and a naturally advantageous and renewable source of power generation. Raza, et 
al. [11] expand a comprehensive estimation of the current status of smart home energy 
management systems, outlining important problems and topics for future research. By 
harnessing sophisticated technology and tackling the stated difficulties, (SHEMS) can play 
a critical role in improving energy efficiency, lowering expenses, and encouraging 
sustainable living in smart homes. Lee and Choi [12] offer a unique reinforcement 
learning-based method for energy management in smart homes. The suggested solution 
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utilizes the RL’s capabilities to maximize the usage of energy storage, residential appliances, 
and rooftop solar PV systems, improving energy efficiency and lowering costs. Dhage, et 
al. [13] demonstrated how machine learning algorithms may help to control solar energy 
in smart homes. The proposed framework uses predictive analytics and recommendation 
algorithms to optimize solar energy use, save expenses, and promote sustainable living.  

Stecuła, et al. [14] applied AI to energy management in cities, and it focuses on two 
primary areas: residential systems such as smart homes and larger urban systems such as 
electric vehicle charging stations and smart grids. It points out that AI optimizes energy 
usage, aids in the integration of renewable energy, and enhances the overall efficiency of 
energy usage in cities.  Binyamin, et al. [15] focused on the improvement of energy systems 
in smart homes using AI. It involves (P2P) energy trading and improving the efficiency of 
systems such as solar panels, energy storage, and electric vehicles. The researchers 
developed an advanced deep learning model system that allows efficient trading of energy 
while saving costs. They realized that AI can make energy sharing in several situations 
better, increase its use of renewable energy, reduce costs, and generally improve efficiency 
in energy usage in homes. The author in [16] presented a framework for enhancing energy 
efficiency in smart homes by combining AI with the IOT. This framework focuses on 
real-time monitoring of energy consumption, prediction analytics, and adaptive control 
mechanisms that optimize energy use. It is shown that AI can predict energy demands 
based on historical data and external factors like weather, while IoT allows for real-time 
adjustments in appliance operations. This integration cuts down significantly in energy 
consumption, brings down the costs involved, and favors renewable usage. 

The public (end-user) is the main entity in scheming renewable energies. Anyhow, 
existing studies have flaws in the user’s ability to interpret the system by  itself. Moreover, 
the previous PV models have a major flaw with the increase in temperature. PV/IV curve 
and stability issues like grid overloading were neglected.  Previous research is more focused 
on load and PV forecasting which in reality depends on user behavior and solar 
irradiations respectively. The most reliable way of load forecasting is to enable the user 
to present his load behavior. For PV forecasts the solar irradiation data is important 
which changes 0.1 % in an 11-year cycle. So, the change was minor and it doesn’t require 
any complex probabilistic technique. Simply, previous data can be used. In short, systems 
in studies [17-20] have the following confines: 

▪ Require parameters that are less likely to be understood by the end-user 

▪ Unstable PV Models, The PV/IV curve drops abruptly with an increase in 
temperature 

▪ No real-time solution 

▪ Chances of overloading grids in case of shadowing or weather issues 

▪ The user is unaware of its electricity demand and generation 

▪ Overall, a lack of system stability and understanding hinders users from availing 
benefits from solar energy as it is supposed to. 

Techniques for predicting PV generation have significant flaws. For instance, as 
temperature changes, the generated power drops sharply and often does not align with the 
manufacturer's data [21], [22-25], [26]. This is because the equation used to calculate the PV 
cell’s temperature is inaccurate. According to [27] the temperature changes can cause only up 

to 19 percent drop in output power and it also changes open circuit voltage ‘𝑉𝑜𝑐’. Other factors 
that affect PV generation are series and parallel resistance of cells. Almost all manufacturers 
don’t provide that these parameters must be calculated. Therefore, a PV generation prediction 
system is required that needs parameters available in the manufacturer’s datasheet and can be 
easily understood by the user. Prediction of PV generation requires irradiation data. In many 
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papers where PV forecast techniques are introduced, irradiation data is assumed through a 
probabilistic approach which is not suitable for prediction. According to NASA, the solar 
energy data changes only 0.1 percent in 11 years, which is a minor change.         Secondly, the 
predicted data doesn’t account for changes due to clouds or shadowing. As mentioned by 
NASA, the best way is to use mean daily irradiation data. These systems mainly lack the 
modification of load management techniques e.g. peak clipping, valley filling, etc. with the 
introduction of renewable energies.  
Materials and Methods: 

As the electric load changes entirely depending upon the user's behavior, the end-
user is the only entity that can govern the system most appropriately. This study assumes 
that the environment is defined by an (ANN) model. The proposed model is portrayed 
in Figure 1 which utilizes a load curve to understand user behavior, providing the best 
way to understand load changes. The system enables a user to enter its hourly electricity 
usage data and then based upon that it plots a load curve. The area under the curve gives 
the daily energy consumed. The proposed model also possesses a PV block. PV block 
takes solar irradiation and temperature from the user. Daily irradiation and temperature 
data can be obtained from NASA’s renewable energies website. PV block calculates the 
PV generation of the day. A noteworthy about the PV block is its accuracy as compared 
to previous designs. Moreover, it is programmable for every available solar panel in the 
market as it uses parameters mentioned in the manufacturer’s datasheet. The proposed 
model also deputes another block called the load block. It provides the maximum demand 
of the user and the number of PV modules needed to satisfy that maximum demand.  

The full load block is designed to estimate the maximum demand of the user and 
the number of PV modules required to serve that maximum demand. The block takes 
electrical appliance data and PV module data as input from the user. The wattage of 
different electrical appliances is presented in the block database. The user enters the 
specific appliances it has. The block multiplies the numbers with already present wattage 
data respectively to calculate the energy consumption of each device. Finally, the block 
sums up and shows all the energy to be consumed. The final block is the optimization 
block, in this block usage, and generation are compared based on suggestions provided 
by the user for load management. The average irradiance of the region can be found in 
the global irradiance maps available. PV generation depends upon irradiance directly so, 
under regional average irradiance data, the average regional power of PV is calculated. 
The number of PV modules is calculated by dividing the required energy by the average 
regional power of the PV module. Two input dialogs of this ‘PV’ module are, ‘DATA’ 
and ‘Total Load Calculation’. 

 
Figure 1. Block diagram of the proposed model. 
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PV Block: 
The PV block is designed in Simulink. The accuracy of the PV block, compared 

to previous designs, is noteworthy.  Moreover, it is programmable for every available solar 
panel in the market as it uses parameters that are mentioned in the manufacturer’s 
datasheet. The number of ‘PV modules required’ is calculated in the full load block. The 
Parameters of PV modules taken as input from the user are directly transferred to the PV 
block. This takes irradiance, temperature, and wind speed as input from the user as input. 
The irradiance, temperature, and wind speed data can be taken from NASA renewable 

energy websites. The parameters taken as input are, open circuit voltage (𝑉𝑜𝑐), short circuit 

current (𝐼𝑠𝑐), number of cells (𝑁𝑠), nominal operating temperature (𝑁𝑜𝑐𝑡) and maximum 

power (𝑀𝑝𝑝). Other parameters are calculated using the equations (12). 

 𝑇𝑐𝑒𝑙𝑙  =   𝑇𝑎𝑚𝑏  + ((𝑁𝑜𝑐𝑡  −  20)/800) ∗  𝐺) (1) 

𝑉 𝑜𝑐𝑛  =  𝑉 𝑜𝑐[1 −  0.0037( 𝑇𝑐𝑒𝑙𝑙 −  25)] (2) 

𝑃𝑛 =  𝑃 [1 −  0.005(𝑇𝑐𝑒𝑙𝑙  −  25)] (3) 

𝐼𝑔𝑒𝑛  =  𝐼𝑔  −  𝐼𝑜  ∗  [exp (𝑞 ∗
𝑉  +  𝐼𝑅𝑠

𝑛
∗  𝐾 ∗  𝑁 ∗  𝑇𝑐𝑒𝑙𝑙)] 

(4) 

𝐼𝑔  =  𝐼𝑠𝑐  +  [𝐾𝑖  ∗  (𝑇𝑐𝑒𝑙𝑙  −  298)] ∗
𝐺

1000
 

(5) 

 𝐼𝑠 =  𝐼𝑟 ∗  (
𝑇𝑐𝑒𝑙𝑙

𝑁𝑜𝑐𝑡
) ∗ exp [𝑞 ∗  𝑒𝑔 ∗  (

1

𝑁𝑜𝑐𝑡 
) −

1

𝑇𝑐𝑒𝑙𝑙

𝑛
∗  𝐾] 

(6) 

𝐼𝑟  =
𝐼𝑠𝑐

𝑒𝑥𝑝 (𝑞 ∗  
𝑉𝑜𝑐𝑛

𝑛
∗  𝑁𝑠  ∗  𝐾 ∗  𝑇𝑐𝑒𝑙𝑙)

−  1 
(7) 

IPRP =
V + IRs

Rp

 
(8) 

Pgen = Igen * Vgen (9) 

𝑅𝑠  <  0.001 ∗  𝑉
𝑜𝑐𝑛

𝐼𝑠𝑐
 

(10) 

𝑅𝑝  >  100 ∗  
𝑉𝑜𝑐𝑛

𝐼𝑠𝑐
 

(11) 

In the first iteration ‘Vgen’ equals the diode voltage then it grows up. The best way to 

represent it is as a ramp function in Simulink. In the next step, the power generated is calculated 
simply by multiplying current and voltage.  The power generated is then multiplied by the 
number of modules to get energy in a day as a whole. 
Daily Load Block: 

The daily load block is designed to estimate the user load profile. The basic    concept 
in understanding the user load profile is to understand the load curve. It graphically enables 
the reader to understand its behavior. It is a basic block in load management systems. It 
represents time on the X-axis in hours and power consumed in kilowatts on the Y-axis. The 
area under the curve represents the daily energy consumed in Kilowatt-hour (one unit). So, 
the daily load block takes usage hourly data from the user as input. It deploys this data to 
plot the daily load curve of the user. This data is then passed to the optimization block for 
applying load management techniques. Because the nature of the load changes during each 
season, another supportive feature is the season selector. Which enables users to choose the 
appropriate season. For each hour there is a separate input dialog. 
Optimization Block: 

The optimization block receives parameters from the PV block and daily load block. 
This block compares the difference between daily PV energy generation and daily energy 
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consumed. It targets to make the difference zero. The block advises the user to utilize a non-
critical load at noon timing. It also tries to keep the load within the limit of stored energy in 
off-PV hours. It uses load management techniques to achieve its target. The flow diagram of 
the whole process is shown below in Figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Flow chart of proposed work. 
Results: 

The purpose of this section is to assess how well the suggested model performs in 
terms of attaining grid independence and energy optimization. The model's potential to apply 
real-time solar energy regulation and prioritization to meet household energy demands 
sustainably is examined. To assess the performance of the model, a typical household load 
profile was utilized as the case study. The data set mentioned in Table 1 is used as a benchmark 
against which the ability of the model to redistribute and manage loads becomes evaluated. 

Table 1. Electrical load arbitrary 

No. Electrical Appliances Name Quantity 

1 Air Conditioner 2 

2 Washing Machine 1 

3 Motor Pump 1 

4 Microwave Oven 1 

5 Vacuum Cleaner 1 

User 
Enter Maximum Load 

and PV Module Model 

in Full Load Block 

Enter Iradiation, Wind 
Speed and Temperature 
in PV Model 

Shift Load in KW Chunks 
from Solar to Utility 
Generate Load Profile 
and Send to User for 
Analysis 

Generate Load 
Profile and Send to 
User for Analysis 
 

End 

Compare Solar 
Energy Generation 
and Electricity 
Consumption in 
Optimization Block 

 

Activate Daily Load Block for 
Suggestions of Reducing Daily 
Usage by Cutting off less 
Priority Loads and Generate 
Alternative Load Profiles to 
be Chosen by User 

Enter Hourly Data of 
Electricity Usage as 
per Seasonal and 
Behavioral Changes 
in Daily Load Block 
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6 Television 2 

7 Iron 1 

8 Light Bulb 12 

9 Fan 6 

10 Refrigerator 1 

11 Geyser 1 

Table 2 shows the energy demand variations by season and the PV module  
Canadian Solar Hiku CS3W-395 was used. The PV module data was  used to compute 

results as shown in Table 3. 𝑅𝑠 and 𝑅𝑝. As mentioned earlier, the values in the PV model 

were calculated using equations 10 and 11, respectively. The results were compared with 
the manufacturer’s datasheet, it is shown that they are quite promising. They are well under 
the limits of 19 percent change as aforementioned in Section 3.  

Table 2. Load Variation by Season 

Season Temperature Key Energy Demands Peak Load Period 

Winter Cold (4°C to 20°C) Heating, lighting, water 
heating 

Early morning (6 AM - 9 
AM) & evening (6 PM - 9 

PM) 

Spring Mild (15°C to 
30°C) 

Heating, lighting, water 
heating 

Early morning (6 AM - 9 
AM) & evening (6 PM - 9 

PM) 

Summer Hot (30°C to 50°C) Cooling (air 
conditioning, fans), 

lighting 

Morning and evening for 
lighting (6 AM - 8 AM, 6 

PM - 9 PM) 

Autumn Mild (15°C to 
30°C) 

Lighting, minimal 
cooling/heating 

Evening for lighting (6 
PM - 9 PM) 

Table 3. PV Module Parameters 

The V-I and P-V characteristics curve of the proposed design at standard temperature 
and irradiance are shown in Figure 3. 

No. PV Module Parameter Name Parameter Value 

1 Open Circuit Voltage 47 V 

2 Short Circuit Current 10.86 A 

3 Max Power 395 W 

4 Nominal Operating Temperature 42 C 

5 Number of Cells 72 

6 Ki (Temperature Co-efficient Isc) 0.005 percent per oC 
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Figure 3. V-I and P-V Characteristics at 800W/m2 and 20℃. 

Cases for Consideration and Result Verification: 
Table 4 depicts that the full load block calculated a maximum demand of 14.922 kW. 

To fulfill this maximum demand, the PV modules required were also calculated in the same 
block which is 74. For verification, the following cases are considered based on the probability 
of occurrence. 
Full Load and Nominal Conditions: 

Under full Load and nominal conditions after processing MATLAB provided results 
as shown in Table 3. Nominal conditions for our region (South Asia) were irradiance of 258 
W/m² and 30°C throughout the day. Conditions closely matching these values were achieved, 
resulting in no recommendations from the optimization block. Table 4. Generation and 
Load Gap FL and NC 

Generation      (kW) Load  (kW) Difference - kW 

14.19830 14.922 -0.7 

The number of modules calculated by full load block is 74. Also, the daily load curve 
for random cases is displayed in Figure 4. 
Full Load and Random Conditions: 

Under full load and random conditions after processing, MATLAB provided 
results as shown in Table 5. The model suggested that, on a cloudy day, the irradiance might 

drop to 170 W/m2 and 28℃ in a whole day. This is a full load case but definitely with 
a decrease in temperature, the load will also fall. In this case, the optimization block will make 
recommendations to minimize the difference. The Optimization block might make a certain 
recommendation to the user. If the non-critical loads operate in off-peak PV timings, 
then these are suggested to operate in peak PV timings. Load in the steps/chunks is shifted 
to utility. If the user wants optimization, the block will help the user link up the load to 
generation after switching off the extra load optimally. 
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Figure 4. Load Curve Plotted by MATLAB. 

Table 5. Generation and Load Gap FL and RC. 

Generation – kW Load - kW Difference - kW 

9.37 14.922 -5.62 

Random Load and Nominal Operating Conditions: 
The load was randomly computed in MATLAB for this case, and the results 

are shown in Table 6. It was observed that the result can be different depending on the 
user’s input to the daily load block. Nominal conditions according to our region were 

irradiance 258 W/m2 and 30℃ in a whole day. In this case, there were no recommendations 
by the optimization block as generation is more than usage. 

Table 6. Generation and Load Gap RL and NC. 

Random Load and Random Conditions: 
Under random load and random conditions after processing, MATLAB gave 

results as shown in Table 7. Random conditions were supposed to irradiance 230 W/m2 and 

40℃ temperatures in a whole day. The load was computed in MATLAB which is random 
and depends on the user. In this case, there were no recommendations by the 
optimization block. 

Table 7. Generation and Load Gap RL and RC 

Discussion: 
The proposed model offers users the possibility to analyze and change the electrical 

load of a house in real time. The system aims to avoid the use of utility and depend on solar 
energy as a whole. It targets peak load demand at noon only where energy generation is 
maximum without affecting the ease of the user.  

The discussion section focuses on the thermal behavior of solar cells in various 
environmental settings and the efficiency of the suggested plan in controlling cell temperature. 
On the ground, the actual cell temperature is usually 25 to 35°C warmer than the surrounding 

Generation – kW Load – kW Difference – kW 

14.1980 9.120 + 6.07 

Generation in kW Load in kW Difference in kW 

11.3540 9.70 +1.670 
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air. The suggested plan effectively keeps the cell temperature within reasonable bounds, 
guaranteeing peak performance. On the other hand, earlier methods recorded smaller 
temperature fluctuations, which might have underestimated the effect of temperature on 
power generation. 

𝑇𝑐 =  (1.14 ∗ (𝑇 − 𝑇𝑠)) + (0.0175 ∗ (𝐺 − 300)) − (𝑘𝑟 ∗ 𝑤) +  30     [28]  (12) 

(Previous) 

𝑇𝑐 = 𝑇 + ((
𝑁𝐶𝑂𝑇 − 20

800
) ∗ 𝐺) 

  (13) 

(Proposed)   
Table 8. Overall Comparison of Generation and Load Gap RL and RC 

Figure 5 and Table 8 provide a comparison to the prior model, the output power of 

the suggested model is marginally higher. In contrast to the prior model, which showed a 𝑉𝑜𝑐 

Change that was larger than the usual range, the suggested model indicates a change in 𝑉𝑜𝑐 
That is significantly lower and within the normal range. 

 
Figure 5. Comparison of Generation RL and RC. 

Conclusion and Future Work: 
The proposed design offers all the essential functionalities for integrating solar energy 

systems. The developed system enables the user to understand how many PV panels are 
required to fulfill its maximum demand. The proposed system is infallible as its PV model 
has a unique and stable design (with an increase in temperature PV/IV curve shows a 
calculated drop of 19 percent approximately) as given in Table 8. The proposed model 
replaced complex techniques for PV and load forecasting with simple and more proficient 
techniques for the same purpose. After implementing this system there is no need for any 
probabilistic approach for both load and PV generation forecasting. As mentioned above load 
forecasting is managed by empowering the user itself and PV forecasting is ruled out as 

Parameters Previous 
Model  

Proposed 
Model 

Normal 
Range 

Amb Temp 30 oC 30 oC - 

Temp of Cell 46.06 oC 57.5 oC 25-35 C 
Output Power 365 W 371 W - 

Change in 𝑽𝑶𝑪 2.7385 0.8695 1-2% 

Change from Rated 
Power 

6.345 5.8 19% 
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according to world-renowned Institution NASA the change in the Sun’s energy pattern is 
around 0.1 percent in 11 years. With this system, the user will be able to control and analyze 
its load profiles and generations. The proposed system also divides the load into chunks (MK) 
to relieve the grid in case of low PV generation. In short, the proposed system enables any 
person without technical knowledge to manage their home with solar cells optimally. At the 
domestic level, this system has a significant effect. This system can be easily expanded to 
hospitals, schools, industries, and Universities to manage their loads with renewable energies 
optimally and become self-capable along with an option of a 24-hour available power source 
(Utility). 
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