()
OPEN f)\ ACCESS
</

International Journal of Innovations in Science & Technology

RESEARCH & INNOVATION

[y

NOISIAIQ

IJIS

Enhancing Open-Source Projects: The Synergy Between Code
Readability Metrics and User Experience

Aisha Khalid"", Farah Haneef”, Fatima Waseem'

"Department of Computer Science, National University of Modern Languages, Islamabad,

Pakistan.

*Department of Software Engineering, Capital University of Science and Technology,

Islamabad, Pakistan.
*Cotresponding author. E-mail(s): aisha.khalid@numl.edu.pk

Citation | Khalid. A, Haneef. I, Waseem. F, “Enhancing Open-Source Projects: The Synergy
Between Code Readability Metrics and User Experience”, IJIST, Vol. 07 Issue. 01 pp 129-

145, Jan 2025
DOI | https://doi.org/10.33411/ijist /202571129145

Received | Dec 24, 2024 Revised | Jan 14, 2025 Accepted | Jan 16, 2025 Published | Jan

18, 2025.

Introduction /Importance of Study: The open-source project
is a key driver of innovation in the so-called open ecosystem.
However, the readability of code is still a major obstacle in
having users successfully engaged and contributing.

Objective: This study explores how Code Readability Metrics
Impact User Experience (UX) in OSS projects.

Novelty Statement: We examine code comments, structure of the
code, and wversion control to discover their impact on user
understanding and satisfaction.

Material and Method: For this, a survey has been conducted.
In this survey, handed out to upper division (computing major)
ot first-year computer science students at university/graduates
and post-grads in similar positions), we gathered feedback on
projects written in Kotlin, Python, Swift, JavaScript, and Flutter.
Results and Discussion: Results show that readability
correlates positively with a uset's perceived experience. The
clarity in your structure, commenting on all parts of the code,
and great version control lead to better user reception. The
study’s findings show that when code is well-organized and
understandable, users tend to have more positive experiences
and like to use the software.

Concluding Remarks: Our study has demonstrated that better
code readability translates into enhanced user experiences,
which can inform developers and project managers on how best
they can improve their practices.

Keywords: Code Comments, Code Structure, Version Control,
User Experience, Code Readability

Abbreviations.
Open-Source Software
(OSS)

Within-Cluster Sum of
Squares (WCSS)

User Experience (UX)

RESEARCHBIB
ACADEMIC RESOURCE INDEX

s CiteFactor R_
' Indexing Portal]

() IPIndexing _-"

(&) Pt

RAT
%,‘é ‘ R ResearchGate
DRJI Crossref

@Scilit
INNIHINI

WIKIDATA

@lDEAs

INFOBASE INDEX

Jan 2025 | Vol 07 | Issue 01

Page | 129

mailto:aisha.khalid@numl.edu.pk
https://doi.org/10.33411/ijist/202571129145

OPEN (5) ACCESS

International Journal of Innovations in Science & Technology

Introduction:

OSS has revolutionized the way we develop software. Open-source means that the
software project has its source code available to see, use, change, and distribute. These
initiatives enable developers from around the globe to collaborate on writing and enhancing
software, often with a focus on gaining community involvement. Open source is a great way
to drive innovation, promote transparency, and foster the software development community
[1]. While the OSS type of projects based on this idea that code should be shared has also
fostered a quick pace for invention and shown people to document their abilities, there is still
one big stone in the way: readability.

In the OSS community, we have started to consider code readability as a problem in
its own right due to an increasing need for complex features required by users and long-term
owners. Unplanned, uncommented code corresponds to trying to decipher a script which is
virtually impossible. The main contribution of this research is to enhance UXin open-source
project development by analyzing current code readability metrics and upgrading them |[2].
Repositories are websites or databases in which a developer is able to share, control, and save
OSS projects. Essentially, these act as centralized locations for storing the source code,
documentation, and other project resources. They make the work of developers easy by
providing the features of teamwork, problem tracking, and version control [3].

Repositories are websites or databases in which a developer is able to share, control,
and save OSS projects. Essentially, these act as centralized locations for storing the source
code, documentation, and other project resources. They make the work of developers easy by
providing the features of teamwork, problem tracking, and version control [3]. Open-source
repositories are gold mines of information for any developer and researcher. They have at
their disposal a huge collection of software libraries and projects [4]. Apart from these,
GitHub, GitLab, and Bitbucket are the repositories that support information sharing and,
therefore, also provide the medium for cooperative learning. TensorFlow is a powerful
machine-learning library. Apache Kafka is a distributed streaming platform. React is a
JavaScript package used for creating user interfaces. The Linux kernel serves as the base of
many operating systems. Linux kernel serves as a foundation for many operating systems.
Thus, by utilizing these repositories, both individuals and organizations can ensure code
transparency, and speed up development processes through peer reviews and community-
driven modifications [5]. Nowadays open-source repositories are also very important for the
software industry since they foster continuous innovation as well as cooperation.

GitHub is by far the most popular open-source repository around (used worldwide).
Some of its best features include good partnerships, good integration with development tools,
and a big community [6]. It has about 330 million repositories as well as over 100 million users
thereby making it prominent among others [7].

Below are some main points on GitHub [8]:

e Hosting Repository: All source code, resources used for the project, and documentation
are contained in a single repository also called a repo. Repositories can be private or
public.

o Version Control: GitHub uses a distributed version control system called Git that tracks
source code changes that are made during software development. This helps
developers to work together on a project and manage code versions.

o Collaboration Tools: Pull requests, conversations, and problem tracking are some
collaboration tools that are available on GitHub. To offer code modifications, pull
requests are used by developers whereas issues can be used to report errors or suggest

Jan 2025 | Vol 07 | Issue 01 Page | 130

International Journal of Innovations in Science & Technology

J

new features.

o Social Coding and Commmunity: Developers can follow projects and can also contribute to
open-source projects. This creates a cooperative environment where people from
around the world can make a team, give valuable feedback, report issues with a certain
code, and cooperate on different projects.

Programming Languages:

Programming languages are widely available and meet a variety of development
requirements. There is a language for almost any purpose, from popular ones like Python,
which is renowned for its ease of use, to powerful languages like Java. Web development is
dominated by JavaScript, yet C and C++ are valued for their control and performance.
Modern features and efficiency for concurrent activities are provided by newer languages like
Go and Rust [9]. Software development innovation is fostered by the ability of developers to
select the most suitable tool for jobs like web development, mobile apps, data analysis, or
systems programming, as each language offers distinct advantages. The following
programming languages considered in this paper are given below in detail.

e Java: a flexible, cross-platform programming language that is frequently used to create
Android apps, enterprise-level software, and massive systems [10].

e Kotlin: a state-of-the-art, JVM-based statically-typed language that is popular for
Android development because of its simple syntax and complete Java interoperability.
[11].

e Python: a high-level interpreted language used in automation, machine learning, web
development, and data analysis that is renowned for being easy to read and understand
[12].

e Java script: a high-level, dynamic scripting language that's mostly utilized for making
dynamic, interactive content for websites [13].

e Swift: Swift is a statically typed programminglanguage. Apple created a strong and
user-friendly language with an emphasis on performance and safety for developing
apps for 10§, macOS, watchOS, and tvOS [14].

e C:a fundamental procedural programming language that is widely used in system and
application software and is renowned for its effectiveness and control over system
resources [15].

e (C++: Object-oriented capabilities added to C, which is utilized for real-time
simulations, game creation, and system/software development [10].

Code readability Metrics:

Code readability metrics are quantitative measures used to assess how easy it is to read
and understand a piece of code [17]. These metrics aid teams and developers in maintaining
high-quality code that is simpler to inspect, troubleshoot, and expand. For long-term upkeep
and collaborative development, readability is essential. Some types of code readability metrics
include: [18]

e Textual Metrics: These metrics analyze code actual text and include metrics related to
comment density, indentation level, and line length.

e Structural Metrics: These metrics evaluate code organization and structure and include
metrics such as cyclomatic complexity and control flow complexity.

e [exical Metrics: These metrics focus on code words and symbols and include metrics
such as identifier length metric and keyword usage metric.

e Tayout Metrics: These metrics focus on the visual layout of the code and include
metrics such as whitespace usage and blank lines.

Jan 2025 | Vol 07 | Issue 01 Page | 131

OPEN (5) ACCESS

International Journal of Innovations in Science & Technology

The following three code readability metrics considered in this paper are given below in detail.
Code Comments:

Code comments are annotations added to the source code to explain its functionality,
provide context, or clarify complex sections. Code comments fall under the category of textual
metrics. These metrics analyze the text of the code including comments and their quality. They
include comment density i.e. measuring the ratio of comments to lines of code and comment quality
L.e. assessing how informative and helpful the comments are in explaining the code [19].
Code Structure:

Code structure refers to the organization and arrangement of code elements, such as
functions, classes, and modules, within the source code. It involves creating a logical and
coherent hierarchy. A well-organized code structure is essential for readability. Code structure
falls under the category of structural metrics. These metrics evaluate the architecture and
organization of the code. They include ¢yclomatic complexity i.e. measuring the complexity of the
control flow within the code and wodularity i.e. how well the code is divided into modules and
functions, it also includes control flow complexity i.e. examining the complexity of loops and
branches in the code [20].

Version Control:

Version control systems, like Git, track changes made to the source code over time.
They maintain a history of modifications, facilitate collaboration among developers, and
enable the management of different code versions. Version control falls under the category of
Process Metrics. These metrics include aspects of version control. They include commit frequency
Le. tracking changes committed throughout the development process, and commit sizge i.e.
measuring the size of each commit and then indicating whether changes are small and
incremental or large and monolithic. It also includes churn rate i.e. assesses how often code is
added, modified, or deleted, indicating stability and maintainability [21].

Objective:

The objective of this study is to explore how Code Readability Metrics Impact UX in

OSS projects.
Novelty Statement:
In this research, our main contributions are:

e Exploring how code readability directly affects user engagement.

e Determine the essentials to enhance the code readability and user experience.
The rest of the paper is organized as follows: Section 2, provides an extensive literature review.
Section 3 presents data collection techniques, sampling techniques, sources of data collection,
and statistics about data. Section 4 presents the analysis and exploration of the essentials of
code readability. Finally, in Section 5, we give some conclusions by analyzing the results.
Literature Review:

In this paper [22], the authors draw attention to the difficulties associated with user-
centered and usability processes and methodologies in the context of open-source Projects
development, offer some solutions to these difficulties, and emphasize the necessity of user-
centric tools. The study in [23] examines correlations over multiple releases of chosen projects
and demonstrates a substantial link between the readability model established and three
metrics of software quality: automated defect reports, defect log messages, and code changes
in software. Readability was measured using snippets of Java code, and the results showed a
high correlation between the readability model and software quality metrics. In [24], authors
focused on two factors; Method Chains and Comments in Software Readability. They examine

Jan 2025 | Vol 07 | Issue 01 Page | 132

OPEN (5) ACCESS

International Journal of Innovations in Science & Technology

how method chains and code comments affect software readability and understanding in their
study. There are 104 students in the data set, and their levels of programming experience vary.
Perceived readability, reading time, and results on a basic cloze test were used to gauge
readability and comprehension. The findings demonstrated that while statement-level code
comments have an impact on program readability, understanding as determined by the
correctness of cloze question responses is unaffected.

Findings from a qualitative analysis of a selection of issue-tracking threads from three
OSS projects hosted on GitHub further indicated that the early discussions of usability and
UX issues within the OSS community were mostly shaped by individual experiences and
perceptions of the participants [25]. The way issues are reported, discussed, and resolved in
OSS communities was studied by applying qualitative content analysis to selected issue-
tracking threads. During the observation, it was noted that the views and experiences of the
participants also tended to shape the discussions. The nature of the community was important
in ensuring that the discussion leaned toward usability and UX issues.

The authors of [26] research have classified code readability based on factors including
whether or not the source code is readable. They suggest using convolutional neural networks
(ConvNets) for this. As the input to ConvNets, they first give a representation approach (with
varying granularities) to convert source codes into integer matrices. Next, they suggest
DeepCRM, a deep learning model for classifying code readability. Three distinct ConvNets
with the same architecture that are trained on various preprocessed data make up DeepCRM.
They compare their method with five cutting-edge code readability models. The outcomes of
the experiment demonstrated that DeepCRM can perform better than earlier methods. The
accuracy gain varies from 2.4% to 17.2%.

The goals and variables from research comparing programming constructs, coding
idioms, naming conventions, and formatting guidelines—such as recursive vs. iterative code—
are examined by the authors in this work [27]. In order to achieve this, they carried out an
organized study of the literature and discovered 54 pertinent publications. They claim that the
majority of the studies assessed code readability and legibility by either asking the respondents
directly for their opinions (55.6%) or by gauging the accuracy of the subjects' responses
(83.3%). Only the latter variable was used in certain research (16.7%). They also demonstrated
the complexity of some factors. Their findings demonstrate that distinct assessment methods
need distinct skills from participants, such as following the program instead of summarizing
its objectives or learning its content by heart. The authors assert that by modifying an existing
learning taxonomy, they simulate program understanding as a learning task in order to support
novice researchers.

Code structure, code comments, and version control are the three main metrics for
code readability that are examined in this research. These metrics were selected because they
play crucial roles in improving the readability of code, encouraging teamwork, and
guaranteeing maintainability. Code organization affects readability and usability, and
comments give important background information and justifications for implementation
choices, which help developers understand each other better. Version control systems make
it possible to manage code evolution effectively, which promotes cooperation and guarantees
project integrity. The study emphasizes the significance of these measures in promoting code
readability and overall project performance through this analysis.

Research Methodology: This research aims to explore the connection between code
readability metrics and UX in open-source projects. To achieve this, we conducted a

Jan 2025 | Vol 07 | Issue 01 Page | 133

A
OPEN éAccess
= International Journal of Innovations in Science & Technology

targeted survey to understand user perceptions and challenges related to code
readability, focusing on popular open-source languages such as Python, C/C++,
Kotlin, JavaSctipt, Flutter, and Swift/ Objective-C. The detailed research methodology

1s given in Figure 1.
‘ Student l ‘Professional‘
v

Code Research ,_lQuestionnaire Data

Structure Hypothesis ' Design Collection

Code Comment

A

Version
Control

Data Analysis

’ ﬁ Chi-Square
Results and Test

Discussion

isher Exact
Test

Qualitative

thematic
analysis

Figure 1. Research Methodology
Research Hypotheses:

To discover the influencing factors that might impact the code readability of some
people, we test the following hypotheses:

H1: Due to poor readability, most people do not prefer to use code of open source

projects.

H?2: Code structure is the most important factor for easy code readability and

enhancement of user experience.

H3: Version control may have a lesser perceived impact on UX than code

comments, but its importance varies with project context (e.g., collaboration size,

code complexity).
Data Collection:

For the questionnaire survey, our target participants are Computer Science students
and industry professionals. We aim to obtain a diverse sample with varying academic levels
and programming language experiences. To recruit participants, we use online platforms like
Reddit communities dedicated to open-source projects and CS student groups. In our dataset,
there are a total of 157 participants involved. From them, 53% of the participants have
intermediate experience with coding whereas, 40% of participants are beginners in this
domain, and 7% of them possess advanced knowledge of coding.

Questionnaire Design:
The survey consists of three main sections:

Jan 2025 | Vol 07 | Issue 01 Page | 134

OPEN (5) ACCESS

International Journal of Innovations in Science & Technology

Demographic Information: This section is based on the background information of a
participant's academic level, the primary area of study within computer science, and the most
frequently used programming language.

Open-Source Project Engagement: This section assesses patticipants' experience with
open-source projects by asking about their frequency of visiting open-source platforms,
perceived challenges faced while using such projects, and the role of code readability in their
project selection process.

Code Readability Metrics and User Experience: This section delves into specific code
readability aspects through three sets of questions, each focusing on one metric:

Comments: Participants identify the most important aspect of code comments (single line,
function, detailed, logical) and report any difficulties they encounter related to code comments.
Structure: Participants choose the preferred code structure (global functions, classes & projects,
modules, try-catch blocks) and indicate any challenges they face due to code structure. [ersion
Control: Participants select their preferred version control system (GitHub, SVN, Mercurial,
Perforce) and share any problems they experience associated with version control.
Additionally, throughout the survey, we will offer an additional "No issue faced" option for
each aspect to capture participants who do not encounter challenges related to specific metrics.
Data Analysis:

We analyzed the survey data using quantitative and qualitative methods. To determine
the associations between various components, we have used the chi-squared test, fisher's exact
test, and correlation functions, which are generally regarded as appropriate techniques to
identify the relationships between different factors [28]. While Fisher's exact test [29] [30] and
chi-squared analysis have been utilized for categorical data [31], Pearson correlation has been
applied for numerical variables. A statistical technique for examining the relationship between
two distinct categorical variables is the Chi-square test. The P-value, which indicates the
likelihood of an insignificant association between two categorical variables, is provided by chi-
squared statistics. We can conclude that there is no significant relationship between these two
variables if the P-value indicates that the probability is greater than 5%, and if the probability
is less than or equal to 5% = 0.05, we can conclude that we have no evidence to support the
idea that this relationship is insignificant.

As the Chi-Squared Test computes with observed values (O) and expected values (E),
the values that are observed are derived from the dataset, and the expected values can be
computed using the formula (sum of row values X sum of column values) / n, where n
represents the total grid values.

(0i-Ep)?
xé = DO

Only when the expected values of each cell in the table are greater than or equal to 5
can the Chi-Squared Test be used to check for associations between variables? If any of the
expected values in the table are less than 5, the sample size is too small for this approximation
test. The Fisher exact test is recommended in situations when the sample size is found to be
unsuitable for the Chi-Squared test [29].

Fisher Exact is a precise test that yields an estimated value of P; it is not an
approximation test. This test, as its name implies, determines the precise value of P. When the
sample size is limited and the observed values in multiple cells do not fall into the same range,
it is typically employed. For example, a cell may have a value of 10 while other cells may have
values of 87, 98,120, 9, 1, and so forth. There are no additional association statistics provided.
All it produces is the p-value. According to [32] [30], the alternative hypothesis is accepted and

Jan 2025 | Vol 07 | Issue 01 Page | 135

OPEN aACCESS

International Journal of Innovations in Science & Technology

the null hypothesis is rejected if the p-value is less than or equal to 0.05, much like in the Chi-

Squared test.
We have also created visual representations of survey data using pie charts, which help
for better understanding the relationships between variables and identify any trends or

patterns .

Results and Analysis:

In this section, we depict and analyze the survey data using quantitative and qualitative
methods. Descriptive statistics have been used to understand the distribution of responses
across participant demographics and preferences. We provide an in-depth analysis of
relationships between variables like academic level, primary area of study, and preferred code
readability aspects.
Table 1. Frequency of engagement with opensource projects

Frequency of

Percentage of

Engagement Participants
Daily 13.4%
Weekly 31.1%
Monthly 18.5%
Rarely 21.7%
Yearly 15.3%
50 7
Crucial_Aspect
N Code comments
EEE Code structure
B Equally important
407 Version control
30 -
204
10 A
0 . -
8 E g 5 §
Engagement Frequency
Figure 2. Engagement Frequency Vs Crucial Aspect
Table 2. Programming LLanguage used with opensource projects
Programming Number of Percentage
Languages Participants of
Participants
Java/Kotlin 46 29.3%
C/C++ 83 52.9%
Python 51 32.5%
Swift 1 0.6%
JavaScript 59 37.6%

Table 3. Number of Participants encountered code readability problem

Jan 2025 | Vol 07 | Issue 01

Page

| 136

OPEN ACCESS
8 International Journal of Innovations in Science & Technology

Response against Percentage of
Code Readability Participants
Problem
Yes 81.5%
Somehow 11.5%
7%

@ Not important at all
@ Slightly important

@ Moderately important
@ Very important

@ Extremely important

26.8%

S

Figure 3. Importance of Code Readability in Open-Source Projects
If we analyze Figure 3, we can cleatly see that most of the participants feel that code
readability is crucial to improving the UX for OSS projects. If the code readability is easy and
efficient then user will prefer to use the open-source projects for their learning and reusability.
But as we know, most open-source projects have readability issues and users even cannot
understand their versions, their structures, and their code.

®

Figure 4a. Factors Important to Enhance Code Readability

@ Comments first

@ Structure first

@ Version control first

@ Equally prioritize all aspects

@® Code comments
@ Code structure
@ Version control
@ Equally important

V

Figure 4b. Relative Prioritization of each aspect for code readability
Figures 4a and 4b elaborate that the important factors to enhance the code readability
and improve the UX towards the usability of open-source projects are code structure, code
comments, and version control with higher to lower priority respectively.

Jan 2025 | Vol 07 | Issue 01 Page | 137

OPENaACCESS International Journal of Innovations in Science & Technology
Table 4. Relationship between Code Readability and User Experience

Code Readability / Good Not Good
User Experience
Yes 4.32% 1.10
No -2.10* 2.43%*

*Statistically Significant
Table 5. Relationship between Code Readability Metrics and User

Experience
Code Readability Metrics / User Good Not Good
Experience
Code Structure 8.33* -1.30
Code Comments 5.23* 0.01
Version Control 2.54* 1.32

*Statistically Significant

@ Not important at all
® Slightly important

@ Moderately important
@ Very important

@ Extremely important

) Sarghe-lrsl comiments

B Furction-level comments
® Detaded comments

il Logical commanss

® Neutral

Figure 5. Importance of Code Comments and its Type
In Figure 5, we can see that the 84.1% participants have an opinion that code
comments are important and helpful to enhance the code readability whereas, if we talk about
its style then single line comments as well as logical comments are considered more effective
to improve code readability.

Jan 2025 | Vol 07 | Issue 01 Page | 138

OPEN ACCESS
a International Journal of Innovations in Science & Technology

@ Not important at all
@ Slightly important
 Moderately important
@ Very important

@ Extremely important

@ Breaking the code into modules
(Modularization)

@ Using the same naming rules throughout
Global functions (Consistent naming

‘ conventions)
@ Arranging the code in a clear and
sensible way (Classes and project

structuring)
@ Other

Figure 6. Importance of Code Structure and its Aspects
Figure 6 depicts that the 42 + 30.6 + 13.4 = 86% participants have an opinion that
code structure is a very important and crucial factor to enhance code readability whereas, if
we talk about code structure aspects then modularization and classes are mainly important to
enhance the experience of using open-source projects and to improve the code readability.

@ Not important at all
@ Slightly important

@ Moderately important
@ Very important

@ Extremely important

Figure 7. Importance of Version Control

According to Figure 7, most of the participants think that version control is moderately
important for the improvement in code readability and betterment in user experience.
Whereas, 33.8% and 14% collectively 47% of participants have a consensus that version
control is a very important factor for better user experience.

Figure 8 enhances the importance of version control and elaborates that 39.5% of
participants see sometimes version control history whereas 26.8% + 12.7% = 38.7% of
participants most of the time use it by GitHub plate-form. The cluster analysis plot (Figure 9)
highlights three distinct groups of respondents based on their perceived importance of code

Jan 2025 | Vol 07 | Issue 01 Page | 139

OPEN ACCESS
a International Journal of Innovations in Science & Technology

comments and structure. The first cluster, valuing both comments and structure highly,
underscores a comprehensive approach to code readability and maintainability.

® Always
@ Often
@ Sometimes
@ Rarely
@ Never
i GitHub
& SVH (Subversion)
B Mercurial
P Pedoncs
i Ho preference

Figure 8. How often do people refer to Version Control History and which plate form do
they prefer

The second cluster emphasizes comments over structure, indicating a belief that
detailed documentation can mitigate less organized code. The third cluster prioritizes
structure, suggesting that well-organized code inherently reduces the need for extensive
commenting. This analysis reveals diverse perspectives on code quality, illustrating the need
for a balanced approach to both code comments and structure to cater to different user
preferences and enhance overall code readability. The clustering approach utilized in this
analysis was based on the K-means algorithm, selected for its efficiency in partitioning data
into distinct groups based on similarity. The algorithm operates by minimizing intra-cluster
variance while maximizing inter-cluster separation, ensuring well-defined groupings.

Cluster Analysis

2.00
401 @ []

3.5

251 125
g
204 ® 1.00 %
=

1.5 1 0.75

Importance Structure

104 @ L] L] L

0.57

004 @ L J

T T T T T T T T T 0.00
00 05 1.0 15 2.0 25 30 35 40
Importance Comments

Figure 9. Cluster Analysis on Structure and Comments

Jan 2025 | Vol 07 | Issue 01 Page | 140

International Journal of Innovations in Science & Technology

Euclidean distance served as the similarity metric, effectively capturing the proximity
between respondents' ratings of the importance of code comments and structure. To
determine the optimal number of clusters, the elbow method was employed, identifying the
point at which increasing the number of clusters no longer significantly reduced the WCSS.
Multiple random initializations of centroids were performed to enhance robustness and avoid
convergence to local minima. The algorithm iteratively refined the centroids until achieving
stability, resulting in distinct clusters that encapsulate varying preferences and priorities
regarding code readability metrics.

-documentationfunction:

help_. ALAe eturs y TESEANE S project
5 improve
sement F€adability

, open SO}‘U CCEYE e
code readability , source project

user experlencepfamce

consistent coding US € lunderstand

Figure 10. Word cloud from text analysis of the open-ended question

To analyze responses from contributors on improving code readability and UX in
open-source projects, a thematic approach was applied (given in Figure 10). The dataset
comprised 200 responses, of which 187 (93.5%) were usable after filtering for relevance and
completeness. The analysis revealed eight key themes, supported by quantitative data to
highlight their significance.
Consistent Coding Style: A total of 146 responses (78%) emphasized the importance of
enforcing a consistent coding style. This was identified as a critical factor for improving code
readability. Recommendations included the adoption of automated tools like linters (e.g.,
ESLint for JavaScript, Pylint for Python) and adherence to established style guides (e.g., PEP
8 for Python).
Meaningful Naming Conventions: 135 responses (72%) highlighted the role of descriptive
and intuitive naming conventions for variables, functions, and classes. The use of semantic
naming, such as calculateTax() instead of cT(), was suggested to enhance maintainability and
comprehension for contributors.
Comprehensive Documentation: 120 responses (64%) underscored the need for clear and
complete documentation, including inline comments and detailed README files.
Participants noted that poorly documented code increases the onboarding time for new
contributors by an estimated 30-50%, impacting project growth.
Code Modularization: 101 responses (54%) recommended modularizing code by breaking
it into smaller, reusable components. For example, in software with 10+ functions per file,
modularization reportedly improved readability scores in automated tools like SonarQube by
15-25%.
Peer Reviews and Community Feedback: 88 responses (47%) suggested implementing
structured code reviews. Projects with mandatory peer reviews showed a 22% reduction in
critical errors as identified in pre-commit hooks.
Testing and Continuous Integration (CI): 81 responses (43%) advocated for the
integration of testing frameworks and CI pipelines. Projects utilizing unit tests and CI tools
like Jenkins or GitHub Actions observed a 30% improvement in error detection rates before
deployment.

Jan 2025 | Vol 07 | Issue 01 Page | 141

OPEN (") ACCESS
International Journal of Innovations in Science & Technology

User-Centric Design and Accessibility: 74 responses (40%) emphasized UX aspects,
including accessibility and responsiveness. Contributors recommended using WCAG
standards and conducting UX surveys, which increased user satisfaction metrics by 18% in
comparative studies.

Performance Optimization: 48 responses (26%) identified performance as a secondary yet
important factor. Profiling tools such as Perf or Lighthouse were suggested to reduce load
times, with a reported 10—15% improvement in performance metrics.

Table 6. Quantitative Breakdown of Key Factors

Factor Responses | Percentage Observed Impact on Metrics
(n=187) (%)

Consistent Coding Style | 146 78 Reduced code review time by
20%

Meaningful Naming 135 72 Enhanced comprehension by
15%

Documentation 120 64 Reduced onboarding time by
30%

Modularization 101 54 Improved readability by 25%

Peer Reviews 88 47 Reduced critical errors by 22%

Testing and CI 81 43 Improved error detection by
30%

User-Centric Design 74 40 Increased satisfaction by 18%

Performance 48 26 Reduced load times by 15%

Optimization

Notable Observations:
e Consistency emerged as the most critical factor, with 78% of contributors identifying
it as foundational for readability.
e Documentation and modularization were closely tied to onboarding success and
reduced complexity.
e The adoption of CI tools demonstrated significant potential for early error detection
and reduced technical debt.

This analysis quantitatively confirms the subjective importance of best practices in
OSS development, offering actionable insights for contributors and maintainers. The analysis
shows that the participants agree on a mixture of technical practices and community-based
with better quality assurance in open-source projects. Clear and extensive comments in the
code were often mentioned as crucial to make it easier for new contributors to understand a
project. Keeping the Project Clear with Code Structure and Version Control facilities helps in
keeping the code clean, and consistent which are also equally important to have a more
structured collaboration amongst every team member. Another common point raised was the
need for active community supportt, helping in closing issues faster and a place where there is
no hostility to new developers. Together, these insights underscore the multipronged approach
that must be taken to improve code readability and UX - wherein technical accuracy, as well
as healthy community collaboration, emerge as two of the foundational pillars of successful
open-source projects.

Discussion:

According to existing literature method chains, code comments, formatting guidelines
and the experience of the user are the possible factors that impact code readability. In our
research, we have examined code structure, code comments, and version control as the three
main metrics for code readability. Our survey-based results are very similar to our assumptions
and these are strongly supported by the research hypotheses mentioned in section 2. Our

Jan 2025 | Vol 07 | Issue 01 Page | 142

OPEN (5) ACCESS

International Journal of Innovations in Science & Technology

survey-based results are very similar to our assumptions and these are strongly supported by
the research hypotheses mentioned in section 2. According to Table 4, code readability has a
positively significant relationship with the UX whereas with poor code readability, UX has a
negative significant relationship. This means that when code is easily readable and efficiently
managed then the UX with the OSS projects will be good and they will definitely prefer to use
these open-source projects. Therefore, we can claim that our hypothesis H1 (mentioned in the
Hypothesis Section) has been accepted. Besides this, Figure 3 also depicts that most participant
(approx. 80%) has a consensus that code readability is very important for better UX with
respect to open-source projects' usability.

To test the remaining three hypotheses, we have checked the relationship of code
readability metrics with UX and found out that code structure, code comments, and version
control; all these factors have a positively significant relationship with good user experience.
If we deeply analyze, we can see that the code structure has the most significant relationship
(8.33*%) with better user experience. Therefore, we can claim that our hypothesis H2 is also
accepted. Similarly, user comments have a stronger positively significant relationship with UX
than the factor “version control”. Therefore, according to these results, all our three
assumptions have been proved correct and our third hypothesis H3 also accepted. Figures 4a
and 4b also support our results and proposed assumptions.

Concluding Remarks:

We confirm the importance of well-documented code, as opposed to the skill or
knowledge required in order for developers to understand original wrong codes and find specs.
This study adds further evidence that good documentation that constitutes a clear code outline
(for open-soutce projects) is pivotal in creating desirable user experience/results (in this case
being an error-prone detection method when it comes down to mistakes). Additional support
for these results is found in the qualitative analysis of open-ended survey responses.
Commenting, coding standards, and version control would often come up here as ways to
make clean code indeed accessible thus increasing usability satisfaction across the board.
Extensive comments in the code help newer contributors to comprehend and contribute
faster, which is further complemented by uniformity across all coding standards as well as
version control.

An active community is also important, as it allows the problems to be solved quickly
and makes new developers welcome. The patterns highlight an even and sensible middle
ground between technical correctness, and community involvement that will express
readability in their code or enhance the experience of people working with it.

Disclosure of interest

None

Competing interests

Not applicable

Funding

No funding was received.

References:

[1] E. Dias, P. Meirelles, F. Castor, I. Steinmacher, 1. Wiese, and G. Pinto, “What makes a
great maintainer of open source projects?,” Proc. - Int. Conf. Softw. Eng., pp. 982-994,
May 2021, doi: 10.1109/ICSE43902.2021.00093.

[2] U. A. Mannan, I. Ahmed, and A. Sarma, “Towards understanding code readability and
its impact on design quality,” NIASE 2018 - Proc. 4th ACM SIGSOFT Int. Work. NLP
Softw. Eng. Co-located with FSE 2018, pp. 18-21, Nov. 2018, doi:
10.1145/3283812.3283820.

Jan 2025 | Vol 07 | Issue 01 Page | 143

PR
OPEN (5

yACCESS

International Journal of Innovations in Science & Technology

[19]

G. von Krogh, “Open-Source Software Development,” MIT Sloan Manag. Rev., Apt.
2003, Accessed: Jan. 10, 2025. [Online]. Available:
https:/ /sloanteview.mit.edu/article/opensource-softwatre-development/

M. Krishnamurthy, “Institutional Repositories, Open Source Options, and Libraries,”
Program, vol. 42, no. 1, pp. 48-55, 2008, doi: 10.1108/00330330810851582.

S. Pinfield e al., “Open-access repositories worldwide, 2005-2012: Past growth, current
characteristics, and future possibilities,” |. Assoc. Inf. Sci. Technol., vol. 65, no. 12, pp.
2404-2421, Dec. 2014, doi: 10.1002/ASI.23131.

O. Jarczyk, B. Gruszka, S. Jaroszewicz, L. Bukowski, and A. Wierzbicki, “Github
projects. quality analysis of open-source software,” Lect. Notes Comput. Sci. (including
Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 8851, pp. 80-94, 2014, doi:
10.1007/978-3-319-13734-6_6.

“An empirical study of the first contributions of developers to open source projects on
GitHub | IEEE Conference Publication | IEEE Xplore.” Accessed: Jan. 10, 2025.
[Online]. Available: https://ieeexplore.ieee.org/document/9270396

A. Seker, B. Diri, H. Arslan, and M. F. Amasyali, “Open Source Software Development
Challenges: A Systematic Literature Review on GitHub,” bttps:/ / services.igi-
global.com/ resolvedoi/ resolve.aspx2doi=10.4018/IJOSSP.2020100101, vol. 11, no. 4, pp. 1—
26, Jan. 1AD, doi: 10.4018/IJOSSP.2020100101.

“5 Types of Programming LLanguages | Coursera.” Accessed: Jan. 10, 2025. [Online].
Available: https://www.coursera.org/articles/ types-programming-language

“The Java Programming Language, 4th Edition: Arnold, Ken, Gosling, James, Holmes,
David: 9780321349804: Amazon.com: Books.” Accessed: Jan. 10, 2025. [Online].

Available: https://www.amazon.com/Java-Programming-TLanguage-
4th/dp/0321349806

“Programming Kotlin | Programming | Print.” Accessed: Jan. 10, 2025. [Online].
Available: https:/ /www.packtpub.com/en-us/product/programming-kotlin-
9781787126367

T. Mikkonen and A. Taivalsaari, “Using JavaScript as a Real Programming Language,”
2007, doi: 10.5555/1698202.

M. Rebougas, G. Pinto, F. Ebert, W. Torres, A. Serebrenik, and F. Castor, “An
empirical study on the usage of the swift programming language,” 2076 IEEE 23rd Int.
Conf. Softw. Anal. Evol. Reengineering, SANER 2016, vol. 1, pp. 634—638, May 2016, doi:
10.1109/SANER.2016.66.

“Python Programming Language | USENIX.” Accessed: Jan. 10, 2025. [Online].
Available: https:/ /www.usenix.org/conference/2007-usenix-annual-technical-
conference/presentation/python-programming-language

B. W. Kernighan and D. M. Ritchie, “The C programming Language,” 1988.

P. Bhattacharya and I. Neamtiu, “Assessing programming language impact on
development and maintenance: A study on C and C++,” Proc. - Int. Conf. Softw. Eng.,
pp. 171-180, 2011, doi: 10.1145/1985793.1985817.

R. P. L. Buse and W. R. Weimer, “Learning a metric for code readability,” IEEE Trans.
Softw. Eng., vol. 36, no. 4, pp. 546-558, 2010, doi: 10.1109/TSE.2009.70.

“(PDF) A Review of Career Selection Models.” Accessed: Jan. 10, 2025. [Online].
Available:

https:/ /www.researchgate.net/publication/342145623_A_Review_of_Career_Selecti
on_Models

R. P. L. Buse and W. R. Weimer, “A metric for software readability,” ISSTA08 Proc.
2008 Int. Symp. Softw. Test. Anal. 2008, pp. 121-130, 2008, doi:
10.1145/1390630.1390647.

Jan 2025 | Vol 07 | Issue 01 Page | 144

L"‘j:
OPEN “5 o) ACCESS

International Journal of Innovations in Science & Technology

[20]

28]

[29]

[30]

31]

32]

D. Oliveira, R. Bruno, F. Madeiral, and F. Castor, “Evaluating Code Readability and
Legibility: An Examination of Human-centric Studies,” Proc. - 2020 IEEE Int. Conf.
Softw. Maint. Ewol. ICSME 2020, pp. 348-359, Sep. 2020, doi:
10.1109/1CSME46990.2020.00041.

N. Al Madi, “How Readable is Model-generated Code? Examining Readability and
Visual Inspection of GitHub Copilot,” ACM Int. Conf. Proceeding Ser., Aug. 2022, doi:
10.1145/3551349.3560438.

M. Rajanen and D. Riehle, “Open Source Usability and User Experience,” Computer
(Long. Beach. Calif)., vol. 56, no. 02, pp. 106-110, Feb. 2023, doi:
10.1109/MC.2022.3219634.

S. Scalabrino, M. Linares-Vasquez, R. Oliveto, and D. Poshyvanyk, “A Comprehensive
Model for Code Readability,” J. Softw. Evol. Process |. Softw. Evol. Proc, vol. 00, pp. 1-29,
2017, doi: 10.1002/smt.

J. Borstler and B. Paech, “The Role of Method Chains and Comments in Software
Readability and Comprehension-An Experiment,” IEEE Trans. Softw. Eng., vol. 42, no.
9, pp. 886-898, Sep. 2016, doi: 10.1109/TSE.2016.2527791.

J. Cheng and J. L. C. Guo, “How do the open source communities address usability
and UX issues? An exploratory study,” Conf. Hum. Factors Comput. Syst. - Proc., vol. 2018-
April, Apr. 2018, doi: 10.1145/3170427.3188467.

Q. Mi, J. Keung, Y. Xiao, S. Mensah, and Y. Gao, “Improving code readability
classification using convolutional neural networks,” Inf. Softw. Technol., vol. 104, pp. 60—
71, Dec. 2018, doi: 10.1016/].INFSOF.2018.07.006.

D. Oliveira, R. Santos, F. Madeiral, H. Masuhara, and F. Castor, “A systematic literature
review on the impact of formatting elements on code legibility,” J. Sysz. Soffw., vol. 203,
p. 111728, Sep. 2023, doi: 10.1016/]J.JSS.2023.111728.

F. Haneef ¢z al., “Using network science to understand the link between subjects and
professions,” Comput. Human Behav., vol. 106, p. 106228, May 2020, doi:
10.1016/].CHB.2019.106228.

F. Haneef, R. Ayaz Abbasi, M. N. Noor, F. Waseem, and A. Khalid, “Identifying
Significant Factors Associated with Career Selection: A survey based study in Pakistan,”
Pakistan]. Eng. Technol. & Sei., vol. 12, no. 1, pp. 104-116, Jul. 2024, doi:
10.22555/PJETS.V1211.1090.

“(PDF) The analysis of categorical data: Fisher’s exact test.” Accessed: Jan. 10, 2025.
[Online]. Available:
https:/ /www.researchgate.net/publication/237336173_The_analysis_of_categorical _

data_Fishetr’s_exact_test

M. N. Noor, T. A. Khan, F. Haneef, and M. I. Ramay, “Machine Learning Model to
Predict Automated Testing Adoption,” https:/ [services.igi-
global.com/ resolvedoi/ resolve.aspx?doi=10.4018/1]51.293268, vol. 10, no. 1, pp. 1-15, Jan.
1AD, doi: 10.4018/1JS1.293268.

“Chi-Square Test of Independence | Formula, Guide & Examples.” Accessed: Jan. 10,
2025. [Online]. Available: https://www.sctibbt.com/statistics/chi-square-test-of-
independence/

@ ® Copyright © by authors and 50Sea. This work is licensed under
Creative Commons Attribution 4.0 International License.

Jan 2025 | Vol 07 | Issue 01 Page | 145

