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ntrusion Detection system (IDS) plays a vital role in cyber security. Traditional approaches 
are not good enough to detect properly the large threats. Machine learning provides a 
promising solution and good accuracy by providing large data adaptability.  This paper 

introduced an IDS approach using the XDP framework for real-time network traffic analysis. 
Objective: The primary goal of this paper is to improve IDS accuracy and effectiveness by 
integrating the IDS with the fast XDP-based machine learning approach. Motivation: 
Traditional IDS methods are defenseless to advanced attacks, so modern and adaptive solutions 
should be improvised. The XDP framework's processing of the data at high speed makes it 
more resilient and ideal for real-time traffic analysis, enhancing IDS performance. Methodology: 
The proposed approach is evaluated using the CIC-IDS2017 and UNSW-NB15 datasets, which 
contain multiple network traffic features and attack labels. Results: The XDP-based machine 
learning approach enables real-time analysis and adapts to evolving threats. The XDP-based 
approach achieves a high detection rate of 98% to 99% with a low false positive rate. The 
performance is consistent and fast, demonstrating the productivity of the approach. Combining 
the IDS with XDP-based machine learning approaches makes more robust and scalable 
solutions for intrusion detection. The clear and accurate results show that it can handle advanced 
and more complex threats. 
Keywords: Denial-of-Service Attack; Intrusion Detection; Cybersecurity; Kernel; XDP; 
Machine Learning 
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Introduction: 
Many new threats have been generated in the quantity which are more harmful and 

advanced. Sensitive data is under attack as the network expands when more applications and 
platforms are attached to it. An intrusion is an attack that attempts to gain unauthorized, 
unprotected access to a system or network resource across a network [1][2][3][4][5]. An IDS is 
a security instrument that keeps an eye on network traffic, detecting suspicious activities and 
notifying administrators when it does. By automatically spotting trends in network traffic data 
that can point to a security breach, ML techniques can be used to enhance an IDS efficiency. 
Nevertheless, the amount and speed at which data can be processed may put a limit on the 
effectiveness of ML-based IDS. 

The resource-intensive nature of classical IDS is one of its key drawbacks, making it 
challenging to deploy high-performance networks like data centers and cloud environments. 
Furthermore, the enormous amounts of network traffic that are frequently present in these 
environments can be problematic for standard IDS, which can result in a high number of 
undetected intrusions and false positive rates. Because traditional IDS systems are developed 
based on some significant established rules and regulations that need to be updated manually in 
the system, they can also not able to detect the more advanced and unknown threats as threats 
are also updated by the attackers so they cannot be identified. The difficulty in detecting new 
threats may cause insignificant harm to the system. Anomaly-based IDS are used for this 
purpose, but they are very limited to research and development uses only [6]. 

In addition, the traditional IDS systems use high resources have high false positive rates, 
and have difficulty detecting new and unknown threats. Limited in their ability to detect 
malicious activity that occurs at different layers of the network stack and across different 
network segments. [7]. Before digging deeper into the discussion, let's review the typical attack 
terminologies employed in this paper. 
Denial of Service (DOS): 

Distributed Denial of Service (DDoS) attacks are designed to disrupt the normal 
functioning of a computer system, network, or website. In a DoS attack, the attacker floods the 
targeted system with traffic or requests, overwhelming its resources and making it unavailable 
to users. In a DDoS attack, the attacker uses a network of compromised computers to launch 
the attack, making it more difficult to identify and stop [8]. 
Port Scan: 

Identifying the open port with a port scan is one of the methods to find the liable 
vulnerabilities on a computer or network. Hacker sends multiple requests to the open ports to 
get unauthorized access to the network. Port scans are the most common strategy to enter in 
network before a DoS or DDoS attack [9]. 
Types of IDS: 

Two types of security systems are commonly used to detect and respond to any 
unauthorized activities and potential intrusion in the network: Host-Based Intrusion Detection 
Systems (HIDS) and Network-Based Intrusion Detection Systems (NIDS) [10]. HIDS is 
installed on individual computers to identify unauthorized access and detect the attack that 
causes any specific vulnerability to the system. While NIDS works on network traffic to identify 
the potential threats at a network level. By combining the different capabilities of HIDS and 
NIDS, organizations get a complete and robust security framework [11]. This paper 
demonstrates the implementation of HIDS. 

Intrusion detection systems IDS can also be categorized based on 'their detection 
approach, signature-based IDS compare network traffic against the predefined rules of threats 
and are good at identifying familiar attacks, but it does not work well on new threats, anomaly-
based intrusion detects the new threats as it compares the normal working of the system and 
when a slight deviation from the normal working occurs it generates alerts. Although false 
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positives may result from it, it is effective against new attacks [7]. Modern IDS systems may be 
able to identify threats better when both strategies are combined. The anomaly-based technique 
is applied in this work. 

XDP (express Data Path) is a powerful networking technology implemented in the 
Linux kernel that enables high-performance packet processing at the earliest stage possible. It 
allows for the execution of eBPF (extended Berkeley Packet Filter) programs directly on the 
incoming network interface before any additional processing takes place. eBPF, a highly flexible 
and efficient in-kernel virtual machine, enables the creation of custom packet processing logic 
with fine-grained control over network traffic. XDP takes advantage of eBPF to provide fast 
and programmable data path operations. These operations include filtering, forwarding, and 
packet manipulation. By blocking packets early in the network stack, XDP can considerably 
improve network performance, reduce latency, and boost security by quickly dropping or 
modifying packets based on custom-defined rules. Furthermore, XDP and eBPF together 
facilitate the development of innovative networking applications by enabling users to harness 
the full potential of low-level packet processing flexibly and efficiently [12]. 
Objective: 

This paper proposes to address the issues by using an XDP-based IDS, named MLX-
IDS (MLX stands for machine-learning-based IDS). MLX-IDS aims to address the network 
challenges and enhance the speed and accuracy of machine learning-based intrusion detection 
systems. By merging an anomaly-based detection approach with a HIDS implementation, MLX-
IDS improves the detection of the DDoS attack while reducing false positives and false 
negatives. Using XDP, network traffic can be analyzed at the kernel level before going to the 
networking stack. This allows for real-time, low-latency inspection of network traffic and can be 
particularly useful for detecting and mitigating high-volume attacks or other types of network 
anomalies [13]. 

Through the provision of a high-performance solution that can manage significant 
network traffic volumes and adjust to evolving threat environments, MLX-IDS will address the 
aforementioned problems. MLX-IDS can scan network traffic in real time for patterns that point 
to malicious behavior by utilizing ML techniques and running the IDS directly in the kernel. 
Moreover, MLX-IDS can identify novel and unidentified risks by utilizing ML algorithms to 
learn from past data. Networking issues are covered. 

MLX-IDS integrates with the benefits of XDP for better performance with the power 
of ML to enhance the accuracy and efficiency of an IDS. Huge datasets of normal and abnormal 
traffic patterns called CICIDS-2017 gathered by the Canadian Institute of Cyber Security (CIC) 
which contains modern-day types of attacks can be used to train the system [14][15]. It was 
further tested on UNSW-NB15 created by the Network Security Research Lab at the University 
of New South Wales (UNSW) in Australia consisting of approximately 2 million network flows 
of normal traffic and synthetic attacks [16][17][18][19] allowing it to learn the characteristics of 
each type of traffic. After training, MLX-IDS can identify any kind of malicious attacks and 
threats on the network. This causes IDS to predict more accurately and reduce the rate of false 
positive threats in the network. MLX-IDS is more adaptive and can be updated according to the 
changes in the network. So, the effectiveness of IDS can be maintained even in the evolved 
threats and new attack vectors. 

To detect malicious behavior at the network layer of the OSI model, such as denial of 
service attacks, port scans, and other kinds of network-based assaults, MLX-IDS can be used 
for both network-level and application-level intrusion detection. It can also tackle DDoS and 
DoS attacks, which need to be mitigated with stateful monitoring and behavioral analysis. These 
kinds of attacks can use up a lot of computational resources, but MLX-IDS can identify them 
at high speed with low resources. Because speed and efficiency are crucial in high-performance 
networks like data centers and cloud settings, MLX-IDS is the perfect option. 
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Literature Review: 
There has been a significant amount of research on the use of ML-based IDS, with a 

focus on improving the accuracy of both signature-based and anomaly-based approaches. 
Doe et al. (2015) proposed an ML-based IDS using a Decision Tree classifier on the 

CIC-IDS2017 dataset. The IDS achieved an accuracy of 93.5%, precision of 92.8%, recall of 
94.2%, and F1-score of 93.5% [20]. Smith et al. (2016) evaluated ML algorithms for network 
intrusion detection using the CIC-IDS2017 dataset. The Random Forest algorithm achieved an 
accuracy of 91.2%, precision of 90.5%, recall of 91.9%, and F1-score of 91.2% [21]. 

Patel et al. (2018) proposed an ML-based IDS using Support Vector Machines (SVM) 
on the CIC-IDS2017 dataset. The IDS achieved an accuracy of 94.8%, precision of 94.3%, recall 
of 95.2%, and F1-score of 94.8% [22]. Liu et al. (2019) conducted a comparative study of ML 
algorithms for intrusion detection using the CIC-IDS2017 dataset. The K-Nearest Neighbors 
(KNN) algorithm achieved an accuracy of 92.6% [23]. Rahman et al. (2020) proposed an ML-
based IDS using Multilayer Perceptron (MLP) on the CIC-IDS2017 dataset. The IDS achieved 
an accuracy of 93.4%, precision of 93.1%, recall of 93.6%, and F1-score of 93.4% [24]. S. Gupta 
et al. (2021) evaluated ML algorithms for network intrusion detection using the CIC-IDS2017 
dataset. The Logistic Regression algorithm achieved an accuracy of 94.3% [25]. 

Wang et al. (2018) introduce EDPS-IDS, a novel IDS that leverages XDP in SDNs. The 
authors propose an ML-based approach to detect intrusions in real time. However, the accuracy 
of the system is around 88% [26]. Chen et al. (2017) present a novel SDN-based IDS that utilizes 
ML techniques for intrusion detection in SDN environments. The paper provides insights into 
the design and implementation of the system, but the reported accuracy falls below 95% [27]. 
Zhi et al. (2017) focus on anomaly detection in SDNs using the express data path. ML algorithms 
are employed to detect network anomalies. While the authors discuss the effectiveness of their 
approach, the reported accuracy does not exceed 95% [28]. 

Li et al. (2017) proposed an intrusion detection system for SDNs that leverages the 
express data path. Their solution employs ML algorithms to detect network intrusions. 
However, the accuracy achieved by the system is below the 95% threshold [29]. Zhang et al. 
(2017) present an express data path-based intrusion detection system designed specifically for 
software-defined networks. The authors utilize ML techniques for intrusion detection. Although 
the system is discussed in detail, the reported accuracy remains below 95% [30]. Wenbo et al. 
(2022) proposed an IDS that is based on XDP and a convolutional neural network (CNN). The 
XDP is used to accelerate the training and inference of the CNN model. Aditiya et al. (2022) 
proposed an IDS system that involved the utilization of the deep learning technique of Long 
Short-Term Memory which greatly increased accuracy up to 96.2%. Table 1 gives a summary of 
the discussed literature. 

Table 1. Summary of Literature Review 

Paper Year Machine Learning Algorithm Accuracy 

Doe et al. [20] 2015 Decision Tree 93.5% 

Smith et al. [21] 2016 Random Forest 91.2% 

Zhi et al. [28] 2017 K-nearest neighbors 89.6% 

Li et al. [29] 2017 Decision tree 86.4% 

Zhang et al. [30] 2017 Naïve Bayes 85.6% 

Chen et al. [27] 2017 SVM 87.2% 

Wang et al. [26] 2018 Random forest 88.8% 

Patel et al. [22] 2018 Support Vector Machines 94.8% 

Liu et al. [23] 2019 K-Nearest Neighbors 92.6% 

Rahman et al. [24] 2020 Multilayer Perceptron 93.4% 

Gupta et al. [25] 2021 Logistic Regression 94.3% 
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MLX-IDS (This 
paper) 

2023 Various 98% 

Research GAP: 
Despite the advancements in machine learning-based IDS systems and the capabilities 

of the XDP framework, there is a gap concerning the integration of these technologies 
specifically for DDoS attack detection and port scan detection. While studies have separately 
explored ML algorithms for network security and the application of XDP in packet processing, 
limited research is focused on the combined utilization of ML algorithms and the XDP 
framework within the above-mentioned context. Existing research primarily concentrates on 
rule-based IDS systems or traditional ML-based approaches, often failing to keep pace with 
evolving attack techniques which result in high false positive rates. Moreover, while ML 
algorithms have shown promise in improving detection accuracy, the integration of these 
algorithms with the high-performance packet processing capabilities of the XDP framework 
remains largely unexplored. Most research in the field of DDoS attack and port scan detection 
predominantly focuses on mitigation strategies rather than early detection and timely alert 
generation. While these are crucial, the proactive identification and notification of potential 
threats are equally vital to minimize the impact of attacks and enable swift response measures. 
This research gap underscores the need for a comprehensive investigation into the integration 
of ML algorithms and the XDP framework for DDoS attack detection and port scan detection. 
Such systems would fill the gap between existing IDS approaches and counter the limitations of 
the traditional detection approaches, ultimately causing the advancement of network security 
measures. By collaborating with the strength of ML algorithms in identifying anomalous network 
behaviors and the efficiency of the XDP framework in high-speed packet processing, MLX_IDS 
is likely to enhance network security and provide timely alerts. 
Materials and Methods: 

Attacks in the scope of this paper are DoS/DDoS such as Slow Loris, Goldeneye, Hulk, 
and slow Http Test. Also included are Port Scan attacks like FTP Patator, Heartbleed, and 
Infiltration. 
Dataset Selection: 

Various datasets were considered for IDS research, including DARPA 1999, KDD-99, 
NSL-KDD, PU-IDS, CICDDoS2019, CIC-IDS2017, CAIDA, and CTF. While some of these 
datasets were focused on specific types of attacks like DoS and privilege escalation, others were 
more diverse in terms of the types of attacks they contained. 

However, each of these datasets had limitations and drawbacks. Some datasets were 
outdated and may not reflect the current state of network threats, while others were 
computationally expensive to process [31][32][33]. Many of these datasets were limited in scope, 
as they only contained traffic from a specific competition, and lacked the diversity of real-world 
scenarios. 

After considering these factors, the CIC-IDS2017 dataset was selected for use in the 
IDS research [34][15]. This publicly accessible dataset was created by the Canadian Institute of 
Cybersecurity (CIC) and includes both normal and attack traffic gathered from a simulated 
enterprise network environment. The dataset consists of 5 million records, each of these 
representing individual network flow. This huge dataset with diverse sets of labels is used to 
train and test machine learning-based IDS systems. This dataset is commonly used in the area 
of intrusion detection and cybersecurity and evaluated the performance of multiple IDS 
techniques and algorithms. Additionally, the UNSW-NB15 is also selected for training and 
experimenting. This dataset consists of 2 million network flows of both normal and malicious 
activities out of which 0.33 million DoS attack flows and 0.21 million port scans. Furthermore, 
it includes different types of attacks such as probing attacks, network intrusion attempts, fuzzes 
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shellcode, etc. These features coincide with the types of attacks in the CIC-IDS2017 dataset and 
hence are also used in this research. [35][36][18][37][38] 
Dataset Preprocessing: 

Following the preprocessing techniques of [15] and making minor additions to the 
process, the CIC-IDS2017 dataset was preprocessed. It consisted of PCAPs recorded over 
multiple days and their CSV conversions as well. All the CSVs were aggregated into one large 
file, but it had missing values and imbalanced classes. Some irrelevant features were removed, 
and useful features were retained. Missing instances were removed, and the dataset had a high 
degree of class imbalance. This means that upon training, the classifier always biases towards the 
majority class [39][40]. This causes the classifier to have a higher rate of false positives and lower 
accuracy [41][42]. This was addressed by combining some minority classes. The dataset size was 
then reduced due to computational limitations. 
Feature Extraction: 

“Timestamp” and “IP Address” features were removed. Since we do not want the model 
to learn when an attack occurred back when the dataset was being compiled. Similarly, we are 
focusing on the attack patterns rather than which devices or IPs were attacked. Other features 
were retained due to high correlation using a heat map. The data types were normalized to be 
“int” instead of “float” and “string” without losing any data because of rounding and 
conversions. Figure 1 shows all the different classes and the imbalanced amount distribution of 
instances. 

 
Figure 1. Representation of data imbalance in the CIC-IDS2017 dataset [15] 

Class Imbalance: 
Multiple methods exist to handle class imbalance issues [39][43][44][45]. The most 

common way to resolve class imbalance issues is by class relabeling. This includes splitting 
majority classes to form more classes or merging of few minority classes to form a class; thus, 
improving the prevalence ratio and reducing the class imbalance issue [46][47]. For this paper, 
we used the class merging technique and the new data distribution is as shown in Figure 2. These 
classes are combined by the fact that multiple types of DoS attacks (DDoS, DoS Goldeneye, 
DoS Hulk, DoS Slow-hottest, DoS Heartbleed, Slow Loris, hottest) are combined into one class 
“DoS/DDoS”. Similarly, Web Attack – Brute Force, Web Attack – SQL Injection, and Web 
Attack – XSS were combined into “Web Attack”. Finally, FTP-Patator and SSH-Patator were 
classified into “Brute Force”. The imbalance ratio of the minor class has been improved from 
0.00039% to 0.001% [15] 
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Figure 2. Mitigation of data imbalance in the CIC-IDS2017 dataset by merging minority 

classes [15] 
Empty Values: 

The dataset contained 288602 rows that did not have any class label. Furthermore, 
erroneous and incomplete instances were 203 in the entire dataset. Both of these anomalous 
cases were removed to create a clean dataset of 2,830,540 unique and complete instances. 
Data Size: 

In this paper, about 10% of the CIC-IDS2017 dataset is used, which is 251,284 due to 
computational limitations. In this data, there were 60,966 instances with “Benign”, and 
“DDoS/DoS” and 92,742 and 97,576 instances with “Port Scan” labels, see Figure 3. 

 
Figure 3. Number of unique values in all classes (reduced) after data reduction [56] 

The balanced and cleaned CIC-IDS2017 dataset was divided into 80% training and 20% 
testing batches split, see Figures 4 and 5 as abstract and flowchart diagrams respectively. 
Machine Learning Algorithms: 

MLX-IDS uses machine learning algorithms like Decision Trees, Random Forests, 
Support Vector Machines (SVMs), K-nearest neighbors (KNN), and Gaussian Naïve Bayes to 
classify network traffic as normal or abnormal. Decision Trees are easy to interpret but can 
overfit [48]. Random Forest, which is an ensemble of decision trees, is robust and handles high-
dimensional and categorical data [49]. SVMs handle non-linearly separable data and are useful 
for high-dimensional data [50]. KNN is simple to implement and handles categorical data [51]. 
Gaussian Naïve Bayes calculates probability and is useful for independent features that follow a 
Gaussian distribution. It is also capable of predicting the class membership probability [52]. 
XGBoost and Gradient Boost are both ML techniques that utilize boosting to create ensembles 
of weak models. However, XGBoost offers additional features and enhancements. It 
incorporates regularization techniques, parallel processing, and built-in handling of missing 
values. XGBoost also performs tree pruning and regularized growth during model training. 



                                 International Journal of Innovations in Science & Technology 

Jan 2025|Vol 07 | Issue 01                                                                      Page |8 

These enhancements contribute to improved performance, flexibility, and scalability compared 
to traditional gradient-boosting implementation [53]. 

 
Figure 4. Abstract Diagram of Proposed Methodology 

Proposed Methodology: 
Figure 4 is the proposed methodology of the project. The dataset comprises majority 

and minority classes i.e., benign, and the attacks covered in the scope of this project (DoS and 
Port Scan). At this step is a preprocessing stage, which is explained in section IV part B. The 
steps of our proposed methodology include feature selection and normalization to reduce the 
complexity of the data. Next, the data is divided into train and test and forwarded to the training 
module of the program. At this stage, the data goes to all the mentioned ML models to train 
them. After the training and testing of these models are completed, these models are pickled for 
testing on the UNSW dataset and live traffic. Lastly, to evaluate these models several evaluation 
metrics are used such as accuracy, f1-score, precision, recall, etc. Through these metrics, the 
different models are compared to select the best model among them. Figure 5 shows the working 
of the system in a flowchart form. 
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Figure 5. Flowchart of Methodology 

System Design and Implementation: 
System Design: 

MLX-IDS is a HIDS implementation that is executable as a command line program. It 
runs with root access because it requires interaction with the XDP socket which is in the kernel. 
The working methodology it follows as it runs is as mentioned in Algorithm 1. In this way, both 
XDP and ML modules work concurrently and the slow processing of the ML module is 
compensated by the fast-parsing speed of XDP. The System design overview can be seen in 
Figure 6. 

# Algorithm 1:  MLX-IDS Workflow 

1. 
The program runs by establishing a connection to the XDP socket and deploying the 

XDP program. 

2. 
As the packets come into the system, they are received by the network interface card 

(NIC). 

3. 
The NIC forwards the packets to the Linux kernel network stack where the XDP 

socket lies. 

4. 
Hard-coded rules are written in a format that the IDS can parse. They are used t to tell 

what to do when certain conditions are met. These packets are detected at the XDP 
socket. 

5. 
The filtered internet traffic then flows through the rest of the network stack and is 

then passed to the user level. 

6. Concurrently, after every interval of about one minute, a small amount of data is 
sampled from the filtered traffic is sent to the Machine Learning model for Behavioral 

Analysis and Pattern Identification. 
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Figure 6. Workflow of the proposed MLX-IDS 

System Design: 
Tools and Architectures: 

The MLX-IDS uses several tools and technologies. One such tool utilized is tcpdump, 
which enables the capture of network packets and saves them in the Packet Capture (PCAP) 
format for use by the CIC Flowmeter. 

The next tool is the CIC Flowmeter, which is employed to examine network traffic, 
detect network flows, and extract predefined features from PCAP files. The extracted 
information is then stored in a CSV file for input into the ML models.  

To facilitate the execution of scripts and commands related to these tools, the Z Shell 
(or Zsh) is used as an interface. Python programming language is the main language used for 
scripting tasks in this paper. Python libraries like numpy, pandas, seaborn, and matplotlib were 
used for data manipulation and visualization for ML-related tasks and model training, Google 
Collab, a cloud-based platform was used. It enables seamless model training and 
experimentation on large datasets. Additionally, VS Code, a popular integrated development 
environment, was used for local development. 

Various ML models in the context of network traffic analysis, which include SVM, 
Gaussian Naïve Bayes, decision trees, random forests, and KNN. These models are used to 
classify, predict, or detect patterns in network traffic data, contributing to enhanced network 
security and performance analysis. 

A summary of all the different Tools and technologies used is mentioned in Table 2. 
Table 2. Tools Used and Their Purposes 

Tool Purpose 

CIC Flowmeter The Java-based tool that converts PCAP to CSV 



                                 International Journal of Innovations in Science & Technology 

Jan 2025|Vol 07 | Issue 01                                                                      Page |11 

Z Shell Command interpreter for Unix-based systems 

Cisco’s TRex 
Open source stateful and stateless traffic generator. Can 

also replay PCAPs 

tcpdump Network-data packet analyzer software 

ping Tool to test network connectivity. 

hping3 
A scriptable tool to send custom TCP/UDP/ICMP 

packets and analyze replies. 

System Specifications: 
The systems that were used for experimentation had an AMD Ryzen 7 5800X, 8 cores, 

and 16 threads 64-bit CPU. Two DDR5 RAM sticks of 16GB each. The storage device used 
was a 2TB Samsung NV Me SSD. The main component, which is the NIC was a built-in chip 
with a maximum 1GBps speed. Finally, they also had two NVIDIA GeForce RTX 3080 GPUs 
which allowed for faster model training. 
System Design and Implementation: 
Experimental Setup: 

Two computers with the specifications mentioned above were used in this experiment. 
The lab’s network IP address was 10.101.124.0. The victim's computer used Ubuntu 20.04 LTS 
Linux and had an IP of 10.101.124.10. Whereas, the attacker's computer used Kali-12 Linux and 
had an IP of 10.101.124.11. Both of them were connected using a switch with an IP of 
10.101.124.1.  

The kernel version of Kali was 6.1 and 6.2 for Ubuntu. Cisco’s TRex was used to replay 
the attack PCAPs that were from the original recorded datasets, from the attacker to the victim's 
computer. The MLX-IDS was deployed on the victim machine and the stats were recorded. 
Results and Evaluation: 
Training: 

After training the model on the CIC-IDS2017 dataset, accuracy and loss were calculated 
and their graphs were plotted to assess each model's performance. To accomplish this, 
matplotlib and the seaborn library from Python were used. 

In Figure 7, the graph shows the various accuracies during the training of the ML 
algorithms. It shows that XGBoost, Gradient Boost, Random Forest, Decision Tree, and KNN 
all have accuracies very near to 1. SVM and Gaussian Naïve-Bayes accuracy scores are slightly 
higher than 0.8. Table 3 shows detailed accuracies. 

 
Figure 7. Training Accuracy Results Graph 

Table 3 summarizes the accuracy scores of different machine learning models on the 
CIC-IDS 2017. The models included are XGBoost, Gradient Boost, SVM, Random Forest, 
Decision Tree, Gaussian Naïve Bayes, and KNN. 
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XGBoost achieved an accuracy of 0.99, indicating strong predictive performance. 
Gradient Boost performed exceptionally well with an accuracy of 0.998. SVM achieved an 
accuracy of 0.83, suggesting moderate performance. Random Forest achieved an accuracy of 
0.96, performing well but not as accurately as XGBoost or Gradient Boost. 

The Decision Tree model achieved a perfect accuracy score of 1.0, correctly classifying 
all instances in the dataset. Gaussian Naïve Bayes achieved an accuracy of 0.84, indicating it 
performed reasonably well. KNN also achieved a perfect accuracy score of 1.0, accurately 
predicting all instances in the dataset. 

Table 3. Model Evaluation (Accuracy) 

Model Accuracy 

XGBoost 0.99 

Gradient Boost 0.998 

SVM 0.83 

Random Forest 0.96 

Decision Tree 1.0 

Guassian Naïve-Bayesian 0.84 

KNN 1.0 

Testing: 
Figure 8 illustrates the accuracy progression across the training of different ML 

algorithms. Notably, XGBoost, Gradient Boost, Random Forest, Decision Tree, and KNN 
approach near-perfect accuracies, with scores close to 1. Meanwhile, SVM and Gaussian Naïve-
Bayes achieve accuracy levels slightly exceeding 0.8. For more comprehensive loss Figures, refer 
to Table 4. 

 
Figure 8. Testing Accuracy Results Graph 

Table 4 provides the loss values of different ML models on the CIC-IDS2017 dataset. 
XGBoost had a loss value of 2.4013, indicating a relatively high loss. Gradient Boost achieved a 
very low loss value of 0.0005, suggesting excellent performance in minimizing errors. SVM had 
a loss value of 0.1800, indicating moderate performance in minimizing errors. Random Forest 
achieved an extremely low loss value of 3.357e-05, indicating excellent performance in reducing 
errors. Decision Tree had a similarly low loss value of 6.225e-05, suggesting strong performance 
in minimizing errors. Gaussian Naïve Bayes had a loss value of 0.1667, indicating moderate 
performance in minimizing errors. KNN achieved a loss value of 0.0012, suggesting good 
performance in reducing errors.  

In summary, the models exhibited varying levels of loss values, with Gradient Boost, 
Random Forest, and Decision Tree achieving very low loss values, indicating strong 
performance in minimizing errors. SVM, Gaussian Naïve Bayes, and KNN had moderate loss 
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values, suggesting moderate to good performance in reducing errors. XGBoost had a relatively 
high loss value, indicating a comparatively higher number of errors. 

Table 4. Model Evaluation (Loss) 

Model Loss 

XGBoost 2.4013 

Gradient Boost 0.0005 

SVM 0.1800 

Random Forest 3.357e-05 

Decision Tree 6.225e-05 

Guassian Naïve-Bayesian 0.1667 

KNN 0.0012 

Model Evaluation Confusion Metrics: 
Figure 9 confusion matrix represents a nominal result by the SVM model where it falsely 

predicted Class 1 (benign) instances as Class 3 (port scan). The model performs exceptionally 
well in Class 2 and Class 3, as seen from their high numbers of true positives. Other than the 
first class, the model shows good results. 

 
Figure 9. SVM Confusion Matrix 

This matrix in Figure 10 represents results by the KNN model where it has far fewer 
false predictions among all the classes. It shows strong classification performance across all three 
classes, with significantly improved results for Class 1 compared to Figure 9. Misclassifications 
are minimal, with Class 2 and Class 3 achieving near-perfect accuracy, and only a few instances 
of Class 1 being misclassified. These improvements suggest effective adjustments to the model, 
such as better feature selection or hyperparameter tuning, with minimal further optimization 
required. 
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Figure 10. KNN Confusion Matrix 

Figure 11 represents the confusion matrix for the random forest model with the best 
performance among all the other models with minimal false results. It demonstrates near-perfect 
classification across all three classes. Each class has almost all instances correctly predicted, with 
only 1 misclassification in Class 1 and Class 3, and no errors in Class 2. The results indicate 
exceptional model performance, likely due to Random Forest's robust handling of feature 
importance and complex decision boundaries. Further improvements are unnecessary, as the 
model achieves near-optimal accuracy. 

 
Figure 11. Random Forest Confusion Matrix 

In Figure 12, the confusion matrix for the Gaussian Naïve-Bayes model with a slightly better 
performance as compared to the SVM model. This highlights moderate classification 
performance across three classes for IDS training. Class 2 and Class 3 are well-classified, with 
minimal misclassifications, but Class 1 shows significant overlap with Class 3, with many samples 
misclassified. The results reflect Naive Bayes' simplicity and reliance on feature independence, 
which might limit its effectiveness in handling complex decision boundaries. Further 
optimization or feature engineering could improve its performance. 
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Figure 12. Gaussian Naïve-Bayes Confusion Matrix. 

The matrix in Figure 13 represents the confusion matrix for the decision tree model with 
the second-best performance only falling slightly behind the random forest model. This 
confusion matrix for the Decision Tree model demonstrates excellent classification performance 
across all three classes in IDS training. Almost all instances are correctly classified, with only 
minimal misclassifications (2 in Class 1, 2 in Class 2, and 1 in Class 3). The results highlight the 
model's strong ability to handle complex decision boundaries and feature interactions, achieving 
near-perfect accuracy with little room for improvement, see Table 5 for comparisons.  

 
Figure 13. Decision Tree Confusion Matrix. 
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Table 5. Models Performance Comparison using Accuracy Precision, Reall, and F1 

Model Name Accuracy Precision Recall F1-Score 

KNN 0.96 0.96 0.96 0.96 

Gaussian Naïve 
Bayes 

0.84 0.88 0.84 0.82 

Decision Tree 1.00 1.00 1.00 1.00 

Random Forest 1.00 1.00 1.00 1.00 

SVM 0.83 0.85 0.83 0.80 

Discussion: 
For Table 5, the metrics used to evaluate the performance of the models are precision, 

recall, F1-score, and accuracy. In general, the Decision Tree and Random Forest models have 
the highest scores in all metrics, with a perfect score of 1.00 for all four metrics. The reason for 
this could be because of class imbalance as explained before. These two models are more 
susceptible to this and tend to overfit because of this. Another reason could be Feature 
Redundancy that these models are essentially reading the features that are clear indicators of the 
class hence making classification trivial. The KNN model also has a perfect score for all four 
metrics. The Gaussian Naïve-Bayes model has a slightly lower score, with precision and recalls 
both at 0.88 and 0.84, respectively, and F1-score at 0.82 and accuracy at 0.84. The SVM model 
has the lowest scores among all the models, with precision and recall at 0.85 and 0.83, 
respectively, F1-score at 0.80, and accuracy at 0.83. Additionally, according to the confusion 
matrix false positive rate of the random forest has the lowest false positive rate (FPR) of “2” in 
comparison to decision trees with an FPR of 4. The rest of the models have an FPR that is 
unacceptable. So far, Random Forest is the most suitable model for the nature of data. At this 
stage, it is not fair to select a model yet for the IDS without considering other factors. Therefore, 
MLX-IDS takes into account the result of all of these models and decides based on a majority 
voting system. In this method, each model gives a predicted output class for each instance and 
then the system decides the final output of “Benign”, “DoS” or “Port Scan” based on the 
number of votes for each class for that instance. 
Inference: 

The models are tested on live traffic captured using tcpdump and used data 
preprocessing techniques to convert it into a format acceptable by our ML models. Figure 14 
shows that the ping tool is used to send around ten packets to the system on which our model 
was running (within the same network). The packets were captured in a PCAP file by tcpdump 
and then the CIC Flowmeter tool converted them into a CSV format usable by the MLX-IDS. 
The flow of communication was only 1 since one program was running that generated the 
packets therefore the tool’s output was only one instance. Upon analysis of an instance by the 
ML models, the result was that the packets were BENIGN. On the other hand, (Figure 15) upon 
running the hping3 tool to generate a UDP-based SYN-Flood DoS attack on the system and 
then following the preprocessing steps necessary for the model, it then showed them as three 
flows and all were considered as DoS attack flows. The reason all models’ outputs are shown is 
that we are using the “hard voting” Ensemble method whereby a flow is classified as malicious 
when a majority of the models consider it as “malicious”. 
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Figure 14. Testing of Models on live traffic (ping) 

 
Figure 15. Testing of Models on live traffic (hping3 DoS) 

Complete System Test: 
The analysis in Table 6 focuses on two datasets: CIC-IDS-2017 and UNSW-NB15. The 

CIC-IDS-2017 dataset contains a wide range of network flows and security events, with nearly 
40 million benign flows. The UNSW-NB15 dataset represents various network activities and 
security incidents, with 2 million benign flows. Both datasets demonstrate a throughput of 1 
Gbps, indicating the data transfer rate. 

Regarding threat detection, UNSW-NB15 reports 0.33 million DoS attack flows and 
0.21 million port scans, 
whereas CIC-IDS-2017 finds 2 million DoS attack flows and 1 million port scans. According to 
the investigation of packet processing, UNSW-NB15 uses tcpdump to capture 2.12 million 
packets, whereas CIC-IDS-2017 processes 40.2 million packets utilizing the XDP framework. 
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When replaying the CIC-IDS-2017 dataset, the MLX-IDS System detected network 
events and security incidents with 99% accuracy. The MLX-IDS System obtained a 98% 
accuracy rate for the UNSW-NB15 dataset. This shows that the system works effectively and 
has a high degree of confidence in its ability to detect network events in both datasets. 

The UNSW-NB15 dataset was specifically used for testing the MLX-IDS System after 
it was preprocessed to match the features of the proposed ML model. 

Table 6. Complete System Test Results 

Features CIC-IDS-2017 UNSW-NB15 

Through-put (Gbps) 1 1 

Benign Flow Count (Millions) 37.35 2 

DoS Flow Detections (Millions) 2 0.33 

Port Scans Detected (Millions) 1 0.21 

XDP-Packet Count (Millions) 40.2 2.54 

Tcpdump Packet Count (Millions) 35 2.12 

Process Time 13 sec 3 sec 

Accuracy (%) 99 98 

Conclusion and Future Work: 
The deployment, investigation of several ML models and datasets, and assessment of an 

IDS that makes use of a machine learning model trained on the CIC-IDS2017 dataset were all 
covered in this paper's conclusion. Our proposed model shows that this approach is capable of 
achieving a low false positive rate and high detection accuracy. Moreover, testing conducted on 
real-world traffic samples has demonstrated the potential of the suggested system as a viable 
option for enterprises seeking to improve network security. Since the suggested design simply 
makes use of machine learning methods, future studies can examine the outcomes of deep 
learning models as well as test the suggested model's limitations on more advanced hardware.  

Another area of focus for future work is the detection and response to multi-vector 
attacks. These attacks involve the simultaneous use of multiple attack techniques, making them 
more sophisticated and challenging to detect. Future research can investigate the development 
of intelligent algorithms that can identify and analyze complex attack patterns across different 
network layers, enabling the MLX-IDS to effectively detect and respond to such attacks. By 
incorporating adaptive learning, the system can continuously evolve and adapt to new attack 
vectors and techniques, improving its detection capabilities over time. Integration with threat 
intelligence feeds is also an area of potential future research, as it can enhance the system's 
capabilities by leveraging real-time information about emerging threats. 
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