
 International Journal of Innovations in Science & Technology

Jan 2025|Vol 07 | Issue 01 Page |129

Enhancing Open-Source Projects: The Synergy Between Code

Readability Metrics and User Experience
Aisha Khalid1*, Farah Haneef2, Fatima Waseem1
 1*Department of Computer Science, National University of Modern Languages, Islamabad,
Pakistan.
2Department of Software Engineering, Capital University of Science and Technology,
Islamabad, Pakistan.
*Corresponding author. E-mail(s): aisha.khalid@numl.edu.pk
Citation|Khalid. A, Haneef. F, Waseem. F, “Enhancing Open-Source Projects: The Synergy
Between Code Readability Metrics and User Experience”, IJIST, Vol. 07 Issue. 01 pp 129-
145, Jan 2025
Received| Dec 24, 2024 Revised| Jan 14, 2025 Accepted| Jan 16, 2025 Published| Jan
18, 2025.

Introduction /Importance of Study: The open-source project
is a key driver of innovation in the so-called open ecosystem.
However, the readability of code is still a major obstacle in
having users successfully engaged and contributing.
Objective: This study explores how Code Readability Metrics
Impact User Experience (UX) in OSS projects.
Novelty Statement: We examine code comments, structure of the
code, and version control to discover their impact on user
understanding and satisfaction.
Material and Method: For this, a survey has been conducted.
In this survey, handed out to upper division (computing major)
or first-year computer science students at university/graduates
and post-grads in similar positions), we gathered feedback on
projects written in Kotlin, Python, Swift, JavaScript, and Flutter.
Results and Discussion: Results show that readability
correlates positively with a user's perceived experience. The
clarity in your structure, commenting on all parts of the code,
and great version control lead to better user reception. The
study’s findings show that when code is well-organized and
understandable, users tend to have more positive experiences
and like to use the software.
Concluding Remarks: Our study has demonstrated that better
code readability translates into enhanced user experiences,
which can inform developers and project managers on how best
they can improve their practices.
Keywords: Code Comments, Code Structure, Version Control,
User Experience, Code Readability

Abbreviations.
Open-Source Software
(OSS)
Within-Cluster Sum of
Squares (WCSS)
User Experience (UX)

mailto:aisha.khalid@numl.edu.pk

 International Journal of Innovations in Science & Technology

Jan 2025|Vol 07 | Issue 01 Page |130

Introduction:

OSS has revolutionized the way we develop software. Open-source means that the

software project has its source code available to see, use, change, and distribute. These

initiatives enable developers from around the globe to collaborate on writing and enhancing

software, often with a focus on gaining community involvement. Open source is a great way

to drive innovation, promote transparency, and foster the software development community

[1]. While the OSS type of projects based on this idea that code should be shared has also

fostered a quick pace for invention and shown people to document their abilities, there is still

one big stone in the way: readability.

In the OSS community, we have started to consider code readability as a problem in

its own right due to an increasing need for complex features required by users and long-term

owners. Unplanned, uncommented code corresponds to trying to decipher a script which is

virtually impossible. The main contribution of this research is to enhance UXin open-source

project development by analyzing current code readability metrics and upgrading them [2].

Repositories are websites or databases in which a developer is able to share, control, and save

OSS projects. Essentially, these act as centralized locations for storing the source code,

documentation, and other project resources. They make the work of developers easy by

providing the features of teamwork, problem tracking, and version control [3].

Repositories are websites or databases in which a developer is able to share, control,

and save OSS projects. Essentially, these act as centralized locations for storing the source

code, documentation, and other project resources. They make the work of developers easy by

providing the features of teamwork, problem tracking, and version control [3]. Open-source

repositories are gold mines of information for any developer and researcher. They have at

their disposal a huge collection of software libraries and projects [4]. Apart from these,

GitHub, GitLab, and Bitbucket are the repositories that support information sharing and,

therefore, also provide the medium for cooperative learning. TensorFlow is a powerful

machine-learning library. Apache Kafka is a distributed streaming platform. React is a

JavaScript package used for creating user interfaces. The Linux kernel serves as the base of

many operating systems. Linux kernel serves as a foundation for many operating systems.

Thus, by utilizing these repositories, both individuals and organizations can ensure code

transparency, and speed up development processes through peer reviews and community-

driven modifications [5]. Nowadays open-source repositories are also very important for the

software industry since they foster continuous innovation as well as cooperation.

GitHub is by far the most popular open-source repository around (used worldwide).

Some of its best features include good partnerships, good integration with development tools,

and a big community [6]. It has about 330 million repositories as well as over 100 million users

thereby making it prominent among others [7].

 Below are some main points on GitHub [8]:

• Hosting Repository: All source code, resources used for the project, and documentation
are contained in a single repository also called a repo. Repositories can be private or
public.

• Version Control: GitHub uses a distributed version control system called Git that tracks
source code changes that are made during software development. This helps
developers to work together on a project and manage code versions.

• Collaboration Tools: Pull requests, conversations, and problem tracking are some
collaboration tools that are available on GitHub. To offer code modifications, pull
requests are used by developers whereas issues can be used to report errors or suggest

 International Journal of Innovations in Science & Technology

Jan 2025|Vol 07 | Issue 01 Page |131

new features.

• Social Coding and Community: Developers can follow projects and can also contribute to
open-source projects. This creates a cooperative environment where people from
around the world can make a team, give valuable feedback, report issues with a certain
code, and cooperate on different projects.

Programming Languages:

Programming languages are widely available and meet a variety of development

requirements. There is a language for almost any purpose, from popular ones like Python,

which is renowned for its ease of use, to powerful languages like Java. Web development is

dominated by JavaScript, yet C and C++ are valued for their control and performance.

Modern features and efficiency for concurrent activities are provided by newer languages like

Go and Rust [9]. Software development innovation is fostered by the ability of developers to

select the most suitable tool for jobs like web development, mobile apps, data analysis, or

systems programming, as each language offers distinct advantages. The following

programming languages considered in this paper are given below in detail.

• Java: a flexible, cross-platform programming language that is frequently used to create
Android apps, enterprise-level software, and massive systems [10].

• Kotlin: a state-of-the-art, JVM-based statically-typed language that is popular for
Android development because of its simple syntax and complete Java interoperability.
[11].

• Python: a high-level interpreted language used in automation, machine learning, web
development, and data analysis that is renowned for being easy to read and understand
[12].

• Java script: a high-level, dynamic scripting language that's mostly utilized for making
dynamic, interactive content for websites [13].

• Swift: Swift is a statically typed programming language. Apple created a strong and
user-friendly language with an emphasis on performance and safety for developing
apps for iOS, macOS, watchOS, and tvOS [14].

• C: a fundamental procedural programming language that is widely used in system and
application software and is renowned for its effectiveness and control over system
resources [15].

• C++: Object-oriented capabilities added to C, which is utilized for real-time
simulations, game creation, and system/software development [16].

Code readability Metrics:

Code readability metrics are quantitative measures used to assess how easy it is to read

and understand a piece of code [17]. These metrics aid teams and developers in maintaining

high-quality code that is simpler to inspect, troubleshoot, and expand. For long-term upkeep

and collaborative development, readability is essential. Some types of code readability metrics

include: [18]

• Textual Metrics: These metrics analyze code actual text and include metrics related to
comment density, indentation level, and line length.

• Structural Metrics: These metrics evaluate code organization and structure and include
metrics such as cyclomatic complexity and control flow complexity.

• Lexical Metrics: These metrics focus on code words and symbols and include metrics
such as identifier length metric and keyword usage metric.

• Layout Metrics: These metrics focus on the visual layout of the code and include
metrics such as whitespace usage and blank lines.

 International Journal of Innovations in Science & Technology

Jan 2025|Vol 07 | Issue 01 Page |132

The following three code readability metrics considered in this paper are given below in detail.

Code Comments:

Code comments are annotations added to the source code to explain its functionality,

provide context, or clarify complex sections. Code comments fall under the category of textual

metrics. These metrics analyze the text of the code including comments and their quality. They

include comment density i.e. measuring the ratio of comments to lines of code and comment quality

i.e. assessing how informative and helpful the comments are in explaining the code [19].

Code Structure:

Code structure refers to the organization and arrangement of code elements, such as

functions, classes, and modules, within the source code. It involves creating a logical and

coherent hierarchy. A well-organized code structure is essential for readability. Code structure

falls under the category of structural metrics. These metrics evaluate the architecture and

organization of the code. They include cyclomatic complexity i.e. measuring the complexity of the

control flow within the code and modularity i.e. how well the code is divided into modules and

functions, it also includes control flow complexity i.e. examining the complexity of loops and

branches in the code [20].

Version Control:

Version control systems, like Git, track changes made to the source code over time.

They maintain a history of modifications, facilitate collaboration among developers, and

enable the management of different code versions. Version control falls under the category of

Process Metrics. These metrics include aspects of version control. They include commit frequency

i.e. tracking changes committed throughout the development process, and commit size i.e.

measuring the size of each commit and then indicating whether changes are small and

incremental or large and monolithic. It also includes churn rate i.e. assesses how often code is

added, modified, or deleted, indicating stability and maintainability [21].

Objective:
The objective of this study is to explore how Code Readability Metrics Impact UX in

OSS projects.
Novelty Statement:

In this research, our main contributions are:

• Exploring how code readability directly affects user engagement.

• Determine the essentials to enhance the code readability and user experience.

The rest of the paper is organized as follows: Section 2, provides an extensive literature review.

Section 3 presents data collection techniques, sampling techniques, sources of data collection,

and statistics about data. Section 4 presents the analysis and exploration of the essentials of

code readability. Finally, in Section 5, we give some conclusions by analyzing the results.

Literature Review:

In this paper [22], the authors draw attention to the difficulties associated with user-

centered and usability processes and methodologies in the context of open-source Projects

development, offer some solutions to these difficulties, and emphasize the necessity of user-

centric tools. The study in [23] examines correlations over multiple releases of chosen projects

and demonstrates a substantial link between the readability model established and three

metrics of software quality: automated defect reports, defect log messages, and code changes

in software. Readability was measured using snippets of Java code, and the results showed a

high correlation between the readability model and software quality metrics. In [24], authors

focused on two factors; Method Chains and Comments in Software Readability. They examine

 International Journal of Innovations in Science & Technology

Jan 2025|Vol 07 | Issue 01 Page |133

how method chains and code comments affect software readability and understanding in their

study. There are 104 students in the data set, and their levels of programming experience vary.

Perceived readability, reading time, and results on a basic cloze test were used to gauge

readability and comprehension. The findings demonstrated that while statement-level code

comments have an impact on program readability, understanding as determined by the

correctness of cloze question responses is unaffected.

Findings from a qualitative analysis of a selection of issue-tracking threads from three

OSS projects hosted on GitHub further indicated that the early discussions of usability and

UX issues within the OSS community were mostly shaped by individual experiences and

perceptions of the participants [25]. The way issues are reported, discussed, and resolved in

OSS communities was studied by applying qualitative content analysis to selected issue-

tracking threads. During the observation, it was noted that the views and experiences of the

participants also tended to shape the discussions. The nature of the community was important

in ensuring that the discussion leaned toward usability and UX issues.

The authors of [26] research have classified code readability based on factors including

whether or not the source code is readable. They suggest using convolutional neural networks

(ConvNets) for this. As the input to ConvNets, they first give a representation approach (with

varying granularities) to convert source codes into integer matrices. Next, they suggest

DeepCRM, a deep learning model for classifying code readability. Three distinct ConvNets

with the same architecture that are trained on various preprocessed data make up DeepCRM.

They compare their method with five cutting-edge code readability models. The outcomes of

the experiment demonstrated that DeepCRM can perform better than earlier methods. The

accuracy gain varies from 2.4% to 17.2%.

The goals and variables from research comparing programming constructs, coding

idioms, naming conventions, and formatting guidelines—such as recursive vs. iterative code—

are examined by the authors in this work [27]. In order to achieve this, they carried out an

organized study of the literature and discovered 54 pertinent publications. They claim that the

majority of the studies assessed code readability and legibility by either asking the respondents

directly for their opinions (55.6%) or by gauging the accuracy of the subjects' responses

(83.3%). Only the latter variable was used in certain research (16.7%). They also demonstrated

the complexity of some factors. Their findings demonstrate that distinct assessment methods

need distinct skills from participants, such as following the program instead of summarizing

its objectives or learning its content by heart. The authors assert that by modifying an existing

learning taxonomy, they simulate program understanding as a learning task in order to support

novice researchers.

Code structure, code comments, and version control are the three main metrics for

code readability that are examined in this research. These metrics were selected because they

play crucial roles in improving the readability of code, encouraging teamwork, and

guaranteeing maintainability. Code organization affects readability and usability, and

comments give important background information and justifications for implementation

choices, which help developers understand each other better. Version control systems make

it possible to manage code evolution effectively, which promotes cooperation and guarantees

project integrity. The study emphasizes the significance of these measures in promoting code

readability and overall project performance through this analysis.

Research Methodology: This research aims to explore the connection between code
readability metrics and UX in open-source projects. To achieve this, we conducted a

 International Journal of Innovations in Science & Technology

Jan 2025|Vol 07 | Issue 01 Page |134

targeted survey to understand user perceptions and challenges related to code
readability, focusing on popular open-source languages such as Python, C/C++,
Kotlin, JavaScript, Flutter, and Swift/Objective-C. The detailed research methodology
is given in Figure 1.

Figure 1. Research Methodology

Research Hypotheses:

To discover the influencing factors that might impact the code readability of some

people, we test the following hypotheses:

H1: Due to poor readability, most people do not prefer to use code of open source

projects.

H2: Code structure is the most important factor for easy code readability and

enhancement of user experience.

H3: Version control may have a lesser perceived impact on UX than code

comments, but its importance varies with project context (e.g., collaboration size,

code complexity).

Data Collection:

For the questionnaire survey, our target participants are Computer Science students

and industry professionals. We aim to obtain a diverse sample with varying academic levels

and programming language experiences. To recruit participants, we use online platforms like

Reddit communities dedicated to open-source projects and CS student groups. In our dataset,

there are a total of 157 participants involved. From them, 53% of the participants have

intermediate experience with coding whereas, 40% of participants are beginners in this

domain, and 7% of them possess advanced knowledge of coding.

Questionnaire Design:

The survey consists of three main sections:

 International Journal of Innovations in Science & Technology

Jan 2025|Vol 07 | Issue 01 Page |135

Demographic Information: This section is based on the background information of a

participant's academic level, the primary area of study within computer science, and the most

frequently used programming language.

Open-Source Project Engagement: This section assesses participants' experience with

open-source projects by asking about their frequency of visiting open-source platforms,

perceived challenges faced while using such projects, and the role of code readability in their

project selection process.

Code Readability Metrics and User Experience: This section delves into specific code

readability aspects through three sets of questions, each focusing on one metric:

Comments: Participants identify the most important aspect of code comments (single line,

function, detailed, logical) and report any difficulties they encounter related to code comments.

Structure: Participants choose the preferred code structure (global functions, classes & projects,

modules, try-catch blocks) and indicate any challenges they face due to code structure. Version

Control: Participants select their preferred version control system (GitHub, SVN, Mercurial,

Perforce) and share any problems they experience associated with version control.

Additionally, throughout the survey, we will offer an additional "No issue faced" option for

each aspect to capture participants who do not encounter challenges related to specific metrics.

Data Analysis:

We analyzed the survey data using quantitative and qualitative methods. To determine
the associations between various components, we have used the chi-squared test, fisher's exact
test, and correlation functions, which are generally regarded as appropriate techniques to
identify the relationships between different factors [28]. While Fisher's exact test [29] [30] and
chi-squared analysis have been utilized for categorical data [31], Pearson correlation has been
applied for numerical variables. A statistical technique for examining the relationship between
two distinct categorical variables is the Chi-square test. The P-value, which indicates the
likelihood of an insignificant association between two categorical variables, is provided by chi-
squared statistics. We can conclude that there is no significant relationship between these two
variables if the P-value indicates that the probability is greater than 5%, and if the probability
is less than or equal to 5% = 0.05, we can conclude that we have no evidence to support the
idea that this relationship is insignificant.

As the Chi-Squared Test computes with observed values (O) and expected values (E),
the values that are observed are derived from the dataset, and the expected values can be
computed using the formula (sum of row values X sum of column values) / n, where n
represents the total grid values.

𝜒𝑐
2 = ∑

(𝑂𝑖−𝐸𝑖)
2

𝐸𝑖
 (1)

Only when the expected values of each cell in the table are greater than or equal to 5

can the Chi-Squared Test be used to check for associations between variables? If any of the

expected values in the table are less than 5, the sample size is too small for this approximation

test. The Fisher exact test is recommended in situations when the sample size is found to be

unsuitable for the Chi-Squared test [29].

Fisher Exact is a precise test that yields an estimated value of P; it is not an

approximation test. This test, as its name implies, determines the precise value of P. When the

sample size is limited and the observed values in multiple cells do not fall into the same range,

it is typically employed. For example, a cell may have a value of 10 while other cells may have

values of 87, 98, 120, 9, 1, and so forth. There are no additional association statistics provided.

All it produces is the p-value. According to [32] [30], the alternative hypothesis is accepted and

 International Journal of Innovations in Science & Technology

Jan 2025|Vol 07 | Issue 01 Page |136

the null hypothesis is rejected if the p-value is less than or equal to 0.05, much like in the Chi-

Squared test.

We have also created visual representations of survey data using pie charts, which help

for better understanding the relationships between variables and identify any trends or

patterns.

Results and Analysis:

In this section, we depict and analyze the survey data using quantitative and qualitative

methods. Descriptive statistics have been used to understand the distribution of responses

across participant demographics and preferences. We provide an in-depth analysis of

relationships between variables like academic level, primary area of study, and preferred code

readability aspects.

Table 1. Frequency of engagement with opensource projects

Frequency of
Engagement

Percentage of
Participants

Daily 13.4%

Weekly 31.1%

Monthly 18.5%

Rarely 21.7%

Yearly 15.3%

Figure 2. Engagement Frequency Vs Crucial Aspect

Table 2. Programming Language used with opensource projects

Programming
Languages

Number of
Participants

Percentage
of

Participants

Java/Kotlin 46 29.3%

C/C++ 83 52.9%

Python 51 32.5%

Swift 1 0.6%

JavaScript 59 37.6%

Table 3. Number of Participants encountered code readability problem

 International Journal of Innovations in Science & Technology

Jan 2025|Vol 07 | Issue 01 Page |137

Response against
Code Readability

Problem

Percentage of
Participants

Yes 81.5%

Somehow 11.5%

No 7%

Figure 3. Importance of Code Readability in Open-Source Projects

If we analyze Figure 3, we can clearly see that most of the participants feel that code

readability is crucial to improving the UX for OSS projects. If the code readability is easy and

efficient then user will prefer to use the open-source projects for their learning and reusability.

But as we know, most open-source projects have readability issues and users even cannot

understand their versions, their structures, and their code.

Figure 4a. Factors Important to Enhance Code Readability

Figure 4b. Relative Prioritization of each aspect for code readability

Figures 4a and 4b elaborate that the important factors to enhance the code readability

and improve the UX towards the usability of open-source projects are code structure, code

comments, and version control with higher to lower priority respectively.

 International Journal of Innovations in Science & Technology

Jan 2025|Vol 07 | Issue 01 Page |138

Table 4. Relationship between Code Readability and User Experience

Code Readability /
User Experience

Good Not Good

Yes 4.32* 1.10

No -2.10* 2.43*

*Statistically Significant

Table 5. Relationship between Code Readability Metrics and User

Experience

Code Readability Metrics / User
Experience

Good Not Good

Code Structure 8.33* -1.30

Code Comments 5.23* 0.01

Version Control 2.54* 1.32

*Statistically Significant

Figure 5. Importance of Code Comments and its Type

In Figure 5, we can see that the 84.1% participants have an opinion that code

comments are important and helpful to enhance the code readability whereas, if we talk about

its style then single line comments as well as logical comments are considered more effective

to improve code readability.

 International Journal of Innovations in Science & Technology

Jan 2025|Vol 07 | Issue 01 Page |139

Figure 6. Importance of Code Structure and its Aspects

Figure 6 depicts that the 42 + 30.6 + 13.4 = 86% participants have an opinion that

code structure is a very important and crucial factor to enhance code readability whereas, if

we talk about code structure aspects then modularization and classes are mainly important to

enhance the experience of using open-source projects and to improve the code readability.

Figure 7. Importance of Version Control

According to Figure 7, most of the participants think that version control is moderately

important for the improvement in code readability and betterment in user experience.

Whereas, 33.8% and 14% collectively 47% of participants have a consensus that version

control is a very important factor for better user experience.

Figure 8 enhances the importance of version control and elaborates that 39.5% of

participants see sometimes version control history whereas 26.8% + 12.7% = 38.7% of

participants most of the time use it by GitHub plate-form. The cluster analysis plot (Figure 9)

highlights three distinct groups of respondents based on their perceived importance of code

 International Journal of Innovations in Science & Technology

Jan 2025|Vol 07 | Issue 01 Page |140

comments and structure. The first cluster, valuing both comments and structure highly,

underscores a comprehensive approach to code readability and maintainability.

Figure 8. How often do people refer to Version Control History and which plate form do

they prefer

The second cluster emphasizes comments over structure, indicating a belief that

detailed documentation can mitigate less organized code. The third cluster prioritizes

structure, suggesting that well-organized code inherently reduces the need for extensive

commenting. This analysis reveals diverse perspectives on code quality, illustrating the need

for a balanced approach to both code comments and structure to cater to different user

preferences and enhance overall code readability. The clustering approach utilized in this

analysis was based on the K-means algorithm, selected for its efficiency in partitioning data

into distinct groups based on similarity. The algorithm operates by minimizing intra-cluster

variance while maximizing inter-cluster separation, ensuring well-defined groupings.

Figure 9. Cluster Analysis on Structure and Comments

 International Journal of Innovations in Science & Technology

Jan 2025|Vol 07 | Issue 01 Page |141

Euclidean distance served as the similarity metric, effectively capturing the proximity

between respondents' ratings of the importance of code comments and structure. To

determine the optimal number of clusters, the elbow method was employed, identifying the

point at which increasing the number of clusters no longer significantly reduced the WCSS.

Multiple random initializations of centroids were performed to enhance robustness and avoid

convergence to local minima. The algorithm iteratively refined the centroids until achieving

stability, resulting in distinct clusters that encapsulate varying preferences and priorities

regarding code readability metrics.

Figure 10. Word cloud from text analysis of the open-ended question

To analyze responses from contributors on improving code readability and UX in
open-source projects, a thematic approach was applied (given in Figure 10). The dataset
comprised 200 responses, of which 187 (93.5%) were usable after filtering for relevance and
completeness. The analysis revealed eight key themes, supported by quantitative data to
highlight their significance.
Consistent Coding Style: A total of 146 responses (78%) emphasized the importance of
enforcing a consistent coding style. This was identified as a critical factor for improving code
readability. Recommendations included the adoption of automated tools like linters (e.g.,
ESLint for JavaScript, Pylint for Python) and adherence to established style guides (e.g., PEP
8 for Python).
Meaningful Naming Conventions: 135 responses (72%) highlighted the role of descriptive
and intuitive naming conventions for variables, functions, and classes. The use of semantic
naming, such as calculateTax() instead of cT(), was suggested to enhance maintainability and
comprehension for contributors.
Comprehensive Documentation: 120 responses (64%) underscored the need for clear and
complete documentation, including inline comments and detailed README files.
Participants noted that poorly documented code increases the onboarding time for new
contributors by an estimated 30–50%, impacting project growth.
Code Modularization: 101 responses (54%) recommended modularizing code by breaking
it into smaller, reusable components. For example, in software with 10+ functions per file,
modularization reportedly improved readability scores in automated tools like SonarQube by
15–25%.
Peer Reviews and Community Feedback: 88 responses (47%) suggested implementing
structured code reviews. Projects with mandatory peer reviews showed a 22% reduction in
critical errors as identified in pre-commit hooks.
Testing and Continuous Integration (CI): 81 responses (43%) advocated for the
integration of testing frameworks and CI pipelines. Projects utilizing unit tests and CI tools
like Jenkins or GitHub Actions observed a 30% improvement in error detection rates before
deployment.

 International Journal of Innovations in Science & Technology

Jan 2025|Vol 07 | Issue 01 Page |142

User-Centric Design and Accessibility: 74 responses (40%) emphasized UX aspects,
including accessibility and responsiveness. Contributors recommended using WCAG
standards and conducting UX surveys, which increased user satisfaction metrics by 18% in
comparative studies.
Performance Optimization: 48 responses (26%) identified performance as a secondary yet
important factor. Profiling tools such as Perf or Lighthouse were suggested to reduce load
times, with a reported 10–15% improvement in performance metrics.

Table 6. Quantitative Breakdown of Key Factors

Factor Responses
(n=187)

Percentage
(%)

Observed Impact on Metrics

Consistent Coding Style 146 78 Reduced code review time by
20%

Meaningful Naming 135 72 Enhanced comprehension by
15%

Documentation 120 64 Reduced onboarding time by
30%

Modularization 101 54 Improved readability by 25%

Peer Reviews 88 47 Reduced critical errors by 22%

Testing and CI 81 43 Improved error detection by
30%

User-Centric Design 74 40 Increased satisfaction by 18%

Performance
Optimization

48 26 Reduced load times by 15%

Notable Observations:
• Consistency emerged as the most critical factor, with 78% of contributors identifying

it as foundational for readability.
• Documentation and modularization were closely tied to onboarding success and

reduced complexity.
• The adoption of CI tools demonstrated significant potential for early error detection

and reduced technical debt.
This analysis quantitatively confirms the subjective importance of best practices in

OSS development, offering actionable insights for contributors and maintainers. The analysis
shows that the participants agree on a mixture of technical practices and community-based
with better quality assurance in open-source projects. Clear and extensive comments in the
code were often mentioned as crucial to make it easier for new contributors to understand a
project. Keeping the Project Clear with Code Structure and Version Control facilities helps in
keeping the code clean, and consistent which are also equally important to have a more
structured collaboration amongst every team member. Another common point raised was the
need for active community support, helping in closing issues faster and a place where there is
no hostility to new developers. Together, these insights underscore the multipronged approach
that must be taken to improve code readability and UX - wherein technical accuracy, as well
as healthy community collaboration, emerge as two of the foundational pillars of successful
open-source projects.
Discussion:

According to existing literature method chains, code comments, formatting guidelines

and the experience of the user are the possible factors that impact code readability. In our

research, we have examined code structure, code comments, and version control as the three

main metrics for code readability. Our survey-based results are very similar to our assumptions

and these are strongly supported by the research hypotheses mentioned in section 2. Our

 International Journal of Innovations in Science & Technology

Jan 2025|Vol 07 | Issue 01 Page |143

survey-based results are very similar to our assumptions and these are strongly supported by

the research hypotheses mentioned in section 2. According to Table 4, code readability has a

positively significant relationship with the UX whereas with poor code readability, UX has a

negative significant relationship. This means that when code is easily readable and efficiently

managed then the UX with the OSS projects will be good and they will definitely prefer to use

these open-source projects. Therefore, we can claim that our hypothesis H1 (mentioned in the

Hypothesis Section) has been accepted. Besides this, Figure 3 also depicts that most participant

(approx. 80%) has a consensus that code readability is very important for better UX with

respect to open-source projects' usability.

 To test the remaining three hypotheses, we have checked the relationship of code

readability metrics with UX and found out that code structure, code comments, and version

control; all these factors have a positively significant relationship with good user experience.

If we deeply analyze, we can see that the code structure has the most significant relationship

(8.33*) with better user experience. Therefore, we can claim that our hypothesis H2 is also

accepted. Similarly, user comments have a stronger positively significant relationship with UX

than the factor “version control”. Therefore, according to these results, all our three

assumptions have been proved correct and our third hypothesis H3 also accepted. Figures 4a

and 4b also support our results and proposed assumptions.

Concluding Remarks:

We confirm the importance of well-documented code, as opposed to the skill or
knowledge required in order for developers to understand original wrong codes and find specs.
This study adds further evidence that good documentation that constitutes a clear code outline
(for open-source projects) is pivotal in creating desirable user experience/results (in this case
being an error-prone detection method when it comes down to mistakes). Additional support
for these results is found in the qualitative analysis of open-ended survey responses.
Commenting, coding standards, and version control would often come up here as ways to
make clean code indeed accessible thus increasing usability satisfaction across the board.
Extensive comments in the code help newer contributors to comprehend and contribute
faster, which is further complemented by uniformity across all coding standards as well as
version control.

An active community is also important, as it allows the problems to be solved quickly
and makes new developers welcome. The patterns highlight an even and sensible middle
ground between technical correctness, and community involvement that will express
readability in their code or enhance the experience of people working with it.
Disclosure of interest
None
Competing interests
 Not applicable
Funding
 No funding was received.
References:

[1] E. Dias, P. Meirelles, F. Castor, I. Steinmacher, I. Wiese, and G. Pinto, “What makes a
great maintainer of open source projects?,” Proc. - Int. Conf. Softw. Eng., pp. 982–994,
May 2021, doi: 10.1109/ICSE43902.2021.00093.

[2] U. A. Mannan, I. Ahmed, and A. Sarma, “Towards understanding code readability and
its impact on design quality,” NL4SE 2018 - Proc. 4th ACM SIGSOFT Int. Work. NLP
Softw. Eng. Co-located with FSE 2018, pp. 18–21, Nov. 2018, doi:
10.1145/3283812.3283820.

 International Journal of Innovations in Science & Technology

Jan 2025|Vol 07 | Issue 01 Page |144

[3] G. von Krogh, “Open-Source Software Development,” MIT Sloan Manag. Rev., Apr.
2003, Accessed: Jan. 10, 2025. [Online]. Available:
https://sloanreview.mit.edu/article/opensource-software-development/

[4] M. Krishnamurthy, “Institutional Repositories, Open Source Options, and Libraries,”
Program, vol. 42, no. 1, pp. 48–55, 2008, doi: 10.1108/00330330810851582.

[5] S. Pinfield et al., “Open-access repositories worldwide, 2005–2012: Past growth, current
characteristics, and future possibilities,” J. Assoc. Inf. Sci. Technol., vol. 65, no. 12, pp.
2404–2421, Dec. 2014, doi: 10.1002/ASI.23131.

[6] O. Jarczyk, B. Gruszka, S. Jaroszewicz, L. Bukowski, and A. Wierzbicki, “Github
projects. quality analysis of open-source software,” Lect. Notes Comput. Sci. (including
Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 8851, pp. 80–94, 2014, doi:
10.1007/978-3-319-13734-6_6.

[7] “An empirical study of the first contributions of developers to open source projects on
GitHub | IEEE Conference Publication | IEEE Xplore.” Accessed: Jan. 10, 2025.
[Online]. Available: https://ieeexplore.ieee.org/document/9270396

[8] A. Seker, B. Diri, H. Arslan, and M. F. Amasyalı, “Open Source Software Development
Challenges: A Systematic Literature Review on GitHub,” https://services.igi-
global.com/resolvedoi/resolve.aspx?doi=10.4018/IJOSSP.2020100101, vol. 11, no. 4, pp. 1–
26, Jan. 1AD, doi: 10.4018/IJOSSP.2020100101.

[9] “5 Types of Programming Languages | Coursera.” Accessed: Jan. 10, 2025. [Online].
Available: https://www.coursera.org/articles/types-programming-language

[10] “The Java Programming Language, 4th Edition: Arnold, Ken, Gosling, James, Holmes,
David: 9780321349804: Amazon.com: Books.” Accessed: Jan. 10, 2025. [Online].
Available: https://www.amazon.com/Java-Programming-Language-
4th/dp/0321349806

[11] “Programming Kotlin | Programming | Print.” Accessed: Jan. 10, 2025. [Online].
Available: https://www.packtpub.com/en-us/product/programming-kotlin-
9781787126367

[12] T. Mikkonen and A. Taivalsaari, “Using JavaScript as a Real Programming Language,”
2007, doi: 10.5555/1698202.

[13] M. Rebouças, G. Pinto, F. Ebert, W. Torres, A. Serebrenik, and F. Castor, “An
empirical study on the usage of the swift programming language,” 2016 IEEE 23rd Int.
Conf. Softw. Anal. Evol. Reengineering, SANER 2016, vol. 1, pp. 634–638, May 2016, doi:
10.1109/SANER.2016.66.

[14] “Python Programming Language | USENIX.” Accessed: Jan. 10, 2025. [Online].
Available: https://www.usenix.org/conference/2007-usenix-annual-technical-
conference/presentation/python-programming-language

[15] B. W. Kernighan and D. M. Ritchie, “The C programming Language,” 1988.
[16] P. Bhattacharya and I. Neamtiu, “Assessing programming language impact on

development and maintenance: A study on C and C++,” Proc. - Int. Conf. Softw. Eng.,
pp. 171–180, 2011, doi: 10.1145/1985793.1985817.

[17] R. P. L. Buse and W. R. Weimer, “Learning a metric for code readability,” IEEE Trans.
Softw. Eng., vol. 36, no. 4, pp. 546–558, 2010, doi: 10.1109/TSE.2009.70.

[18] “(PDF) A Review of Career Selection Models.” Accessed: Jan. 10, 2025. [Online].
Available:
https://www.researchgate.net/publication/342145623_A_Review_of_Career_Selecti
on_Models

[19] R. P. L. Buse and W. R. Weimer, “A metric for software readability,” ISSTA’08 Proc.
2008 Int. Symp. Softw. Test. Anal. 2008, pp. 121–130, 2008, doi:
10.1145/1390630.1390647.

 International Journal of Innovations in Science & Technology

Jan 2025|Vol 07 | Issue 01 Page |145

[20] D. Oliveira, R. Bruno, F. Madeiral, and F. Castor, “Evaluating Code Readability and
Legibility: An Examination of Human-centric Studies,” Proc. - 2020 IEEE Int. Conf.
Softw. Maint. Evol. ICSME 2020, pp. 348–359, Sep. 2020, doi:
10.1109/ICSME46990.2020.00041.

[21] N. Al Madi, “How Readable is Model-generated Code? Examining Readability and
Visual Inspection of GitHub Copilot,” ACM Int. Conf. Proceeding Ser., Aug. 2022, doi:
10.1145/3551349.3560438.

[22] M. Rajanen and D. Riehle, “Open Source Usability and User Experience,” Computer
(Long. Beach. Calif)., vol. 56, no. 02, pp. 106–110, Feb. 2023, doi:
10.1109/MC.2022.3219634.

[23] S. Scalabrino, M. Linares-Vásquez, R. Oliveto, and D. Poshyvanyk, “A Comprehensive
Model for Code Readability,” J. Softw. Evol. Process J. Softw. Evol. Proc, vol. 00, pp. 1–29,
2017, doi: 10.1002/smr.

[24] J. Borstler and B. Paech, “The Role of Method Chains and Comments in Software
Readability and Comprehension-An Experiment,” IEEE Trans. Softw. Eng., vol. 42, no.
9, pp. 886–898, Sep. 2016, doi: 10.1109/TSE.2016.2527791.

[25] J. Cheng and J. L. C. Guo, “How do the open source communities address usability
and UX issues? An exploratory study,” Conf. Hum. Factors Comput. Syst. - Proc., vol. 2018-
April, Apr. 2018, doi: 10.1145/3170427.3188467.

[26] Q. Mi, J. Keung, Y. Xiao, S. Mensah, and Y. Gao, “Improving code readability
classification using convolutional neural networks,” Inf. Softw. Technol., vol. 104, pp. 60–
71, Dec. 2018, doi: 10.1016/J.INFSOF.2018.07.006.

[27] D. Oliveira, R. Santos, F. Madeiral, H. Masuhara, and F. Castor, “A systematic literature
review on the impact of formatting elements on code legibility,” J. Syst. Softw., vol. 203,
p. 111728, Sep. 2023, doi: 10.1016/J.JSS.2023.111728.

[28] F. Haneef et al., “Using network science to understand the link between subjects and
professions,” Comput. Human Behav., vol. 106, p. 106228, May 2020, doi:
10.1016/J.CHB.2019.106228.

[29] F. Haneef, R. Ayaz Abbasi, M. N. Noor, F. Waseem, and A. Khalid, “Identifying
Significant Factors Associated with Career Selection: A survey based study in Pakistan,”
Pakistan J. Eng. Technol. & Sci., vol. 12, no. 1, pp. 104–116, Jul. 2024, doi:
10.22555/PJETS.V12I1.1090.

[30] “(PDF) The analysis of categorical data: Fisher’s exact test.” Accessed: Jan. 10, 2025.
[Online]. Available:
https://www.researchgate.net/publication/237336173_The_analysis_of_categorical_
data_Fisher’s_exact_test

[31] M. N. Noor, T. A. Khan, F. Haneef, and M. I. Ramay, “Machine Learning Model to
Predict Automated Testing Adoption,” https://services.igi-
global.com/resolvedoi/resolve.aspx?doi=10.4018/IJSI.293268, vol. 10, no. 1, pp. 1–15, Jan.
1AD, doi: 10.4018/IJSI.293268.

[32] “Chi-Square Test of Independence | Formula, Guide & Examples.” Accessed: Jan. 10,
2025. [Online]. Available: https://www.scribbr.com/statistics/chi-square-test-of-
independence/

Copyright © by authors and 50Sea. This work is licensed under

Creative Commons Attribution 4.0 International License.

