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his research provides a comprehensive evaluation of load-balancing algorithms in cloud 
computing, classifying them into static, dynamic, and nature-inspired categories. Static 
algorithms, such as Round Robin and Min-Min, offer simplicity and efficiency in 

environments with stable workloads but struggle with adaptability to varying demands. Dynamic 
algorithms like Throttled Load Balancing and Least Connection are more flexible, adjusting to 
real-time server load changes and improving resource utilization, though they introduce higher 
overhead and computational costs. Nature-inspired algorithms, including Ant Colony 
Optimization and Particle Swarm Optimization, draw from biological processes to achieve high 
scalability, fault tolerance, and adaptability. A novel Walrus Optimization Algorithm (WaOA) is 
proposed, inspired by the social and migratory behaviors of walruses, to address challenges such 
as task bottlenecks and resource underutilization. MATLAB simulations reveal that WaOA 
outperforms traditional and nature-inspired methods in terms of scalability, response time, and 
resource optimization. The study concludes with suggestions for integrating machine learning, 
hybrid techniques, and real-world testing to further enhance WaOA’s effectiveness. 
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Introduction: 
Cloud computing is like an online platform that operates on the idea of on-demand 

computing. It serves as a space where resources and data are shared among various devices. This 
platform can offer users the necessary resources, storage, and infrastructure as needed. Cloud 
computing furnishes both the hardware and software foundation for applications that require 
high-spec systems. The fundamental principle of cloud computing is the "pay-as-you-go" model, 
where users pay for the specific systems, they utilize on the cloud [1]. In today's world, cloud 
computing is a well-established and widely used technology in the field of information 
technology and related services. Its outstanding features like flexibility, scalability, and reliability 
have attracted many service providers and researchers to switch to it. The lack of upfront costs, 
constant availability from any location, and easy maintenance contribute to a significant increase 
in the adoption of cloud computing by end users [2]. 
In a broad sense, clouds can be categorized as follows [3]: 
Private Cloud: This cloud type is tailored for a specific organization or business, exclusively 
serving its needs. 
Public Cloud: Easily accessible from major providers like Google, Amazon, and Microsoft, the 
public cloud offers infrastructure and services to the general public or any organization. 
Resources are shared among numerous users. 
Community Cloud: Services and infrastructure in a community cloud are extended to 
organizations with shared interests or common goals. 
Hybrid Cloud: Combining features of both private and public clouds, the hybrid cloud 
maintains distinct identities for each, allowing for multiple deployment options. 

Load balancing means distributing tasks and resources across multiple computers or 
servers to ensure that no single server is overwhelmed or idle. When there's a lot of traffic and 
many people try to access a website or service, it can cause the system to fail because too many 
requests can overload it. Load balancing helps prevent this by spreading the workload [4]. It 
plays a crucial role in how well a system performs based on the workload assigned to it within a 
specific timeframe. Load balancing involves distributing the overall workload of a system evenly 
among its resources to enhance resource use and overall system performance [5]. Some 
fundamental measurements help assess load balancing, including scalability, throughput, 
performance, resource utilization, response time, and fault tolerance. These metrics enable us to 
determine whether a specific load-balancing technique or algorithm effectively distributes the 
workload or not [6]. 

The novelty of WaOA lies in its use of walrus behavioral patterns to optimize task 
distribution. Unlike traditional nature-inspired algorithms, WaOA incorporates dynamic task 
migration, exploration, and resource optimization, ensuring better scalability and response times. 
The primary objectives of this study are to: 
• Design and develop a novel load-balancing algorithm inspired by walrus behavior. 
• Compare WaOA against established methods, highlighting its advantages. 

Test WaOA’s performance under varying workloads using MATLAB simulations. 
This paper addresses the following objectives: 

• To evaluate existing static, dynamic, and nature-inspired load balancing algorithms. 

• To propose a novel algorithm (WaOA) inspired by walrus behaviors to address current 
limitations. 

• To validate WaOA in a simulated environment, focusing on scalability, resource 
utilization, and fault tolerance. 
Classification of Load Balancing Algorithms: 

Different load-balancing algorithms are used to make computer systems work better. 
These algorithms fall into three main types based on where they work: static, dynamic, and 
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nature-inspired [7]. Figure. 1, shows how load-balancing algorithms are grouped to balance work 
in the cloud. 

 
Figure 1. Classification of Load Balancing Algorithms 

Static Load Balancing Algorithms: 
Static load balancing techniques distribute requests without taking into account the 

current condition or metrics of the system, such as processing capacity [8]. These methods 
evenly spread-out requests among virtual machines or based on certain principles that are not 
affected by limitations. They work well for systems with minimal changes in load. To make these 
methods effective, it's important to have a good understanding of server capabilities [9]. 
Round Robin: 

In a round-robin algorithm, tasks are divided among all processors to ensure that the 
workload is evenly distributed. Additionally, each task may have a different processing time [2]. 
This algorithm reacts quickly when the workload is evenly distributed. However, it may face 
challenges when some nodes are overloaded while others are inactive or minimized [10]. 
Weighted Round Robin: 

This algorithm is created to handle specified weights and tasks that are assigned based 
on these weight values [11]. Processors with higher capabilities are given higher values. Servers 
with the highest weights will receive more tasks. When all weights are equal, servers will 
experience a consistent flow of tasks [12]. 
Min to Min: 

In this method, we begin by calculating the minimum completion time for all tasks. The 
task with the lowest completion time is then scheduled to any available machine based on this 
minimum time [13] Subsequently, the execution times of all other tasks on that machine are 
updated, and the scheduled task is removed. This process continues until all tasks are assigned 
resources. However, tasks with longer execution times may have to wait longer than shorter 
ones. This algorithm works well when there are more tasks with shorter times than longer ones 
[14]. One drawback of the min-min algorithm is the possibility of starvation. 
Min to Max: 

In this method, we start by identifying tasks with the shortest completion times. From 
these tasks, we choose the one with the longest execution time. Then, we schedule that task on 
a machine based on its maximum execution time. This approach aims to evenly distribute the 
workload and allocate resources efficiently. However, it doesn't effectively address the overall 
performance when dealing with different types of resources and tasks [15]. 
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Opportunistic Algorithm: 
OLB is a static algorithm, meaning it doesn't consider the current workload on each 

node. Its primary aim is to keep every server on a node busy. Regardless of the current workload, 
OLB randomly assigns unfinished tasks to servers without calculating the execution time of the 
node [16]. This approach provides a load-balancing plan but may not yield optimal results. Task 
processing can be slow because it doesn't calculate the execution times of nodes, leading to 
potential bottlenecks and some idle nodes [17]. 
Dynamic Load Balancing Algorithms: 

These programs keep an eye on how busy a computer system is and rearrange the tasks 
to make things more balanced. There are three parts to these programs: one part decides which 
tasks can be moved to other parts of the system, another part chooses where to move them, and 
the last part manages the information about the balancing process [18]. 
Throttled Load Balancing: 

This method uses an indexing table to keep track of how much load each virtual machine 
is currently handling [19]. When a new task comes in, the algorithm checks the table to find a 
virtual machine with a low load and assigns the task to it, provided the virtual machine is 
available. The index table is updated whenever a task is allocated or deallocated. This helps 
reduce waiting time and ensures better use of resources by evenly distributing the load among 
virtual machines. However, a drawback is that there's a risk of a single point of failure, and as 
the number of tasks increases, it may lead to a decrease in system performance [20]. 
Least Connection: 

The Least-Connection strategy aims to balance the number of active requests among 
servers in a cloud computing environment. When new service requests come in, the load 
balancer chooses the server with the fewest active connections. This is a dynamic scheduling 
algorithm that continuously monitors the active connections on each server to determine its 
load. For example, if there are three servers with active requests, the load balancer selects the 
server with the least active connections for the next service requests. This process repeats, 
ensuring a balance in the number of HTTP connections across the available server pool [21]. 
Biased Random sampling: 

This method uses a random sampling approach to distribute the workload in a system. 
It creates a virtual graph of the system, where each node represents a component, and free 
resource nodes are indicated by them in degrees. The task of assigning jobs is handled by a load 
manager node with at least one in-degree. The in-degree of a node is increased when a job is 
assigned to it and decreased when the job is completed and reassigned to another node. This 
balancing is achieved through the use of random sampling [22]. 
Equally Spread Current Execution: 

The ESCE algorithm operates using the spread spectrum strategy, where balancers 
distribute loads across multiple virtual machines. The goal is to evenly distribute the workload 
among several servers. Initially, processes are assigned priorities based on their size and capacity 
for efficient load transfer [10]. The algorithm then allocates each process to a server capable of 
managing the load quickly and with maximum throughput. If a virtual machine becomes 
available or another virtual machine needs to free up resources, the load balancer transfers a 
percentage of the load to the free VM, ensuring an equal distribution of the workload. This 
distribution of load across different nodes is known as the spread spectrum technique [23].  
Nature-Inspired Algorithm: 

Nature-inspired algorithms are special problem-solving methods that take inspiration 
from or imitate biological activities [24]. Researchers use clever problem-solving methods (meta-
heuristic approaches) to find the best or almost best solutions for scheduling tasks efficiently 
[25]. 
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Honey Bee: 
This algorithm works like real honey bees. In a bee colony, there are queen bees, scout 

bees, and worker bees. The scout bees search for food and let others know where it is. The rest 
of the bees then move together towards the food in a group dance, showing its quality, quantity, 
and distance. This approach improves overall performance by prioritizing tasks. However, a 
downside is that it can sometimes make overall performance worse and use more energy and 
cost due to moving virtual machines [26]. 
Ant Colony: 

The Ant Bee Colony Optimization algorithm mimics the behavior of real ants. Its 
primary goal is to discover the most efficient path from a starting point to a destination. When 
ants search for food, they leave behind special substances known as pheromones. Other ants 
then follow the same path based on these pheromones. The intensity of pheromones depends 
on factors like the quality of the food source and the distance. Paths with the highest pheromone 
intensity are considered shorter routes between the starting point and the destination [27]. 
Particle Swarm: 

This algorithm mimics the natural behavior of a group of individuals, called a "swarm," 
such as birds foraging or ducks gathering for food. The algorithm, known as Particle Swarm 
Optimization (PSO), uses particles to represent individuals in the swarm. These particles move 
globally, adjusting their positions based on a set velocity. PSO is particularly helpful in 
applications like Neural Networks. Unlike Genetic Algorithms (GA), PSO has simpler rules and 
does not involve mutation or crossover operations [28]. 

In another study by Yadav [29], a hybrid approach called Hybrid PSO & ESCEL was 
proposed. This approach combines PSO with the Equally Spread Current Execution Load 
(ESCEL) algorithm. PSO optimizes jobs in a cloud server before assigning them, and then the 
server uses the ESCEL approach for task assignment. The goal is to optimize resources and 
achieve faster response times, although there is no experiment provided to prove its 
effectiveness. 
Crow Search: 

This algorithm is like a strategy inspired by how real crows behave when looking for 
food. Crows are known for hiding extra food in secret spots and remembering those places for 
a long time. They also protect their hidden food from enemies and might deceive other crows 
to steal from their hiding spots. This method is easy to use, with just a few settings to adjust, but 
it may not always find the best solution quickly and could get stuck in a less optimal result [30]. 
Bat Optimization: 

The Bat algorithm is inspired by how bats hunt for food. Bats use a technique called 
echolocation, emitting sounds and listening for their echoes to locate food [31]. There are three 
types of bats: micro, ghost, and megabats, classified based on their size and methods for finding 
food. 
Bats fly randomly with a certain speed, frequency, and loudness to locate prey. The advantage 
of this approach is its ability to find the best solution quickly. The loudness and pulse rate help 
control and focus on specific areas. However, it converges fast initially but slows down later. 
Keep in mind that accuracy may be limited if the number of evaluations is not high in this 
algorithm [12]. 
Monarch Butterfly: 

The Enhanced Migration and Adjustment Operator-Based Monarch Butterfly 
Optimization is a method inspired by Monarch Butterflies. It aims to balance the load in the 
cloud by identifying overutilized nodes and moving tasks to underutilized nodes using migration 
and adjustment operators [32]. However, a drawback of this approach is that the time taken to 
migrate tasks is high, and the convergence is not consistent during the localization process [33]. 
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Lion Optimization: 
A detailed investigation into finding the best solution revealed that metaheuristic 

approaches are the most effective. These approaches excel in identifying node capacity and 
consistently aim for the best global solution. After analyzing the options, the design of the 
proposed work, ILOA_LB, incorporates a Bio-Inspired Lion Optimization Algorithm. The 
implementation shows that ILOA_LB performs better in balancing cloud loads, even with an 
increased number of nodes and workloads, compared to benchmarks like EMAMBO_LB, 
BOA_LB, and CSO_LB [12]. 
Load Balancing Metrics: 
The load balancing metrics are as follows: 

• Scalability: How well does the algorithm perform as the number of nodes and tasks 
increases? 

• Resource Utilization: How effectively does the algorithm use available resources 
without causing bottlenecks? 

• Performance: How does the algorithm impact system performance, including metrics 
such as throughput and response time? 

• Fault Tolerance: How resilient is the algorithm in handling failures and maintaining 
system reliability? 

• Overhead: What is the computational and operational cost associated with the 
algorithm?
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Table 1. Comparison of Load Balancing Algorithms 

Type Algorithm Through
put 

Fault 
Tolerance 

Response 
Time 

Overhead Resource 
Utilization 

Scalability Performance 

Static 
Algorithms 

Round Robin High Low Moderate Low High High Moderate 

Weighted Round 
Robin High Low Moderate Low High High Moderate 

Min-Min High Low Moderate Moderate High Low Moderate 

Min-Max High Low Moderate Moderate High Low Moderate 

Opportunistic Load 
Balancing (OLB) Low Low Low High Moderate Low Low 

Dynamic 
Algorithms 

Throttled Load 
Balancing Moderate High High Moderate High High High 

Least Connection High Moderate High Low High High High 

Biased Random 
Sampling Low Low Low High Moderate Low Moderate 

Equally Spread 
Current Execution Low Low Low High High High Low 

Nature 
Inspired 

Algorithms 

Honey Bee High Low Low High High Low Moderate 

Ant Colony High High High Moderate High High High 

Particle Swarm High High High Moderate High High High 

Crow Search Moderate Moderate Moderate Moderate Moderate Moderate Moderate 

Bat Optimization High High High Low High High High 

Monarch Butterfly High Moderate Moderate High High High High 

Lion Optimization High High High Moderate High High High 

 



                                 International Journal of Innovations in Science & Technology 

Jan 2025|Vol 07 | Issue 01                                                                      Page |184 

Problem Statement: 
The goal is to identify a novel load-balancing algorithm that can integrate the strengths 

of existing methods while mitigating their weaknesses. The proposed performance by optimizing 
scalability, enhancing resource utilization, and ensuring fault tolerance, thereby addressing the 
shortcomings of current solutions and better adapting to dynamic workloads. 
Proposed Algorithm 
Algorithm Development: 

In the cloud environment, resources like virtual machines (VMs) or servers need to be 
balanced to optimize resource utilization, minimize response time, and avoid overloading any 
server. The walrus in WaOA can be treated as tasks that need to be assigned to the optimal 
servers. 
Key Mapping: 

• Walruses (N) – Represent tasks or workloads that need to be processed. 

• Locations of Walruses – Represent the load on the servers 

• Best Candidate Solution – Represents the optimal task-server assignment. 

• Strongest Walrus – Represents the server (VM) with the most optimal load-handling 
capability. 
Pseudocode: 
o Initialize tasks (N), servers (S), and iterations (T). 
o Randomly assign tasks to servers. 
o For each task: a. Explore nearby servers for potential reassignment. 

b. Migrate tasks to less loaded servers. 
c. Optimize task assignments to minimize response time. 

• Repeat until convergence or maximum iterations. 
Mathematical Formulation: 

The fitness function minimizes load variance: where is the load on the server, and is the 
average load? 
Variables: 

• Xi,j∈{0,1}x_{i,j} \in \{0, 1\}xi,j∈{0,1}: Binary decision variable, where: 
xi,j={1if task i is assigned to server j,0otherwise.x_{i,j} = \begin{cases} 1 & \text{if task } i 
\text{ is assigned to server } j, \\ 0 & \text{otherwise.} \end{cases}xi,j={10
if task i is assigned to server j, otherwise. 
• LjL_jLj: Load on server jjj. 
• RiR_iRi: Response time for task iii. 
Parameters: 
• N: Total number of tasks. 
• SSS: Total number of servers. 
• TTT: Maximum number of iterations. 
• did_idi: Resource demand of task iii. 
• CjC_jCj: Capacity of server J. 
• Di,jD_{i,j}Di,j: Latency or distance between task iii and server J. 
• α,β\alpha, \betaα,β: Weighting factors for load and latency. 
Objective Function: 
We aim to minimize the total system response time, which combines the effects of server load 
and latency: 

Minimize: ∑i=1N∑j=1Sxi,j⋅(α⋅Lj+β⋅Di,j),\text{Minimize: } \sum_{i=1}^{N} 
\sum_{j=1}^{S} x_{i,j} \cdot (\alpha \cdot L_j + \beta \cdot D_{i,j}),Minimize: i=1∑N

j=1∑Sxi,j⋅(α⋅Lj+β⋅Di,j), 
Where: 
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• α\alphaα: Weight factor for the effect of server load on response time. 
• β\betaβ: Weight factor for the effect of latency/distance on response time. 
Constraints: 
Task Assignment: 

Each task must be assigned to exactly one server: 

∑j=1Sxi,j=1,∀i∈{1,…,N}.\sum_{j=1}^{S} x_{i,j} = 1, \quad \for all i \in \{1, \dots, 

N\}.j=1∑Sxi,j=1,∀i∈{1,…,N}. 
Server Capacity: 

The total load on any server must not exceed its capacity: 

Lj=∑i=1Nxi, j⋅di, ∀j∈{1, …,S}.L_j = \sum_{i=1}^{N} x_{i,j} \cdot d_i, \quad \for all j 

\in \{1, \dots, S\}.Lj=i=1∑Nxi,j⋅di,∀j∈{1,…,S}. Lj≤Cj,∀j∈{1,…,S}.L_j \leq C_j, \quad 

\for all j \in \{1, \dots, S\}.Lj≤Cj,∀j∈{1,…,S}. 
Response Time Model: 

The response time for a task is influenced by both server load and network latency: 

Ri=α⋅Lj+β⋅Di,j,∀i∈{1,…,N},∀j∈{1,…,S}.R_i = \alpha \cdot L_j + \beta \cdot D_{i,j}, 

\quad \for all i \in \{1, \dots, N\}, \quad \for all j \in \{1, \dots, S\}.Ri=α⋅Lj+β⋅Di,j

,∀i∈{1,…,N},∀j∈{1,…,S}. 
Stopping Criterion: 

Iterative optimization stops when: 
1. The solution converges (i.e., no significant change in the objective function over 
successive iterations). 
2. Maximum iterations of TTT are reached. 
Simulation Setup: 
• Environment: MATLAB R2022b. 
• Servers: 10-50 virtual machines with varying capacities. 
• Tasks: 500-2000 tasks with diverse CPU and memory requirements. 

The Implementation of the proposed algorithm is as follows: 

• Initialize Task and Server Definitions: Define tasks and servers, where tasks have 
certain resource demands and servers have finite capacities for handling these tasks. 

• Define the Objective Function: This function will calculate the “fitness” of a solution. 
For load balancing need to minimize the difference in load across servers. 

• Exploration: Tasks explore different servers randomly or based on a heuristic to find a 
potential server that can handle their load. 

• Migration: Tasks move between servers if they find a better destination based on load-
balancing criteria. 

• Exploitation: Refine the assignment by shifting tasks to nearby servers to minimize 
load differences. 

• Stopping Criteria: The algorithm iterates until it reaches the maximum number of 
iterations to find an optimal solution. 
Results and Discussion: 
Performance Comparison: 

The Walrus Optimization Algorithm (WaOA) was evaluated against existing load 
balancing algorithms, including Ant Colony Optimization (ACO), Particle Swarm Optimization 
(PSO), and Throttled Load Balancing (TLB). The comparison was conducted based on key 
performance metrics such as scalability, resource utilization, response time, fault tolerance, and 
computational overhead. 
Scalability: Scalability measures how well an algorithm performs as the number of tasks or 
virtual machines (VMs) increases. WaOA demonstrated superior scalability by efficiently 
handling up to 2000 tasks across 50 virtual machines in the simulated environment. In contrast: 
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• Ant Colony Optimization struggled to maintain optimal performance beyond 1500 
tasks. 
• Particle Swarm Optimization faced difficulties beyond 1400 tasks due to 
convergence issues. 
• Throttled Load Balancing showed significant performance degradation as the task 
count increased, becoming ineffective for more than 1000 tasks. 

WaOA’s dynamic task reassignment mechanism and exploration capabilities ensured an 
even distribution of workload even under high task loads, highlighting its robustness in large-
scale systems. 
Resource Utilization: 

Resource utilization evaluates how effectively available computational resources are 
used. WaOA achieved a resource utilization rate of 95%, outperforming the benchmarks: 
• Ant Colony Optimization: 88% 
• Particle Swarm Optimization: 85% 
• Throttled Load Balancing: 70% 

This high utilization can be attributed to WaOA’s adaptive load distribution, which 
continuously monitors server capacities and redistributes tasks to underutilized servers. This 
minimizes resource wastage and ensures balanced workloads across the cloud environment. 
Response Time: 

Response time reflects the average time required to process a task. WaOA achieved the 
lowest response times among the algorithms tested: 
• WaOA: Average response time of 1.8 seconds. 
• Ant Colony Optimization: 2.4 seconds. 
• Particle Swarm Optimization: 2.6 seconds. 
• Throttled Load Balancing: 3.5 seconds. 

The reduced response time in WaOA is due to its ability to dynamically reassign tasks 
based on server load and proximity, optimizing latency and processing speed. 
Fault Tolerance: 

Fault tolerance measures the algorithm’s ability to maintain performance in the event of 
server or network failures. WaOA demonstrated high fault tolerance by leveraging task 
migration and replication strategies. When a server became unavailable, tasks were swiftly 
reassigned to operational servers without significant performance drops. 
• Ant Colony Optimization also exhibited high fault tolerance due to its pathfinding 
capabilities. 
• Particle Swarm Optimization showed moderate fault tolerance, as particles 
occasionally converged to suboptimal solutions during failures. 
• Throttled Load Balancing displayed poor fault tolerance, with performance declining 
sharply during server failures. 
Computational Overhead: 

Computational overhead represents the additional processing required by the algorithm. 
WaOA incurred moderate computational overhead due to its iterative optimization process. 
While this trade-off slightly increased resource demands, it was justified by the significant 
improvements in system performance. 
• Ant Colony Optimization and Particle Swarm Optimization exhibited moderate 
overhead. 
• Throttled Load Balancing had the lowest overhead but at the cost of lower overall 
performance and scalability. 

Table 2. Comparison of WaOA, Ant Colony, PSO & Throttled LB Algorithms 

Metric WaOA Ant Colony PSO Throttled Load 
Balancing 
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Scalability High Moderate Moderate Low 

Resource 
Utilization 

95% 88% 85% 70% 

Response Time Low Moderate Moderate High 

Fault Tolerance High High Moderate Low 

Computational 
Overhead 

Moderate Moderate High Low 

Conclusion: 
Load balancing in cloud computing is essential for optimizing resource utilization, 

scalability, and system performance. This research reviewed static, dynamic, and nature-inspired 
algorithms, highlighting their strengths and limitations. The proposed Walrus Optimization 
Algorithm (WaOA) introduces a novel, nature-inspired approach for dynamic task migration 
and resource optimization, addressing issues like bottlenecks and underutilized resources. 
MATLAB simulations demonstrated WaOA’s superior performance in scalability, response 
time, and resource utilization compared to traditional and nature-inspired methods. WaOA 
offers a promising solution to load balancing challenges, with the potential for future 
enhancements through machine learning, hybrid approaches, and real-world validation. 
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