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inite Impulse Response (FIR) filter model emulates the Inter Symbol Interference (ISI) in a 
wireless communication channel. An equalizer, typically an Infinite Impulse Response (IIR) 
filter, behaves as an inverse filter to the FIR filter to remove the effects of the ISI. IIR filters 

are generally avoided due to tractability issues, and an FIR filter, with an adaptive signal processing 
algorithm to minimize the error due to the ISI, is deployed at the receiver. However, the filter is 
observed to quickly reach a steady state where further iterations do not yield a reduction in the 
error. This can be attributed to relatively slow variations in the steady state error which prevent 
further reduction of the errors. This work focuses on converting the low frequency error variations 
to high frequency variations by the use of multirate signal processing. As such, the steady state 
error can be damped as well, providing further reduction in the error and an enhanced adaptive 
filter performance. 
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Introduction  
It has been well established that in order to remove the effects of ISI, an equalizer has to 

be employed at the wireless communication receiver [1]. Two choices are available in this regard: 
an FIR filter and an IIR filter. FIR filters are preferred over IIR filters due to their simplicity and 
ease of implementation. However, FIR filters are unable to sufficiently minimize the error due to 
ISI, anda certain allowance has to be made for the magnitude of error in order to deploy and reap 
the benefits of FIR filters at the wireless communication receiver. 

A well-known criterion for making such an allowance is the Minimum Mean Square Error 
(MMSE) criteria [2]. Many adaptive signal processing algorithms are available that try to reduce the 
error based on the MMSE criteria. Least Mean Square Algorithm (LMS), Normalized LMS 
algorithm (NLMS), and Recursive Least Squares algorithm (RLS) are popular in this regard [3]–
[11]. These algorithms are distinguished by their implementation complexity and convergence 
speed, but an exclusive focus on the error analysis is not always to be found. 

In iterative solvers, the error is observed to settle into a steady state after rapid initial 
convergence, where further iterations do not yield significant reduction in MSE [12]. This can be 
attributed to the ill-conditioning of the input covariance matrix, arising due to the disparity in the 
magnitude of its eigen values. Error associated with small magnitude eigenvalues dampens quickly 
whereas the error associated with large magnitude eigenvalues tends to linger on. Further observed 
is the frequency of the eigenvectors associated with large magnitude eigenvalues, which is relatively 
lower compared to the frequency of eigen vectors associated with small magnitude eigenvalues. 
These two factors, i.e., relatively large magnitude of an eigenvalue and the low frequency of its 
associated eigenvector, causes the MSE to settle into the steady state early, where in further 
reduction in MSE with increased number of iterations is not possible.  

In this work, we propose that the magnitude of larger eigenvalues can be reduced and the 
low frequencies of their associated eigen vectors can be converted to high frequencies by down 
sampling the error vector, wgicg will cause the error associated with large magnitude eigenvalues 
to dampen quickly as well. In this way, MSE can be reduced further and the filter convergence can 
be enhanced. This the premise behind the presented work. 
Equalization in Wireless Communication Systems 
The equalization problem. 

Basic model of the equalization problem in a wireless communication system is depicted in 
Figure 1 [2].  

 
Figure 1. Model of equalization problem. 

Output 𝑌 (𝑧)of a multipath channel 𝐻(𝑧)in the presence of Additive White Gaussian 

Noise (AWGN) 𝑁(𝑧)of zero mean and 𝜎2variance can be expressed as: 

 𝑌 (𝑧)  =  𝐻(𝑧)𝑋(𝑧)  +  𝑁(𝑧) (1) 

with the corresponding MMSE equalizer W(z) output being: 

 𝑊(𝑧) =
𝜙𝑥𝑥(𝑧)𝐻(𝑧−1)

𝜙𝑥𝑥(𝑧)𝜙ℎℎ(𝑧) + 𝜙𝑛𝑛(𝑧)
 (2) 

such that 𝜙𝑥𝑥(𝑧), 𝜙ℎℎ(𝑧), and 𝜙𝑛𝑛(𝑧)represent the power spectral densities of the input, 

channel, and noise respectively. MMSE equalizer endeavorsretrieve 𝑋(𝑧) by minimizing the error 

between 𝑋(𝑧) and the equalizer output �̅�(𝑧). 
Adaptive solution to equalization problem 

Adaptive solution to the equalization problem is depicted in Figure 2.  
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Figure 2. Modified equalization model. 

An adaptive Wiener filter provides the ratio of the cross power spectral density 𝜙𝑥𝑦(𝑧) to 

the auto power spectral density𝜙𝑦𝑦(𝑧) [2]: 

 𝑊(𝑧) =
𝜙𝑥𝑦(𝑧)

𝜙𝑦𝑦(𝑧)
 (3) 

which, in time domain, can be written in the following matrix form: 

 𝐰 =  𝐑−𝟏𝐩 (4) 

(4) is known as the Wiener-Hopf equation [2]. 𝐰is the so-called Wiener filter and represents 

the desired response of the adaptive equalizer. 𝐑 =  𝐸{𝐲𝐲𝐇}is the filer input autocorrelation 

matrix, and 𝐩 =  𝐸{𝐱𝐲𝐇}the input-output crosscorrelationvector. 
Analysis of Error  
Error controlling matrix. 

(4) can be rewritten as: 

 𝐌𝐰 =  𝐩 −  𝐑𝐰 +  𝐌𝐰 (5) 

where 𝐌represents the error controlling matrix. (5) can be rearranged as: 

 𝐰 =  (𝐈 − 𝐌−1𝐑)𝐰 +  𝐌−1𝐩 (6) 

I represents the identity matrix. (6) can be iteratively solved as [2]: 

 𝐰[𝐧 +  𝟏]  =  (𝐈 −  𝐌−1𝐑)𝐰[𝐧] +  𝐌−1𝐩 (7) 

or: 

 𝐞[𝐧 +  𝟏]  =  (𝐈 −  𝐌−1𝐑)𝐞[𝐧] (8) 

such that 𝐞[𝐧]  =  𝐰[𝐧]  −  𝐰, with 𝐰representing the exact solution to (4). (8) shows that 

the convergence of error depends on the eigenvalues of the error controlling matrix (𝐈 − 𝐌−1𝐑). 
Computation of eigenvalues. 

Given that the equalizer 𝑊(𝑧)employed in Figure 2 is a two-tap filter, with the correlation 

factor 𝛼, then 𝐑in (4) can be represented as [2]: 

 [

1 + 𝛼2 −𝛼 0 0
−𝛼 1 + 𝛼2 −𝛼 0

⋮ ⋮ ⋱ ⋮
0 0 −𝛼 1 + 𝛼2

] (9) 

While𝛼 =  1, R can be viewed a second difference matrix with Dirichlet boundary 
conditions [12]. It has eigenvalues of the form: 

 𝜆𝑅
𝑗 = 2 − 2 cos (

𝑗𝜋

𝑁 + 1
) (10) 

where 𝑗 =  1, . . . , 𝑁, such that 𝑁represents the size and 𝜆𝑅
𝑗the 𝑗−the eigenvalue of the 

𝐑matrix. Setting M = I in the error controlling matrix 𝐃 =  𝐈 − 𝐌−1𝐑leads to the following 
expression for the eigenvalues: 

 𝜆𝐷
𝑗 = 2 cos (

𝑗𝜋

𝑁 + 1
) − 1 (11) 

Maximum value of 𝜆𝐷
𝑗will be one when the cosine is zero, which is not satisfactory. In 

order for the error to converge, all the eigenvalues must be less than one. Selecting 𝐌−1 =
 𝐈/2causes all the eigenvalues of D to be less than one. 
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 𝜆𝐷
𝑗 = cos (

𝑗𝜋

𝑁 + 1
) − 1 (12) 

   

First four eigenvalues of D computed from (12) are: cos(π/5) =  0.8090, cos(2π/5) =
0.3090, cos(3π/5) = −cos(2π/5) = 0.3090, cos(4π/5) = −cos(π/5)  =  0.8090. Note 

that the lower frequency cos(π/5) has larger eigenvalue magnitude (0.8090) compared to the 

eigenvalue magnitude (0.3090) associated with the higher frequency 𝑐𝑜𝑠(2𝜋/5). This will cause 
the higher frequency to dampen faster in iteration process. The lower frequency will dampen slowly 
and tend to linger on. If lower frequency is converted to a higher frequency, by the process of 
down sampling, it can be made to dampen faster like the higher frequency, and the convergence 
and the accuracy can be improved. The following general formula was derived for the eigenvalues 

of the error controlling matrix with an arbitrary value 𝛼: 

 𝜆𝐷
𝑗 = αcos (

𝑗𝜋

𝑁 + 1
) −

(𝛼2 − 1)

2
 (13) 

An eigen distribution of 𝐃 computed from (15) for 𝑁 =  10versus 𝛼is displayed in 
Figure 3 for illustration. 

 
Figure 3.Eigendistribution of the error controlling matrix 𝐃 for 𝑁 = 10. 

Computation of eigen vectors. 
The following general expression was derived for the eigenvectors of error controlling 

matrix 𝐃with an arbitrary value 𝛼: 

  𝑣𝑗[𝑛] = sin
𝑗𝜋

𝑁 + 1
𝑛 (14) 

Eigen vector plot of 𝐃 (𝑁 =  10) versus different values of α is displayed in Figure 4. 
Note that the large eigenvalues are associated with low frequency eigenvectors, and vice versa. 
Down Sampling and Analysis of Downsampled Error 
Down sampling of eigenvalues. 

Now the error in (8) is down sampled by a factor of two, and the down sampled eigenvalues 

are compared with those of the original system (𝑁 =  10, 𝛼 =  0.5). Downsampling is performed 
according to the following expression: 

  𝜆𝐷
𝑗 = αcos (

𝑗𝜋

𝑁 2⁄ + 1
) −

(𝛼2 − 1)

2
 (15) 
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Down sampling will reduce the eigenvalues to five in contrast to the original ten. A 
graphical comparison of the original and the down sampled eigenvalues is displayed in Figure 5, 
which shows that the magnitude of larger eigenvalues is considerably reduced after down sampling 

 
Figure 4.Eigenvectors of error controlling matrix 𝐃 with 𝑁 =  10versus different values of 𝛼. 

 
Figure 5.Graphical comparison of the down sampled and original eigenvalues of the error 

controlling matrix for 𝑁 =  10, 𝛼 =  0.5, and down sampling factor of 2. 
Analysis of down sampled error. 

Re-writing (8) as: 

  𝒆[𝒏 +  𝟏]  =  𝑫𝒆[𝒏] (16) 

with 𝐃 =  𝐈 − 𝐌−1𝐑. Alternatively for (16): 

  𝒆[𝒏]  =  𝑫𝑘𝒆[𝟎] (17) 

For 𝑘 =  0: 

  𝒆[𝟎]  =  𝑐1𝒗𝟏 +  𝑐2𝒗𝟐 + ···  + 𝑐𝑛𝒗𝒏 (18) 

Multiplying (18) by 𝐌: 
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  𝐌𝐞[𝟎]  =  𝑐1𝐌𝐯𝟏 + 𝑐2𝐌𝐯𝟐 + ···  + 𝑐𝑛𝐌𝐯𝐧 (19) 

leads to: 
  𝐌𝐞[𝟎]  =  𝑐1𝜆1𝐯𝟏 +  𝑐2𝜆2𝐯𝟐 + ···  + 𝑐𝑛𝜆𝑛𝐯𝐧 (20) 

Finally: 

  𝐌𝐤𝐞[𝟎] = 𝑐1𝜆𝑘
1𝐯𝟏 + 𝑐2𝜆𝑘

2𝐯𝟐 + ⋯ + 𝑐𝑛𝜆𝑘
𝑛𝐯𝐧 (21) 

Equation (21) shows that, for the error to dampen quickly, magnitude of the eigenvalues 
should be as small as possible; ideally, they must be zero. However, due to the poor conditioning 
of the input covariance matrix, a disparity can be found in the magnitude of eigenvalues. Large 
magnitude eigenvalues cause the error to enter into a steady state and prevent further reduction of 
MSE. The steady state error can be reduced by down sampling the error vector, which makes the 
associated eigenvalues to dampen quickly as well when their higher powers are taken in to account 
according to (21). A plot of the MSE achieved from the original and the down sampled error 
sequence is displayed in Figure 6. The plot confirms that the down sampled error reduces much 
faster than the original one. 

 
Figure 6Comparison of the MSE achieved from the original and the down sampled error 

sequence. 
Conclusion 

An improvement in the error performance of adaptive wireless channel equalizer was found 
by down sampling the error vector by a factor of two. The improvement was demonstrated 
analytically and numerically. Further possibilities for improvement in error performance of adaptive 
equalizer can be explored by increasing the down sampling factor beyond two. 
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