
 International Journal of Innovations in Science & Technology

Dec 2024|Vol 06| Issue 04 Page |2069

A Large Language Model-based Web Application for Contextual
Document Conversation

Asad Khan1, Abdul Haseeb Malik1, Talha Ahsan1, Qazi Ejaz Ali1
1Affiliation Department of Computer Science, University of Peshawar, 25120, Pakistan.
* Correspondence: haseeb@uop.edu.pk
Citation| Khan. A, Malik. A. H, Ahsan. T, Ali. Q. E, “A Large Language Model based Web
Application for Contextual Document Conversation”, IJIST, Vol. 06 Issue. 04 pp 2069-2083,
Dec 2024
Received| Nov 17, 2024 Revised| Dec 13, 2024 Accepted| Dec 15, 2024 Published| Dec
17, 2024.

The emergence of Large Language Models (LLM), such
as ChatGPT, Gemini, and Claude has ushered in a new
era of natural language processing, enabling rich textual
interactions with computers. However, despite the
capabilities of these new language models, they face
significant challenges when queried on recent
information or private data not included in the model’s
dataset. Retrieval Augmented Generation (RAG)
overcame the problems mentioned earlier by
augmenting user queries with relevant context from a
user-provided document(s), thus grounding the model’s
response to inaccurate source material. In research,
RAG enables users to engage interactively with their
documents, instead of manually reading through their
document(s). Users provide their document(s) to the
system, which is then converted into vector indices, and
used to inject contextual information into the user
prompt during retrieval. The augmented prompt then
enables the language model to contextually answer user
queries. The research is composed of a web application,
with an intuitive interface for interacting with the LIama
3.2 1B, an open-source LLM. Users can upload their
document(s) and chat with the LLM in the context of
their uploaded document(s).
Keywords: Application Learning, Natural Language
Processing, AI Bots, Large Learning model, Contextual
Document Conversation.

Large Language Model LLM
Retrieval Augmented

Generation
RAG

Natural Language
Processing

NLP

Natural Language
Understanding

NLU

Hypertext Transfer
Protocol

HTTP

Hypertext Markup
Language

HTM

Uniform Resource
Locator

URL

Document Object
Model

DOM

Application
Programming Interface

API

 International Journal of Innovations in Science & Technology

Dec 2024|Vol 06| Issue 04 Page |2070

Introduction:
Artificial Intelligence (AI) technology is utilized in NLP (expert systems) to allow

computer applications to comprehend human language. Natural language processing is made up
of two groups: language generator and understanding naturally. NLU refers to the process of
interpreting or reading language, and language generator refers to the procedure of generating
or writing. With natural language understanding and generation, large language processing
integrates human language into machine learning, computational linguistics, and deep learning.
Before natural language processing, inputs are processed in advance to get the data ready for
classification. Text preprocessing is crucial before large language processing to avoid
interference in textual analysis, as text often contains distractions and irrelevant content.
Normalization, tokenization, noise and stop word removal, and lemmatization are common
preprocessing text techniques. NLP has become widely used as this technology developed it
began to be used in a variety of applications, such as sentiment analysis, which is the method of
using computational techniques to recognize and classify the opinions conveyed in a piece of
text, especially to determine the author's position (positive, negative, or neutral) regarding a
particular topic, and speech recognition, which refers to the process of transforming spoken
language into written text. ChatGPT is popular, especially among students, although it can finish
tasks quickly it struggles with honesty and plagiarism [1]. Additionally, ChatGPT helps teachers
create activities and course materials [2][3]. Research, amusement, code creation, clarification,
and annotations, testing scenarios, pattern matching, documentation creation, code debugging,
integration, transformation, and style, as well as a metaverse learning environment, are just a few
of the opportunities that ChatGPT offers in addition to teaching[2][4][5][6].

Generative AI, especially Large Language Models (LLMs) have attained remarkable
proficiency in generating human-quality text. These models are capable of performing tasks such
as query response, summarization, translation, and text generation. These models are now
starting to serve as alternatives to search engines, and traditional keyword-based searching for
information retrieval[7]. However, these models encounter significant challenges, such as
hallucination, and outmoded information. Retrieval Augmented Generation (RAG) tackles these
issues by integrating outside knowledge sources[8].

A web-based application is being proposed that uses RAG to enable users to converse
with an LLM in the context of their documents and gain relevant insights from their
conversations. User comprehension of complicated documents can be improved by providing
summaries and explanations of complex material. The application improves productivity,
enhances the decision-making process, and enables deeper document understanding.

LLMs without an RAG subsystem do not incorporate the context of user-specific
documents. These systems are also constrained by their knowledge cutoff date, rendering them
ineffective for accessing the most current information [9][10]. Moreover, they have no awareness
of private data as it was not part of the training dataset. While language models can enhance user
comprehension, users should remain vigilant because these models can generate inaccuracies or
false information [11]. Tying the model’s responses to the context of user documents helps to
reduce the likelihood of such inaccuracies [8].

The system converts user documents into text chunks calculates embedding for these
text chunks and saves them in a vector database. When the user queries the system, using
similarity search, the text chunks which are relevant to the user prompt are retrieved from the
vector database. These text stacks are then passed into the context of the language model, along
with the user query. The model uses the modified prompt to answer the user query in the context
of the provided text chunks. The proposed solution is selected. After all, it is much more
efficient than having to fine-tune an LLM for each user document because it requires extensive
computation and is therefore unfeasible for this use case.

 International Journal of Innovations in Science & Technology

Dec 2024|Vol 06| Issue 04 Page |2071

The ability of traditional find and search methods for finding information in a document is
limited. We summarize our contributions as outlined below.:

● Improved efficiency by retrieving contextual information for the user query, and
minimizing the user effort in reading a document.

● The accuracy of LLMs is increased by supplementing the model’s response with relevant
information, which might not be present in the training dataset of the model.

● The applicability of the LLMs is broadened by allowing the usage of private data,
enabling users to manage their documents.

● To supplement model prompts with relevant document context.

Figure 1: Proposed System

Existing Modules:
RIT, notably in the development of language models, and processing of natural language

has revolutionized people's interaction with content based on text. Traditional approaches, such
as PDF download and static reading require many tangential references for understanding or
clarity. Additionally, this research emphasizes the necessity for an enhanced flexible and end
user-focused strategy by integrating an engaging chat module that leverages the functionalities
of a language model, specifically Meta’s LLM. In our system, Llama 3.2 1B is the large language
model that is implemented based on research on large language models like ChatGPT and GPT-
3. These large language models showcase their strong capabilities in large language
understanding (LLU), queries, summarizing text, and generating large language [12][13].

Existing systems, such as ChatGPT, lack the context of user documents. These systems
are also limited because of their knowledge cutoff date, which makes them useless for the latest
information [9][10]. Additionally, these systems are unaware of private data since it was not
included in the dataset training model. Language models can improve user understanding, but
the user must exercise caution since these models are prone to hallucinations [11]. Grounding
the model’s response to the user document context makes it less prone to hallucination [8].

Our research goal is to develop a chatbot powered by a large language model that assists
users in navigating PDF documents more effectively. Research initiatives like " Chatbot as a

 International Journal of Innovations in Science & Technology

Dec 2024|Vol 06| Issue 04 Page |2072

Broader Platform for Language earning: An Exploration and Summary of Chatbot Technology"
demonstrate that it is possible to develop engaging chat interfaces for extracting tidings from
PDFs. These researches highlight the necessity of understanding user needs, retrieving
information from users, and employing techniques for generating LLM responses during
conversational exchanges.

The absence of advanced artificial intelligence makes it difficult to comprehend and
extract valuable data from PDF files because of variations in design, information encoding
methods, and the possibility of including documents that have been scanned. Consequently,
numerous recent studies have been conducted to investigate methods for text preprocessing,
optical character recognition (OCR), and information retrieval techniques designed for various
PDF formats. These research efforts are laying the groundwork for enhanced accuracy and
precision in obtaining information for LLM interactions.
Large Language Models Comparison:

Based on the comparison in Table 1, the Claude language models are the most
appropriate models for chatting with textual documents [14][15]. ChatGPT 3.5 is highly
adaptable and can be used for almost any kind of activity. Its pricing is competitive. Moreover,
its use in both personal and professional areas has commenced and is proliferating. On the other
hand, the Claude LLM model is preferable when users have a high volume of prompts and wish
to send chat prompts without circumnavigating. The maximum prompt size is one lack of
tokens, allowing for approximately seventy-five thousand words to be included in a single
prompt.

Table 1: Existing LLM models comparison
Model API MMLU Bench

Score
Parameters Tasks Cons

Microsoft
T5

Pending 47.7 3.04 11 billion Tunes
Text

Classification
and

Translation
Fine custom

Use for
commercial
purposes is
not allowed.
Accessing it
is difficult.

Google
Palm

Yes - 6.4 540 billion Question-
Answering

summarization
Text and Code

Generation

Possibility
of skewed

or
unsuitable

results
Chat-3.5 Yes 70 7.94 175 billion Text

Generation
Summarization

Question
Answering

Prejudices in
Output
Creation

somewhat
costly

Claude v1 Yes 75.6 7.9 - Specific
language tasks

Does not
produce

very human-
like

responses.
The goal of this research is to enhance understanding, accessibility, and information for

a diverse audience by integrating immediate clarifications, environment-sensitive interpretations,
and NLP features like translation and data extraction.
Methodology:

In this part, we outlined the structure and framework of our suggested large language
model web application for contextual document conversation. The proposed research is
composed of the following components:

 International Journal of Innovations in Science & Technology

Dec 2024|Vol 06| Issue 04 Page |2073

Auth:
This component is responsible for authenticating users; the component requires the

passport.js authentication middleware. It enables users to authenticate using their email and
password or through authentication providers, such as Google or GitHub.
Chat:

This component enables users to upload their documents and chat with those
documents using an LLM. The component also saves user chat history, allowing them to refer
back to it if needed. The component requires two other components to work, the Auth
component and the iOllama component, and uses them through their provided interfaces.

The iOllama required interface is provided by an external component iOllama, which
facilitates running LLMs locally on a computer. iOllama provides a REST API for interacting
with different LLMs.
User:

This component provides functionalities related to user management, such as
blocking/deleting a user. This component is only utilized by admin users.
Feedback:

This component is responsible for storing and retrieving user feedback on chat
messages. Only admins can access the provided feedback.

The Auth component is responsible for authentication and authorization. It is a guardrail
against access by unauthorized users. Users must be authenticated through this component
before they can proceed to interact with the other components. The Feedback component
allows users to provide feedback to LLM responses in their chats. This feedback is visible to
admins. The purpose of this component is to provide users with a way to provide feedback to
LLM responses, so that the LLM may be further improved. Admin can use the User component
for user management if they detect any unusual activity in the application they can block or
delete user accounts.

Figure 2: Main Components

Study Flow.
The flow of data through the application is illustrated in Figure 3. The diagram being

shown is the level 0 in which the high-level movement of data through the application is shown.
The end-user links with the application by providing a document, which is processed by the
system and transformed into text chunks and stored along with their vector embeddings in the
Vector DB process, which makes use of the vector index to retrieve relevant context from the
index, and then calls the Generation process to respond to the user’s query in terms of the given
context. The Generation process also interacts with the MongoDB data-store, to persist the user
query and the generated response. The Entity-Relationship diagram for the application is shown
in Figure 4. The application includes five key business entities: Users, Chats, Messages,
Feedback, and Categories. The relationship between the Users and Chat entities is classified as
one-to-many, meaning a single user can have multiple Chats, while each Chat entity is associated

about:blank

 International Journal of Innovations in Science & Technology

Dec 2024|Vol 06| Issue 04 Page |2074

with only one User entity. There is a one-to-many relationship between the Chats and Messages
entities. The Feedback and Messages entities maintain a one-to-one relationship. Lastly, the
relationship between the Categories and Feedback entities is one-to-many.

Figure 3: Study flow diagram

Figure 4: Entity relationship diagram

Development Environment:
Typescript is used as the programming language of choice for this project. The dynamic

nature of JavaScript makes it error-prone, causing errors due to vaguely defined variables, which
can be avoided by using a type system. Typescript does exactly that, as it enforces strict type
safety by defining the types of every variable, it makes sure that no variable is being assigned an
incorrect value. Typescript also tightly integrates with VS Code by showing type hints as the
code is being written.

The research uses the library Langchain.js (version 0.3.7) for interacting with the LLM
and the vector database. The latest versions of NodeJS and Typescript are used, which at the
time of writing are 22.12.0, and 5.7.2 respectively. Additionally, Ollama (version 0.3.4) is used
for running the Llama 3.2 1B LLM locally.

 International Journal of Innovations in Science & Technology

Dec 2024|Vol 06| Issue 04 Page |2075

Figure 5: All main components of the proposed system

Integrated Development Environment:
Visual Studio (VS) Code is used as the IDE for the project. VS code is famous for

developing web applications because it has a vast community and comes with many extensions
which simplify the job of the developer. The customizable nature of VS Code enables
developers to customize the IDE according to their tastes.
Version Control:

Git is used to version control the project. Git is an indispensable tool for modern
development. The use of Git is widespread in the software development industry. The
project’s source code is hosted on GitHub.
Repository Setup:

The project is organized into a single directory, with separate directories for the front
end and the back end. The source code for both the front end and the back end is included in
a single Git repository. Each directory is its npm project, maintaining its dependencies.

During the development of the application for this research, a single main branch was
used to push commits for new features. In the future, the addition of new features will follow
the pull-request (PR) workflow. Contributors will create a new branch from the main branch
and commit their code to this branch; they could request the merging of their feature branch
with the main branch by creating a PR on GitHub. The repository owner will review the code,
if the code is satisfactory, they will merge it with the main branch, otherwise, they may request
additional changes by commenting on specific code snippets.
Modules:

The application is a Single Page Application (SPA), where the client is served a static
HTML file about JS. The JS then takes control of the application and is responsible for
routing, fetching data, and updating the UI state. The modules of the application are described
in terms of the backend and frontend.

 International Journal of Innovations in Science & Technology

Dec 2024|Vol 06| Issue 04 Page |2076

Controllers:
The controllers are responsible for handling the business logic for the application.

Controllers are defined against HTTP and URLs. The application is composed of the
following controllers:

Table 2: Controller types

Controller Functionalities

Authentication
Controller

Responsible for authenticating and authorizing users.
It uses session cookies to verify whether a user is

logged in or not. It has two controllers, one for login,
and another for signup.

Chat controller Responsible for creating, updating, and deleting chats.
It also has a method that enables users to send

prompts, the response to which is then streamed to
the user using Web sockets

Message
controller

Responsible for loading users’ chat history. The
messages are pagi- noted, and can be sorted by

providing the appropriate parameters to the endpoint

Feedback
controller

Provides the ability to submit feedback on messages.
It also provides a list of paginated feedback which can

only be accessed by admin users.

End-user
controller

Provides user management functionality, enabling
admin user to block/delete other users

Error Handling:
To prevent the server from crashing, the application controllers are wrapped in a

global error handler, which responds with a 500-status code if an error occurs. Additionally,
any error specific to a controller is handled inside that controller, which responds with the
appropriate message and status code.

To ensure data validation, Zod is used, which is a schema validation library. The
correct form of the input data for a controller is defined in terms of a Zod schema and only if
the schema is matched, the corresponding controller takes an action, otherwise, an error
response is sent to the client with an appropriate error message.
Deployment Environment:

The web application will be deployed on a cloud provider. For the current system,
Google Cloud Platform (GCP) was selected as the cloud platform. GCP provides numerous
cloud offerings, spanning from IaaS to PaaS. For this application, the IaaS offering, Cloud
Compute Engine will be used.

The application server uses Ubuntu as the Operating System (OS) and has Nginx
installed. The Nginx server points to the running Express.js application, which is being executed
in the NodeJS runtime. The application server can communicate with the database server using
the TCP/IP protocol suite. The UI of the application is hosted on a Netlify server, the Netlify
server uses a managed OS since they do not disclose which OS is being used, inside the OS, the
React application is in the form of three files, index.html, styles.css, and script.js. The CSS styles
and JS files are bundled and minified during the build process. The user web browser fetches
the index.html, which requests for the styles, and script.js files from the Netlify server. The
script.js takes control of the application after this process and interacts with the application
server. The deployment diagram for the application is illustrated in Figure 6.

The Nginx server acts as a reverse proxy for the Express.js application and enhances
security by hiding the port on which the Express.js application is running. Nginx runs by default
on port HTTP (port 80) and HTTPS (port 443), allowing the front end to send requests directly
using the API URL without specifying a custom port. Furthermore, to scale the application

 International Journal of Innovations in Science & Technology

Dec 2024|Vol 06| Issue 04 Page |2077

horizontally, in the future, it could be hosted on multiple servers in multiple regions to distribute
the load amongst these servers, Nginx can act as a load balancer in this scenario by routing traffic
to an appropriate server based on the network load.
Testing & Results:
Frontend: The testing was carried out in three stages. In the first stage, unit tests were written
for the smallest components in the component tree (leaf nodes). In the second stage, integration
tests were written to make sure the components were interacting with each other correctly. In
the last stage, end-to-end testing was performed to test that the whole front end was operating
correctly. The component tree for the application is illustrated in Figure 5.
Tools: Vitest was used as the test runner, with react-testing-library being used to test the
workings of the React components. JSDOM was used to emulate the browser DOM in the
Node.js runtime. For end-to-end tests, Cypress was used.

Table 3: Testing

Unit Testing Integration Testing End-to-End
Testing

Unit tests were written for
the components that are at

the leaves of the component
tree shown in Figure 5. The

leaves of the component
tree are at the lowest level

of the tree and are
components that do not

utilize other components.
The test results are

summarized in Figure 7.

Integration tests were written for
the non-leaf components of the

component tree. These
components are utilizing the

components below it. Therefore,
it was imperative to test that the

lower-level components were
integrating correctly with the
upper-level components. The
test results are summarized in

Figure 8.

During the end-to-
end testing, using a
browser automation
tool, the application

was thoroughly
checked as if an

actual user was using
the application. The

test results are
summarized in Figure

9.

Figure 7: Frontend Unit Testing Results

 International Journal of Innovations in Science & Technology

Dec 2024|Vol 06| Issue 04 Page |2078

Figure 6: Deployment diagram

Figure 8: Frontend Integration Testing Results

 International Journal of Innovations in Science & Technology

Dec 2024|Vol 06| Issue 04 Page |2079

Figure 9: End-to-End Testing

Backend: The backend was tested using mostly end-to-end tests, making sure each API
endpoint was working as intended. The details of the testing are described below.
Tools: Super test was used as the HTTP client to interact with the API endpoints, with Jest
being used as the test runner. Instead of using an actual database, an in-memory alternative
provided by the package MongoDB-memory-server was used.
Strategy: Each API endpoint was tested by making sure they only allow authenticated users to
access them. The API endpoints which required user data were tested to make sure the data was
being validated correctly, and if the user provided incorrect data (wrong type or incomplete data)
the API responded with the correct status code and a feedback message.
The API endpoints which are only meant to be accessed by the admins were also tested to make
sure only authorized users (admins) were able to access them, and other users received a 401
(Unauthorized) status code when they tried to access these endpoints.
End-to-End Testing: Each API endpoint was tested in detail, verifying the correct behavior
of the endpoint, and making sure it only accepted valid input. The access roles for each endpoint
were also tested, to make sure only authenticated and authorized users could access specific
routes. The test results are summarized in Figure 10.

Figure 10: End-to-End Backend Testing Results

There are many limitations in existing LLMs without a RAG sub-system, our proposed
large language models with RAG try to overcome these limitations. Comparison between large
language model without RAG and with RAG is discussed below in Table 4

 International Journal of Innovations in Science & Technology

Dec 2024|Vol 06| Issue 04 Page |2080

Table 4: Comparison of LLMs without RAG and LLMs with RAG

LLM without RAG LLM with RAG

Lack of contextual
information

The LLM response is based on user-provided context (their
documents)

Unable to accommodate
newer information

Users can provide new information to the LLM as
documents.

Prone to hallucination The tendency of LLM to hallucinate information that was
not included in the model’s training data is curbed by

augmenting LLM’s response with user-provided document(s)

Limited by knowledge cut-
off date

Users can provide newer information to the LLM by
uploading it as a document.

Requires re-training to learn
new information

The model is limited to
publicly available data

Do not have to re-train the model, instead, the user prompt
is augmented with the new information.

Users can interact with the LLM in the context of their
private data.

Discussion:
The improvements to the Retrieval Augmented Generation (RAG) workflow, organized

based on the stages of the workflow, are presented in the sections below.
Indexing:

The objective of indexing is to convert the user document into a concise representation
that can then be used to retrieve relevant context during retrieval. Following improvements
could be made to further facilitate the effective retrieval of context.
Chunking:

The project uses recursive chunking to make sure sentences are not split in the middle,
causing a loss of context. While this methodology is effective, it has its drawbacks, for instance,
the retrieval of text chunks depends upon their size, so if you have longer text chunks then you
have more context, but the embedding vectors for these chunks are more prone to be matched
for any user query. There are other far more efficacious chunking methods, such as small-to-big
and sliding windows [16]. The small-to-big utilizes the best of both worlds, by matching the user
query with small text chunks and then returning the longer context that contains the matched
text chunk. Thus enabling effective retrieval and availability of better context [16].
Metadata:

Meta-data such as the document title, or keywords in the text chunk can be stored with
the text chunks obtained from user document(s), to further facilitate accurate retrieval[16].
Structured Data:

The current system works best for unstructured data, particularly textual data, it is ill-
suited for structured data, especially in the format of tables in documents, or SQL databases.
This limitation can be overcome by integrating table querying into the retrieval step of the
system. It contains a set of documents, along with SQL tables containing additional relevant
information. A router is then integrated into the system, as discussed in Section 6.3.2, to
determine during the retrieval process whether a user query can be satisfied from information
contained in an SQL table. If the router selects the SQL table, then the user query is passed to
an LLM to create an SQL query, which queries the table and returns the result, which is then
passed to the generator to produce the final response [17].
Retrieval:

The main goal of the retrieval step is to provide the generator with the appropriate
context. This step can be further improved as follows.
Query Rewriting:

Original queries often suffer from underperformance because of poor expression or lack
of semantic information [16]. By integrating query rewriting into the RAG workflow, the

about:blank

 International Journal of Innovations in Science & Technology

Dec 2024|Vol 06| Issue 04 Page |2081

performance can be improved further. Query rewriting works by asking a Large Language Model
(LLM) to rewrite the original query to be more expressive, before eventually passing the revised
query to the retrieval sub-system [16].
Query Decomposition:

A weakness of the current system is that it retrieves semantically similar text chunks
based on a single query. This approach is insufficient to answer queries meant to be answered
from different portions of the corpus. A composite query is decomposed into sub-queries, which
are then passed to the retrieval sub-system to retrieve appropriate text chunks from the index
[16]. An LLM then generates answers for each sub-query, which are then passed again to the
LLM as the context for the composite query during the final generation stage [17].
Query-to-Document Expansion:

The difference in grammar between the user query and the text chunks in the vector
index can result in incorrect context being retrieved from the vector index. To alleviate this
problem, query-to-document expansion is proposed, in this approach, the user query is passed
as is to the LLM which generates a hypothetical answer to the query, this response is then
converted into a vector representation and its similarity with the vector index is checked, to
retrieve the relevant context. The idea behind this technique is that the LLM will generate a
hypothetical/hallucinated response, which would be closer in format to the relevant context in
the vector index [17]. This process is known as Generation-Augmented Retrieval (GAR) [18].
Routing:

One or more of these advanced retrieval methods might be required, depending on the
user query. To help the system, decide which technique(s) should be used, a routing subsystem
could be incorporated into the system. The routing subsystem passes the user query to an LLM
along with a strict template prompt, which instructs the model to choose between the different
technique(s) to be used based on the query. The response is then used to decide which
technique(s) should be applied to the user query [17].
Re-Ranking:

LLMs are prone to get lost in the sea of information passed to them in their context.
This is known as the lost-the-middle problem.[10] The solution to this problem is to include the
most relevant text chunks at the beginning or end of the context. To achieve this, we could use
two embedding models during the retrieval process. In the initial stage, retrieve relevant text
chunks based on a smaller embedding model, thus retrieving k text chunks. These text chunks,
along with the user query, are then embedded with a larger, more semantically rich embedding
model, and the list of text chunks is re-ranked based on its similarity with the user query. This
results in the most relevant text chunks being at the top of the list [17].
Generation:

The primary objective of the generator sub-system is to generate a response given a user
query and some context. Further improvements to this step are discussed in the sections below.
Context Consolidation:

The system uses the simplest way of just concatenating together the retrieved text
chunks. However, this approach has two problems: first, the text chunks combined might be
greater than the LLM’s context window size, second, the information may not be optimally
located, the concatenated text chunks might be disparate and disconnected [17].

Using context consolidation, which better synthesizes the retrieved text chunks to
overcome the aforementioned problems. Some common techniques include: passing each text
chunk to an LLM to summarize each, and additionally creating a global summary of all the
retrieved text chunks. This greatly reduces the length of the input context and forms the text
chunks into a coherent and self-consistent context [17].
Multi-modality:

 International Journal of Innovations in Science & Technology

Dec 2024|Vol 06| Issue 04 Page |2082

The current system uses a textual LLM, which is only effective for textual documents.
However, documents often contain Figures, such as diagrams, charts, and images. The existing
system cannot accommodate RAG on non-textual modalities such as audio, video, and images.
There have been recent advancements in multimodal LLMs that have enabled these models to
handle information in multiple formats, thus allowing the development of general-purpose
generators [19]. To implement multi-modal RAG, a multi-modal index should be created. This
requires the usage of a multi-modal embedding model, which can embed both textual and non-
textual information into a vector space. However, the current multimodal embedding models
are only capable of representing text and images in a unified space. Mapping multi-modal
information into a unified space remains a challenge [19].
Practical Implications:

This research addresses the need to enhance user interactions with their documents by
integrating large language models (LLMs). LLMs are provided with user document context thus
enabling users to gain insights from their conversations with the system. Users can interact with
their documents using natural language. The language model can answer questions from the user
documents’ context, rather than from other sources which might not be relevant to the user.
Users are then able to efficiently find the information they are looking for instead of having to
explore the document themselves.
Users are provided with a rich experience while interacting with written material. Instead of
having to reread document(s), users can ask the LLM to summarize, generate questions, or
perform other generative tasks based on their document(s).
Conclusion:

The existing application's drawback is that PDF files containing pictures are not able to
be shown in the dry run section. To deal with this issue, we plan to explore various algorithmic
techniques to manipulate and exhibit picture-rich PDFs in the dry run segment. In addition, we
intend to offer a download option that would permit users to save a replica of their questions
on their tendency. Furthermore, future developments may include a group of users from various
specialties to conduct tests and assess the accuracy and accomplishment of the Chatbot system.
Conflicts of Interest:
There are no conflicts of interest, according to the authors.
References:
[1] and R. S. F. Farhi, R. Jeljeli, I. Aburezeq, F. F. Dweikat, S. A. Al-shami, “Analyzing the

students’ views, concerns, and perceived ethics about chat GPT usage,” F. Farhi, R.
Jeljeli, I. Aburezeq, F. F. Dweikat, S. A. Al-shami, R. Slamene, vol. 5, p. 100180, 2023, doi:
https://doi.org/10.1016/j.caeai.2023.100180.

[2] I. Adeshola and A. P. Adepoju, “The opportunities and challenges of ChatGPT in
education,” Interact. Learn. Environ., Sep. 2023, doi: 10.1080/10494820.2023.2253858.

[3] M. B. & F. G. Olaf Zawacki-Richter, Victoria I. Marín, “Systematic review of research
on artificial intelligence applications in higher education – where are the educators?,”
Int. J. Educ. Technol. High. Educ., vol. 16, p. 39, 2019, doi:
https://doi.org/10.1186/s41239-019-0171-0.

[4] T. Li, E. Reigh, P. He, and E. Adah Miller, “Can we and should we use artificial
intelligence for formative assessment in science?,” J. Res. Sci. Teach., vol. 60, no. 6, pp.
1385–1389, Aug. 2023, doi: 10.1002/TEA.21867.

[5] and B. Y. P. G. Verma, T. Campbell, W. Melville, “Navigating Opportunities and
Challenges of Artificial Intelligence: ChatGPT and Generative Models in Science
Teacher Education,” J. Sci. Teach. Educ, vol. 34, no. 8, pp. 793–798, 2023, doi:
https://doi.org/10.1080/1046560X.2023.2263251.

[6] M. Al-Emran, “Unleashing the role of ChatGPT in Metaverse learning environments:
opportunities, challenges, and future research agendas,” Interact. Learn. Env., pp. 1–10,

 International Journal of Innovations in Science & Technology

Dec 2024|Vol 06| Issue 04 Page |2083

2024, doi: https://doi.org/10.1080/10494820.2024.2324326.
[7] Z. H. & Y. G. Yuren Mao, Yuhang Ge, Yijiang Fan, Wenyi Xu, Yu Mi, “A survey on

LoRA of large language models,” Front. Comput. Sci, vol. 19, pp. 1–140, 2024, doi:
https://link.springer.com/article/10.1007/s11704-024-40663-9.

[8] and H. W. Gao, Yunfan Xiong, Yun Gao, Xinyu Jia, Kangxiang Pan, Jinliu Bi, Yuxi
Dai, Yi Sun, Jiawei Meng Wang, “Retrieval-Augmented Generation for Large Language
Models: A Survey,” arXiv:2312.10997, 2023, [Online]. Available:
https://arxiv.org/pdf/2312.10997

[9] P. P. Ray, “ChatGPT: A comprehensive review on background, applications, key
challenges, bias, ethics, limitations and future scope,” Internet Things Cyber-Physical Syst.,
vol. 3, pp. 121–154, 2023, doi: https://doi.org/10.1016/j.iotcps.2023.04.003.

[10] J. Zhou, P. Ke, X. Qiu, M. Huang, and J. Zhang, “ChatGPT: potential, prospects, and
limitations,” Front. Inf. Technol. Electron. Eng., vol. 25, no. 1, pp. 6–11, Jan. 2024, doi:
10.1631/FITEE.2300089/METRICS.

[11] and S. R. Z. Ahmad, W. Kaiser, “Hallucinations in ChatGPT: An Unreliable Tool for
Learning,” Rupkatha J. Interdiscip. Stud. Humanit, vol. 15, no. 4, 2023, doi:
https://doi.org/10.21659/rupkatha.v15n4.17.

[12] J. M. P.-A. and A. Labisa-Palmeira, “Quick Review of Pedagogical Experiences Using
Gpt-3 in Education,” J. Technol. Sci. Educ, vol. 14, no. 2, pp. 633–647, 2024, doi: DOI:
https://doi.org/10.3926/jotse.2111.

[13] and L. C. Z. Xie, X. Evangelopoulos, Ö. H. Omar, A. Troisi, A. I. Cooper, “Fine-
tuning GPT-3 for machine learning electronic and functional properties of organic
molecules,” Chem. Sci, vol. 15, no. 2, pp. 500–510, 2023, [Online]. Available:
https://pubs.rsc.org/en/content/articlelanding/2024/sc/d3sc04610a

[14] M. Enis, “From LLM to NMT,” 2024, doi: 10.36934/TR2024_197.
[15] and G. T. L. Caruccio, S. Cirillo, G. Polese, G. Solimando, S. Sundaramurthy, “Claude

2.0 large language model: Tackling a real-world classification problem with a new
iterative prompt engineering approach,” Intell. Syst. with Appl., vol. 21, p. 200336, 2024,
doi: https://doi.org/10.1016/j.iswa.2024.200336.

[16] X. H. Xiaohua Wang, Zhenghua Wang, Xuan Gao, Feiran Zhang, Yixin Wu, Zhibo Xu,
Tianyuan Shi, Zhengyuan Wang, Shizheng Li, Qi Qian, Ruicheng Yin, Changze Lv,
Xiaoqing Zheng, “Searching for Best Practices in Retrieval-Augmented Generation,”
arXiv:2407.01219, 2024, doi: https://doi.org/10.48550/arXiv.2407.01219 Focus to
learn more.

[17] E. Kasneci et al., “ChatGPT for good? On opportunities and challenges of large
language models for education,” Learn. Individ. Differ., vol. 103, p. 102274, Apr. 2023,
doi: 10.1016/J.LINDIF.2023.102274.

[18] W. C. Yuning Mao, Pengcheng He, Xiaodong Liu, Yelong Shen, Jianfeng Gao, Jiawei
Han, “Generation-augmented retrieval for open-domain question answering,”
arXiv:2009.08553, 2021, doi: https://doi.org/10.48550/arXiv.2009.08553.

[19] S. J. Ruochen Zhao, Hailin Chen, Weishi Wang, Fangkai Jiao, Xuan Long Do,
Chengwei Qin, Bosheng Ding, Xiaobao Guo, Minzhi Li, Xingxuan Li, “Retrieving
Multimodal Information for Augmented Generation: A Survey,” Find. Assoc. Comput,
pp. 4736–4756, 2023, doi: 10.18653/v1/2023.findings-emnlp.314.

Copyright © by Talha Ahsan et al and 50Sea. This work is licensed
under Creative Commons Attribution 4.0 International License.

