
 International Journal of Innovations in Science & Technology

Jan 2025|Vol 07 | Issue 01 Page |177

Load Balancing in Cloud Computing: A Proposed Novel
Approach Based on Walrus Behavior

Asad Ali1

1University of Engineering and Technology, Lahore, Pakistan
*Correspondence: asadsheikh520@gmail.com
Citation| Ali. A, “Load Balancing in Cloud Computing: A Proposed Novel Approach Based
on Walrus Behavior”, IJIST, Vol. 07 Issue. 01 pp 177-189, Jan 2025
Received| Dec 28, 2024 Revised| Jan 17, 2025 Accepted| Jan 18, 2025 Published| Jan 21,
2025.

his research provides a comprehensive evaluation of load-balancing algorithms in cloud
computing, classifying them into static, dynamic, and nature-inspired categories. Static
algorithms, such as Round Robin and Min-Min, offer simplicity and efficiency in

environments with stable workloads but struggle with adaptability to varying demands. Dynamic
algorithms like Throttled Load Balancing and Least Connection are more flexible, adjusting to
real-time server load changes and improving resource utilization, though they introduce higher
overhead and computational costs. Nature-inspired algorithms, including Ant Colony
Optimization and Particle Swarm Optimization, draw from biological processes to achieve high
scalability, fault tolerance, and adaptability. A novel Walrus Optimization Algorithm (WaOA) is
proposed, inspired by the social and migratory behaviors of walruses, to address challenges such
as task bottlenecks and resource underutilization. MATLAB simulations reveal that WaOA
outperforms traditional and nature-inspired methods in terms of scalability, response time, and
resource optimization. The study concludes with suggestions for integrating machine learning,
hybrid techniques, and real-world testing to further enhance WaOA’s effectiveness.
Keywords: Load Balancing, Cloud Computing, Algorithms, Metaheuristic, Walrus Behavior

T

mailto:asadsheikh520@gmail.com

 International Journal of Innovations in Science & Technology

Jan 2025|Vol 07 | Issue 01 Page |178

Introduction:
Cloud computing is like an online platform that operates on the idea of on-demand

computing. It serves as a space where resources and data are shared among various devices. This
platform can offer users the necessary resources, storage, and infrastructure as needed. Cloud
computing furnishes both the hardware and software foundation for applications that require
high-spec systems. The fundamental principle of cloud computing is the "pay-as-you-go" model,
where users pay for the specific systems, they utilize on the cloud [1]. In today's world, cloud
computing is a well-established and widely used technology in the field of information
technology and related services. Its outstanding features like flexibility, scalability, and reliability
have attracted many service providers and researchers to switch to it. The lack of upfront costs,
constant availability from any location, and easy maintenance contribute to a significant increase
in the adoption of cloud computing by end users [2].
In a broad sense, clouds can be categorized as follows [3]:
Private Cloud: This cloud type is tailored for a specific organization or business, exclusively
serving its needs.
Public Cloud: Easily accessible from major providers like Google, Amazon, and Microsoft, the
public cloud offers infrastructure and services to the general public or any organization.
Resources are shared among numerous users.
Community Cloud: Services and infrastructure in a community cloud are extended to
organizations with shared interests or common goals.
Hybrid Cloud: Combining features of both private and public clouds, the hybrid cloud
maintains distinct identities for each, allowing for multiple deployment options.

Load balancing means distributing tasks and resources across multiple computers or
servers to ensure that no single server is overwhelmed or idle. When there's a lot of traffic and
many people try to access a website or service, it can cause the system to fail because too many
requests can overload it. Load balancing helps prevent this by spreading the workload [4]. It
plays a crucial role in how well a system performs based on the workload assigned to it within a
specific timeframe. Load balancing involves distributing the overall workload of a system evenly
among its resources to enhance resource use and overall system performance [5]. Some
fundamental measurements help assess load balancing, including scalability, throughput,
performance, resource utilization, response time, and fault tolerance. These metrics enable us to
determine whether a specific load-balancing technique or algorithm effectively distributes the
workload or not [6].

The novelty of WaOA lies in its use of walrus behavioral patterns to optimize task
distribution. Unlike traditional nature-inspired algorithms, WaOA incorporates dynamic task
migration, exploration, and resource optimization, ensuring better scalability and response times.
The primary objectives of this study are to:
• Design and develop a novel load-balancing algorithm inspired by walrus behavior.
• Compare WaOA against established methods, highlighting its advantages.

Test WaOA’s performance under varying workloads using MATLAB simulations.
This paper addresses the following objectives:

• To evaluate existing static, dynamic, and nature-inspired load balancing algorithms.

• To propose a novel algorithm (WaOA) inspired by walrus behaviors to address current
limitations.

• To validate WaOA in a simulated environment, focusing on scalability, resource
utilization, and fault tolerance.
Classification of Load Balancing Algorithms:

Different load-balancing algorithms are used to make computer systems work better.
These algorithms fall into three main types based on where they work: static, dynamic, and

 International Journal of Innovations in Science & Technology

Jan 2025|Vol 07 | Issue 01 Page |179

nature-inspired [7]. Figure. 1, shows how load-balancing algorithms are grouped to balance work
in the cloud.

Figure 1. Classification of Load Balancing Algorithms

Static Load Balancing Algorithms:
Static load balancing techniques distribute requests without taking into account the

current condition or metrics of the system, such as processing capacity [8]. These methods
evenly spread-out requests among virtual machines or based on certain principles that are not
affected by limitations. They work well for systems with minimal changes in load. To make these
methods effective, it's important to have a good understanding of server capabilities [9].
Round Robin:

In a round-robin algorithm, tasks are divided among all processors to ensure that the
workload is evenly distributed. Additionally, each task may have a different processing time [2].
This algorithm reacts quickly when the workload is evenly distributed. However, it may face
challenges when some nodes are overloaded while others are inactive or minimized [10].
Weighted Round Robin:

This algorithm is created to handle specified weights and tasks that are assigned based
on these weight values [11]. Processors with higher capabilities are given higher values. Servers
with the highest weights will receive more tasks. When all weights are equal, servers will
experience a consistent flow of tasks [12].
Min to Min:

In this method, we begin by calculating the minimum completion time for all tasks. The
task with the lowest completion time is then scheduled to any available machine based on this
minimum time [13] Subsequently, the execution times of all other tasks on that machine are
updated, and the scheduled task is removed. This process continues until all tasks are assigned
resources. However, tasks with longer execution times may have to wait longer than shorter
ones. This algorithm works well when there are more tasks with shorter times than longer ones
[14]. One drawback of the min-min algorithm is the possibility of starvation.
Min to Max:

In this method, we start by identifying tasks with the shortest completion times. From
these tasks, we choose the one with the longest execution time. Then, we schedule that task on
a machine based on its maximum execution time. This approach aims to evenly distribute the
workload and allocate resources efficiently. However, it doesn't effectively address the overall
performance when dealing with different types of resources and tasks [15].

 International Journal of Innovations in Science & Technology

Jan 2025|Vol 07 | Issue 01 Page |180

Opportunistic Algorithm:
OLB is a static algorithm, meaning it doesn't consider the current workload on each

node. Its primary aim is to keep every server on a node busy. Regardless of the current workload,
OLB randomly assigns unfinished tasks to servers without calculating the execution time of the
node [16]. This approach provides a load-balancing plan but may not yield optimal results. Task
processing can be slow because it doesn't calculate the execution times of nodes, leading to
potential bottlenecks and some idle nodes [17].
Dynamic Load Balancing Algorithms:

These programs keep an eye on how busy a computer system is and rearrange the tasks
to make things more balanced. There are three parts to these programs: one part decides which
tasks can be moved to other parts of the system, another part chooses where to move them, and
the last part manages the information about the balancing process [18].
Throttled Load Balancing:

This method uses an indexing table to keep track of how much load each virtual machine
is currently handling [19]. When a new task comes in, the algorithm checks the table to find a
virtual machine with a low load and assigns the task to it, provided the virtual machine is
available. The index table is updated whenever a task is allocated or deallocated. This helps
reduce waiting time and ensures better use of resources by evenly distributing the load among
virtual machines. However, a drawback is that there's a risk of a single point of failure, and as
the number of tasks increases, it may lead to a decrease in system performance [20].
Least Connection:

The Least-Connection strategy aims to balance the number of active requests among
servers in a cloud computing environment. When new service requests come in, the load
balancer chooses the server with the fewest active connections. This is a dynamic scheduling
algorithm that continuously monitors the active connections on each server to determine its
load. For example, if there are three servers with active requests, the load balancer selects the
server with the least active connections for the next service requests. This process repeats,
ensuring a balance in the number of HTTP connections across the available server pool [21].
Biased Random sampling:

This method uses a random sampling approach to distribute the workload in a system.
It creates a virtual graph of the system, where each node represents a component, and free
resource nodes are indicated by them in degrees. The task of assigning jobs is handled by a load
manager node with at least one in-degree. The in-degree of a node is increased when a job is
assigned to it and decreased when the job is completed and reassigned to another node. This
balancing is achieved through the use of random sampling [22].
Equally Spread Current Execution:

The ESCE algorithm operates using the spread spectrum strategy, where balancers
distribute loads across multiple virtual machines. The goal is to evenly distribute the workload
among several servers. Initially, processes are assigned priorities based on their size and capacity
for efficient load transfer [10]. The algorithm then allocates each process to a server capable of
managing the load quickly and with maximum throughput. If a virtual machine becomes
available or another virtual machine needs to free up resources, the load balancer transfers a
percentage of the load to the free VM, ensuring an equal distribution of the workload. This
distribution of load across different nodes is known as the spread spectrum technique [23].
Nature-Inspired Algorithm:

Nature-inspired algorithms are special problem-solving methods that take inspiration
from or imitate biological activities [24]. Researchers use clever problem-solving methods (meta-
heuristic approaches) to find the best or almost best solutions for scheduling tasks efficiently
[25].

 International Journal of Innovations in Science & Technology

Jan 2025|Vol 07 | Issue 01 Page |181

Honey Bee:
This algorithm works like real honey bees. In a bee colony, there are queen bees, scout

bees, and worker bees. The scout bees search for food and let others know where it is. The rest
of the bees then move together towards the food in a group dance, showing its quality, quantity,
and distance. This approach improves overall performance by prioritizing tasks. However, a
downside is that it can sometimes make overall performance worse and use more energy and
cost due to moving virtual machines [26].
Ant Colony:

The Ant Bee Colony Optimization algorithm mimics the behavior of real ants. Its
primary goal is to discover the most efficient path from a starting point to a destination. When
ants search for food, they leave behind special substances known as pheromones. Other ants
then follow the same path based on these pheromones. The intensity of pheromones depends
on factors like the quality of the food source and the distance. Paths with the highest pheromone
intensity are considered shorter routes between the starting point and the destination [27].
Particle Swarm:

This algorithm mimics the natural behavior of a group of individuals, called a "swarm,"
such as birds foraging or ducks gathering for food. The algorithm, known as Particle Swarm
Optimization (PSO), uses particles to represent individuals in the swarm. These particles move
globally, adjusting their positions based on a set velocity. PSO is particularly helpful in
applications like Neural Networks. Unlike Genetic Algorithms (GA), PSO has simpler rules and
does not involve mutation or crossover operations [28].

In another study by Yadav [29], a hybrid approach called Hybrid PSO & ESCEL was
proposed. This approach combines PSO with the Equally Spread Current Execution Load
(ESCEL) algorithm. PSO optimizes jobs in a cloud server before assigning them, and then the
server uses the ESCEL approach for task assignment. The goal is to optimize resources and
achieve faster response times, although there is no experiment provided to prove its
effectiveness.
Crow Search:

This algorithm is like a strategy inspired by how real crows behave when looking for
food. Crows are known for hiding extra food in secret spots and remembering those places for
a long time. They also protect their hidden food from enemies and might deceive other crows
to steal from their hiding spots. This method is easy to use, with just a few settings to adjust, but
it may not always find the best solution quickly and could get stuck in a less optimal result [30].
Bat Optimization:

The Bat algorithm is inspired by how bats hunt for food. Bats use a technique called
echolocation, emitting sounds and listening for their echoes to locate food [31]. There are three
types of bats: micro, ghost, and megabats, classified based on their size and methods for finding
food.
Bats fly randomly with a certain speed, frequency, and loudness to locate prey. The advantage
of this approach is its ability to find the best solution quickly. The loudness and pulse rate help
control and focus on specific areas. However, it converges fast initially but slows down later.
Keep in mind that accuracy may be limited if the number of evaluations is not high in this
algorithm [12].
Monarch Butterfly:

The Enhanced Migration and Adjustment Operator-Based Monarch Butterfly
Optimization is a method inspired by Monarch Butterflies. It aims to balance the load in the
cloud by identifying overutilized nodes and moving tasks to underutilized nodes using migration
and adjustment operators [32]. However, a drawback of this approach is that the time taken to
migrate tasks is high, and the convergence is not consistent during the localization process [33].

 International Journal of Innovations in Science & Technology

Jan 2025|Vol 07 | Issue 01 Page |182

Lion Optimization:
A detailed investigation into finding the best solution revealed that metaheuristic

approaches are the most effective. These approaches excel in identifying node capacity and
consistently aim for the best global solution. After analyzing the options, the design of the
proposed work, ILOA_LB, incorporates a Bio-Inspired Lion Optimization Algorithm. The
implementation shows that ILOA_LB performs better in balancing cloud loads, even with an
increased number of nodes and workloads, compared to benchmarks like EMAMBO_LB,
BOA_LB, and CSO_LB [12].
Load Balancing Metrics:
The load balancing metrics are as follows:

• Scalability: How well does the algorithm perform as the number of nodes and tasks
increases?

• Resource Utilization: How effectively does the algorithm use available resources
without causing bottlenecks?

• Performance: How does the algorithm impact system performance, including metrics
such as throughput and response time?

• Fault Tolerance: How resilient is the algorithm in handling failures and maintaining
system reliability?

• Overhead: What is the computational and operational cost associated with the
algorithm?

 International Journal of Innovations in Science & Technology

Jan 2025|Vol 07 | Issue 01 Page |183

Table 1. Comparison of Load Balancing Algorithms

Type Algorithm Through
put

Fault
Tolerance

Response
Time

Overhead Resource
Utilization

Scalability Performance

Static
Algorithms

Round Robin High Low Moderate Low High High Moderate

Weighted Round
Robin High Low Moderate Low High High Moderate

Min-Min High Low Moderate Moderate High Low Moderate

Min-Max High Low Moderate Moderate High Low Moderate

Opportunistic Load
Balancing (OLB) Low Low Low High Moderate Low Low

Dynamic
Algorithms

Throttled Load
Balancing Moderate High High Moderate High High High

Least Connection High Moderate High Low High High High

Biased Random
Sampling Low Low Low High Moderate Low Moderate

Equally Spread
Current Execution Low Low Low High High High Low

Nature
Inspired

Algorithms

Honey Bee High Low Low High High Low Moderate

Ant Colony High High High Moderate High High High

Particle Swarm High High High Moderate High High High

Crow Search Moderate Moderate Moderate Moderate Moderate Moderate Moderate

Bat Optimization High High High Low High High High

Monarch Butterfly High Moderate Moderate High High High High

Lion Optimization High High High Moderate High High High

 International Journal of Innovations in Science & Technology

Jan 2025|Vol 07 | Issue 01 Page |184

Problem Statement:
The goal is to identify a novel load-balancing algorithm that can integrate the strengths

of existing methods while mitigating their weaknesses. The proposed performance by optimizing
scalability, enhancing resource utilization, and ensuring fault tolerance, thereby addressing the
shortcomings of current solutions and better adapting to dynamic workloads.
Proposed Algorithm
Algorithm Development:

In the cloud environment, resources like virtual machines (VMs) or servers need to be
balanced to optimize resource utilization, minimize response time, and avoid overloading any
server. The walrus in WaOA can be treated as tasks that need to be assigned to the optimal
servers.
Key Mapping:

• Walruses (N) – Represent tasks or workloads that need to be processed.

• Locations of Walruses – Represent the load on the servers

• Best Candidate Solution – Represents the optimal task-server assignment.

• Strongest Walrus – Represents the server (VM) with the most optimal load-handling
capability.
Pseudocode:
o Initialize tasks (N), servers (S), and iterations (T).
o Randomly assign tasks to servers.
o For each task: a. Explore nearby servers for potential reassignment.

b. Migrate tasks to less loaded servers.
c. Optimize task assignments to minimize response time.

• Repeat until convergence or maximum iterations.
Mathematical Formulation:

The fitness function minimizes load variance: where is the load on the server, and is the
average load?
Variables:

• Xi,j∈{0,1}x_{i,j} \in \{0, 1\}xi,j∈{0,1}: Binary decision variable, where:
xi,j={1if task i is assigned to server j,0otherwise.x_{i,j} = \begin{cases} 1 & \text{if task } i
\text{ is assigned to server } j, \\ 0 & \text{otherwise.} \end{cases}xi,j={10
if task i is assigned to server j, otherwise.
• LjL_jLj: Load on server jjj.
• RiR_iRi: Response time for task iii.
Parameters:
• N: Total number of tasks.
• SSS: Total number of servers.
• TTT: Maximum number of iterations.
• did_idi: Resource demand of task iii.
• CjC_jCj: Capacity of server J.
• Di,jD_{i,j}Di,j: Latency or distance between task iii and server J.
• α,β\alpha, \betaα,β: Weighting factors for load and latency.
Objective Function:
We aim to minimize the total system response time, which combines the effects of server load
and latency:

Minimize: ∑i=1N∑j=1Sxi,j⋅(α⋅Lj+β⋅Di,j),\text{Minimize: } \sum_{i=1}^{N}
\sum_{j=1}^{S} x_{i,j} \cdot (\alpha \cdot L_j + \beta \cdot D_{i,j}),Minimize: i=1∑N

j=1∑Sxi,j⋅(α⋅Lj+β⋅Di,j),
Where:

 International Journal of Innovations in Science & Technology

Jan 2025|Vol 07 | Issue 01 Page |185

• α\alphaα: Weight factor for the effect of server load on response time.
• β\betaβ: Weight factor for the effect of latency/distance on response time.
Constraints:
Task Assignment:

Each task must be assigned to exactly one server:

∑j=1Sxi,j=1,∀i∈{1,…,N}.\sum_{j=1}^{S} x_{i,j} = 1, \quad \for all i \in \{1, \dots,

N\}.j=1∑Sxi,j=1,∀i∈{1,…,N}.
Server Capacity:

The total load on any server must not exceed its capacity:

Lj=∑i=1Nxi, j⋅di, ∀j∈{1, …,S}.L_j = \sum_{i=1}^{N} x_{i,j} \cdot d_i, \quad \for all j

\in \{1, \dots, S\}.Lj=i=1∑Nxi,j⋅di,∀j∈{1,…,S}. Lj≤Cj,∀j∈{1,…,S}.L_j \leq C_j, \quad

\for all j \in \{1, \dots, S\}.Lj≤Cj,∀j∈{1,…,S}.
Response Time Model:

The response time for a task is influenced by both server load and network latency:

Ri=α⋅Lj+β⋅Di,j,∀i∈{1,…,N},∀j∈{1,…,S}.R_i = \alpha \cdot L_j + \beta \cdot D_{i,j},

\quad \for all i \in \{1, \dots, N\}, \quad \for all j \in \{1, \dots, S\}.Ri=α⋅Lj+β⋅Di,j

,∀i∈{1,…,N},∀j∈{1,…,S}.
Stopping Criterion:

Iterative optimization stops when:
1. The solution converges (i.e., no significant change in the objective function over
successive iterations).
2. Maximum iterations of TTT are reached.
Simulation Setup:
• Environment: MATLAB R2022b.
• Servers: 10-50 virtual machines with varying capacities.
• Tasks: 500-2000 tasks with diverse CPU and memory requirements.

The Implementation of the proposed algorithm is as follows:

• Initialize Task and Server Definitions: Define tasks and servers, where tasks have
certain resource demands and servers have finite capacities for handling these tasks.

• Define the Objective Function: This function will calculate the “fitness” of a solution.
For load balancing need to minimize the difference in load across servers.

• Exploration: Tasks explore different servers randomly or based on a heuristic to find a
potential server that can handle their load.

• Migration: Tasks move between servers if they find a better destination based on load-
balancing criteria.

• Exploitation: Refine the assignment by shifting tasks to nearby servers to minimize
load differences.

• Stopping Criteria: The algorithm iterates until it reaches the maximum number of
iterations to find an optimal solution.
Results and Discussion:
Performance Comparison:

The Walrus Optimization Algorithm (WaOA) was evaluated against existing load
balancing algorithms, including Ant Colony Optimization (ACO), Particle Swarm Optimization
(PSO), and Throttled Load Balancing (TLB). The comparison was conducted based on key
performance metrics such as scalability, resource utilization, response time, fault tolerance, and
computational overhead.
Scalability: Scalability measures how well an algorithm performs as the number of tasks or
virtual machines (VMs) increases. WaOA demonstrated superior scalability by efficiently
handling up to 2000 tasks across 50 virtual machines in the simulated environment. In contrast:

 International Journal of Innovations in Science & Technology

Jan 2025|Vol 07 | Issue 01 Page |186

• Ant Colony Optimization struggled to maintain optimal performance beyond 1500
tasks.
• Particle Swarm Optimization faced difficulties beyond 1400 tasks due to
convergence issues.
• Throttled Load Balancing showed significant performance degradation as the task
count increased, becoming ineffective for more than 1000 tasks.

WaOA’s dynamic task reassignment mechanism and exploration capabilities ensured an
even distribution of workload even under high task loads, highlighting its robustness in large-
scale systems.
Resource Utilization:

Resource utilization evaluates how effectively available computational resources are
used. WaOA achieved a resource utilization rate of 95%, outperforming the benchmarks:
• Ant Colony Optimization: 88%
• Particle Swarm Optimization: 85%
• Throttled Load Balancing: 70%

This high utilization can be attributed to WaOA’s adaptive load distribution, which
continuously monitors server capacities and redistributes tasks to underutilized servers. This
minimizes resource wastage and ensures balanced workloads across the cloud environment.
Response Time:

Response time reflects the average time required to process a task. WaOA achieved the
lowest response times among the algorithms tested:
• WaOA: Average response time of 1.8 seconds.
• Ant Colony Optimization: 2.4 seconds.
• Particle Swarm Optimization: 2.6 seconds.
• Throttled Load Balancing: 3.5 seconds.

The reduced response time in WaOA is due to its ability to dynamically reassign tasks
based on server load and proximity, optimizing latency and processing speed.
Fault Tolerance:

Fault tolerance measures the algorithm’s ability to maintain performance in the event of
server or network failures. WaOA demonstrated high fault tolerance by leveraging task
migration and replication strategies. When a server became unavailable, tasks were swiftly
reassigned to operational servers without significant performance drops.
• Ant Colony Optimization also exhibited high fault tolerance due to its pathfinding
capabilities.
• Particle Swarm Optimization showed moderate fault tolerance, as particles
occasionally converged to suboptimal solutions during failures.
• Throttled Load Balancing displayed poor fault tolerance, with performance declining
sharply during server failures.
Computational Overhead:

Computational overhead represents the additional processing required by the algorithm.
WaOA incurred moderate computational overhead due to its iterative optimization process.
While this trade-off slightly increased resource demands, it was justified by the significant
improvements in system performance.
• Ant Colony Optimization and Particle Swarm Optimization exhibited moderate
overhead.
• Throttled Load Balancing had the lowest overhead but at the cost of lower overall
performance and scalability.

Table 2. Comparison of WaOA, Ant Colony, PSO & Throttled LB Algorithms

Metric WaOA Ant Colony PSO Throttled Load
Balancing

 International Journal of Innovations in Science & Technology

Jan 2025|Vol 07 | Issue 01 Page |187

Scalability High Moderate Moderate Low

Resource
Utilization

95% 88% 85% 70%

Response Time Low Moderate Moderate High

Fault Tolerance High High Moderate Low

Computational
Overhead

Moderate Moderate High Low

Conclusion:
Load balancing in cloud computing is essential for optimizing resource utilization,

scalability, and system performance. This research reviewed static, dynamic, and nature-inspired
algorithms, highlighting their strengths and limitations. The proposed Walrus Optimization
Algorithm (WaOA) introduces a novel, nature-inspired approach for dynamic task migration
and resource optimization, addressing issues like bottlenecks and underutilized resources.
MATLAB simulations demonstrated WaOA’s superior performance in scalability, response
time, and resource utilization compared to traditional and nature-inspired methods. WaOA
offers a promising solution to load balancing challenges, with the potential for future
enhancements through machine learning, hybrid approaches, and real-world validation.
References:
[1] Rupinder Kaur, Dr.Kanwalvir Singh Dhindsa, “Efficient Task Scheduling using Load

Balancing in Cloud Computing,” Int. J. Adv. Netw. Appl., vol. 10, no. 3, pp. 3888–3892,
2018, [Online]. Available: https://www.ijana.in/papers/V10I3-7.pdf

[2] J. M. Shah, K. Kotecha, S. Pandya, D. B. Choksi, and N. Joshi, “Load balancing in cloud
computing: Methodological survey on different types of algorithm,” Proc. - Int. Conf.
Trends Electron. Informatics, ICEI 2017, vol. 2018-January, pp. 100–107, Jul. 2017, doi:
10.1109/ICOEI.2017.8300865.

[3] A. Rashid and A. Chaturvedi, “Cloud Computing Characteristics and Services A Brief
Review,” Int. J. Comput. Sci. Eng., vol. 7, no. 2, pp. 421–426, Feb. 2019, doi:
10.26438/IJCSE/V7I2.421426.

[4] M. Kumar and B. Bhushan, “A Methodological Comparison of the Most Efficient Load
Balancing Algorithms in Cloud Computing,” SSRN Electron. J., May 2020, doi:
10.2139/SSRN.3598908.

[5] N. R. Tadapaneni, “A Survey of Various Load Balancing Algorithms in Cloud
Computing,” Int. J. Sci. Adv. Res. Technol., vol. 6, 2020.

[6] and V. P. A. Kumar, S. Pandey, “A survey: Load balancing algorithm in cloud
computing,” Proc. 2nd Int. Conf. Adv. Comput. Softw. Eng., 2019.

[7] Dalia Abdulkareem Shafiq and A. A. N.Z. Jhanjhi, “Load balancing techniques in cloud
computing environment: A review,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no.
7, pp. 3910–3933, 2022, doi: https://doi.org/10.1016/j.jksuci.2021.02.007.

[8] A. A. and A. H. A. Y. Lohumi, D. Gangodkar, P. Srivastava, M. Z. Khan, “Load
Balancing in Cloud Environment: A State-of-the-Art Review,” IEEE Access, vol. 11, pp.
134517–134530, 2023, doi: 10.1109/ACCESS.2023.3337146.

[9] V. R. U. D. Chitra Devi, “Load Balancing in Cloud Computing Environment Using
Improved Weighted Round Robin Algorithm for Nonpreemptive Dependent Tasks,”
Sci. World J, p. 14, 2016, doi: http://dx.doi.org/10.1155/2016/3896065.

[10] K. Garala, N. Goswami, and P. D. Maheta, “A performance analysis of load Balancing
algorithms in Cloud environment,” 2015 Int. Conf. Comput. Commun. Informatics,
ICCCI 2015, Aug. 2015, doi: 10.1109/ICCCI.2015.7218063.

[11] and T. N. A. S. Rathod, J. Nainani, “Load balancing in cloud computing – review,” Res.
J. Eng. Technol, vol. 11, no. 2, pp. 57–61, 2020.

[12] K. R. Venkata Ravindra Reddy YKaviarasan R, Balamurugan G, “Effective load

 International Journal of Innovations in Science & Technology

Jan 2025|Vol 07 | Issue 01 Page |188

balancing approach in cloud computing using Inspired Lion Optimization Algorithm,”
e-Prime - Adv. Electr. Eng. Electron. Energy, vol. 6, p. 100326, 2023, doi:
https://doi.org/10.1016/j.prime.2023.100326.

[13] R. T. and J. Ramavat, “A Survey on Various Load Balancing Algorithms in Cloud
Computing,” Int. J. Sci. Adv. Res. Technol., vol. 3, pp. 1034–1039, 2017.

[14] R. R. and A. Murugaiyan, “Comparative Study of Load Balancing Algorithms in Cloud
Computing Environment,” Indian J. Sci. Technol, vol. 9, p. 85866, 2016.

[15] V. Arulkumar and N. Bhalaji, “Resource Scheduling Algorithms for Cloud Computing
Environment: A Literature Survey,” Lect. Notes Networks Syst., vol. 89, pp. 1059–1069,
2020, doi: 10.1007/978-981-15-0146-3_102.

[16] S. T. Milan, L. Rajabion, H. Ranjbar, and N. J. Navimipour, “Nature inspired meta-
heuristic algorithms for solving the load-balancing problem in cloud environments,”
Comput. Oper. Res., vol. 110, pp. 159–187, Oct. 2019, doi: 10.1016/J.COR.2019.05.022.

[17] S. J. and U. Kumari, “A Comprehensive Analysis of Load Balancing Algorithms in Cloud
Computing,” 2017, doi: 10.13140/RG.2.2.15001.06247.

[18] and A. D. C. C. C. Ijeoma, P. Inyiama, A. Samuel, O. M. Okechukwu, “Review of Hybrid
Load Balancing Algorithms in Cloud Computing Environment,” arXiv Prepr. arXiv2202,
p. 13181, 2022.

[19] W. W. Mulat, S. K. Mohapatra, R. Sathpathy, and S. K. Dhal, “Improving Throttled Load
Balancing Algorithm in Cloud Computing,” pp. 369–377, 2022, doi: 10.1007/978-981-
19-0332-8_27.

[20] S. Shukla, A. K. Singh, and V. Kumar Sharma, “Survey on Importance of Load Balancing
for Cloud Computing,” Proc. - 2021 3rd Int. Conf. Adv. Comput. Commun. Control
Networking, ICAC3N 2021, pp. 1479–1484, 2021, doi:
10.1109/ICAC3N53548.2021.9725442.

[21] M. Rahman, S. Iqbal, and J. Gao, “Load balancer as a service in cloud computing,” Proc.
- IEEE 8th Int. Symp. Serv. Oriented Syst. Eng. SOSE 2014, pp. 204–211, 2014, doi:
10.1109/SOSE.2014.31.

[22] A. A. Jaiswal and S. Jain, “An approach towards the dynamic load management
techniques in cloud computing environment,” 2014 Int. Conf. Power, Autom. Commun.
INPAC 2014, pp. 112–122, Dec. 2014, doi: 10.1109/INPAC.2014.6981147.

[23] M. Ala’anzy and M. Othman, “Load Balancing and Server Consolidation in Cloud
Computing Environments: A Meta-Study,” IEEE Access, vol. 7, pp. 141868–141887,
2019, doi: 10.1109/ACCESS.2019.2944420.

[24] H. M. and B. E. E. M. Gamal, R. Rizk, “Osmotic Bio-Inspired Load Balancing Algorithm
in Cloud Computing,” IEEE Access, vol. 7, pp. 42735–42744, 2019, doi:
10.1109/ACCESS.2019.2907615.

[25] M. Ashouraei, S. N. Khezr, R. Benlamri, and N. J. Navimipour, “A New SLA-Aware
Load Balancing Method in the Cloud Using an Improved Parallel Task Scheduling
Algorithm,” Proc. - 2018 IEEE 6th Int. Conf. Futur. Internet Things Cloud, FiCloud
2018, pp. 71–76, Sep. 2018, doi: 10.1109/FICLOUD.2018.00018.

[26] A. H. R. Arif Ullah, Nazri Mohd Nawi, Jamal Uddin, Samad Baseer, “Artificial bee colony
algorithm used for load balancing in cloud computing: review,” IAES Int. J. Artif. Intell,
vol. 8, no. 2, 2019, doi: http://doi.org/10.11591/ijai.v8.i2.pp156-167.

[27] G. Rastogi and R. Sushil, “Analytical literature survey on existing load balancing schemes
in cloud computing,” Proc. 2015 Int. Conf. Green Comput. Internet Things, ICGCIoT
2015, pp. 1506–1510, Jan. 2016, doi: 10.1109/ICGCIOT.2015.7380705.

[28] A. M. Yuganes A/P Parmesivan, Sazlinah Hasan, “Performance Evaluation of Load
Balancing Algorithm for Virtual Machine in Data Centre in Cloud Computing,” Int. J.
Eng. Technol, vol. 7, no. 4, pp. 386–390, 2018, doi:

 International Journal of Innovations in Science & Technology

Jan 2025|Vol 07 | Issue 01 Page |189

https://doi.org/10.14419/ijet.v7i4.31.23717.
[29] A. Yadav, “Load balancing in cloud computing environment using hybrid approach

(ESCEL and PSO) algorithms,” Adv. Comput. Sci. Inf. Technol, vol. 2, no. 8, pp. 10–13,
2015.

[30] Y. Meraihi, A. B. Gabis, A. Ramdane-Cherif, and D. Acheli, “A comprehensive survey
of Crow Search Algorithm and its applications,” Artif. Intell. Rev., vol. 54, no. 4, pp.
2669–2716, Apr. 2021, doi: 10.1007/S10462-020-09911-9.

[31] N. M. N. Arif Ullah, “BAT algorithm used for load balancing purpose in cloud
computing: an overview,” Int. J. High Perform. Comput. Netw., vol. 16, no. 1, 2020,
[Online]. Available: http://www.inderscience.com/storage/f101241793621185.pdf

[32] R. Kaviarasan, P. Harikrishna, and A. Arulmurugan, “Load balancing in cloud
environment using enhanced migration and adjustment operator based monarch butterfly
optimization,” Adv. Eng. Softw., vol. 169, p. 103128, Jul. 2022, doi:
10.1016/J.ADVENGSOFT.2022.103128.

[33] and L. F. M. Christopher, D. Kumar, “Migration-based load balance of virtual machine
servers in cloud computing by load prediction,” Int. J. Discov. Innov. Appl. Sci, vol. 2,
no. 5, pp. 55–78, 2022.

Copyright © by authors and 50Sea. This work is licensed under
Creative Commons Attribution 4.0 International License.

