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electron Velocity Distributions (EVDs) with a flat top at low energy and/or an enhanced 
tail at high energies are commonly observed in Earth's magnetosphere and solar wind. 

Noteworthy is the fact that only generalized (𝑟, 𝑞) distribution with two spectral indices 
fit such observed flat top distributions, since at low energies neither kappa nor Maxwellian 

distribution can fit the observed EVDs. In the limiting cases, 𝑟 = 0, 𝑞 → ∞ and 𝑟 = 0, 𝑞 =
(𝜅 + 1); (𝑟, 𝑞) distribution reduces the Maxwellian and kappa distributions, respectively. In the 

current fluid model, for the first time, electrons are treated as (𝑟, 𝑞) distributed and Sagdeev 
potential is derived for fully nonlinear fluid equations for ion-acoustic waves and obtained 
density humps to interpret the observations. We analyzed the properties of solitary structures 

using observed plasma parameters and values of 𝑟 and 𝑞 indices that matched the reported 
values. We found that flat top distribution supports the density hump solitons with larger 
amplitude. 

Keywords: Non-Maxwellian Distribution; (𝑟, 𝑞)  Distribution; Electrostatic Solitary Waves; 
Solitons; Flat-Topped Distribution; Ion-Acoustic Waves 
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Introduction: 
In the last couple of decades, many satellites have been sent to near-Earth space plasma 

orbiting the Earth on a 24/7 basis, which enables us to build distribution functions using these 
satellite data. A remarkable finding that emerged from such activity is; that distributions 
observed from different space plasma environments significantly deviate from the classical 
Maxwellian distribution due to the presence of flat tops and modified high-energy tails 
[1][2][3][4]. Until now, the Maxwellian velocity distribution was used to solve a wide variety of 
issues faced in many areas of space. Satellite data consistently show that particle velocity 
distributions in different regions of space deviate significantly from the Maxwellian distribution  
[5][6][7][8][9][10][11]. These frequent variations mean that the Maxwellian distribution is 
insufficient to comprehend or forecast various waves and instabilities. In the groundbreaking 
study conducted almost a decade ago, Qureshi et al. [12] constructed a new non-Maxwellian 
distribution that exhibits the flat top at lower energy and modified tails at higher energies. The 
distributions that are generally observed in space plasmas, ranging from flat-topped to kappa 

distributions, can be modelled using (𝑟, 𝑞) distribution. This characteristic established the (r,q) 
distribution as the most comprehensive and general distribution function.In plasma, ion-
acoustic waves represent the fundamental wave mode where the magnetic field remains 
unchanged while the density undergoes compression. Linear theory successfully explains most 
of the wave events that occur in space plasmas. However, it is frequently insufficient and one 
must turn to nonlinear wave studies, which yield novel and significant insights and typically 
occur over vast spatial and temporal scale lengths. A defining feature of solitons is their ability 
to retain their shape after a collision, making them a distinctive nonlinear disturbance in the 
medium. Numerous disciplines, from solid-state to fluid dynamics, have realized the significance 
of the idea of solitons [13][14]. It has been conjectured that the Red Spot on Jupiter and the 
nerve impulse are solitons [15][16]. The discovery of ion-acoustic solitons was made 
experimentally using a double-plasma apparatus. Additionally, it has been assumed that they exist 
in the Earth's magnetosphere [17][18]. In the upper ionospheric auroral region, density humps 
associated with the ion-acoustic waves have been observed by Freja satellite [19][20]. Such 
nonlinear density structures are responsible for the acceleration of up-flowing ionospheric 
electrons and ions [21]. 

Therefore, in this paper, we studied the fully nonlinear ion-acoustic waves in a warm 
magnetized plasma and derive the Sagdeev potential for oblique propagation in a non-

Maxwellian plasma where electrons are modelled by (𝑟, 𝑞) distribution. The central premise of 
this paper is the first-time application of the flat-top (r,q) electron distribution in a magnetized 
plasma to derive the density-hump structures observed by the Freja satellite. This phenomenon 

arises for the spectral indices 𝑟 and 𝑞, that corresponds to the flat-top at low energies and 
modified high energy tail, respectively. 
Model Equations: 

We consider a low-𝛽 (=
8𝜋𝑛𝑜𝑇𝑒

𝐵2 ) plasma, where charge quasineutrality and exact ion 

dynamics are assumed with electrons following (𝑟, 𝑞) distribution. The external magnetic field 

is oriented along the z-direction, 𝑩 = 𝐵0𝒛, 𝑬 = −𝛁𝜑 and propagation is considered in the xz-

plane given by 𝒌 = 𝑘𝑥�̂� + 𝑘𝑧�̂�  making an angle 𝜃  with the z-axes. The governing fluid 
equations for such a plasma can be written in component form, as given below; 

𝜕𝑛𝑖

𝜕𝑡
+ 𝑛𝑖 (

𝜕𝑣𝑥
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𝜕𝑣𝑦

𝜕𝑡
+ (𝑣𝑥

𝜕

𝜕𝑥
+ 𝑣𝑧

𝜕

𝜕𝑧
) 𝑣𝑦 = −𝑣𝑥                                                          (3) 

𝜕𝑣𝑧

𝜕𝑡
+ (𝑣𝑥

𝜕

𝜕𝑥
+ 𝑣𝑧

𝜕

𝜕𝑧
) 𝑣𝑧 = −

𝜕𝜑

𝜕𝑧
  −

𝛼

𝑛𝑖

𝜕𝑛𝑖

𝜕𝑧
                                            (4) 

In this paper, we employed a generalized (𝑟, 𝑞)  distribution function to study the 
nonlinear ion-acoustic waves having the form [22] 

𝑓𝑟𝑞(𝑣) =
3 Γ[𝑞] (𝑞−1)−3/(2+2 𝑟)

4 𝜋 𝑐3/2 (2𝑇𝑒/𝑚𝑒)3/2 Γ[𝑞−
3

2+2 𝑟
]Γ[1+

3

2+2 𝑟
]
[1 +

1

𝑞−1
(

𝑣2−2𝑒𝜙/𝑚𝑒

𝑐 (2𝑇𝑒/𝑚𝑒)
)

𝑟+1

]
−𝑞

          (5) 

where 

𝑐 =
3 (𝑞−1)−1/(1+𝑟) Γ[𝑞−

3

2+2 𝑟
]Γ[

3

2+2 𝑟
] 

2 Γ[𝑞−
5

2+2 𝑟
]Γ[

5

2+2 𝑟
]

                                             (6) 

where 𝜙 is the electrostatic potential, 𝑇𝑒 and 𝑚𝑒 are the electron temperature and mass 

respectively, Γ is the gamma function, and (2𝑇𝑒/𝑚𝑒)1/2 is the electron thermal velocity. The 

flat-top at lower energies and high energy tail can be modelled by spectral indices 𝑟 and 𝑞, 

respectively, which must satisfy conditions 𝑞 > 1 and 𝑞(𝑟 + 1) > 5/2. 

Upon integrating Eq. (5) overall velocity space and assuming 𝜑 ≪ 1, the total electron 
density can be written as [22] 

𝑛𝑒 = 1 +  𝐴𝑟𝑞 𝜑                                                                 (7) 

where 𝜑 = 𝑒𝜙/𝑇𝑒, 

𝐴𝑟𝑞 =
Γ (

1

2(1+𝑟)
) Γ (𝑞 −

1

2(1+𝑟)
)

2B Γ (
3
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) Γ (𝑞 −

3

2(1+𝑟)
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                                     (8) 

and 

𝐵 =
Γ (

3

2(1+𝑟)
) Γ (𝑞 −

3
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)

3Γ (
5
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5
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                                       (9) 

In the above set of Eqs. (1)-(5), 𝑛𝑖 , 𝑛𝑒 are the ion and electron densities normalized by 

equilibrium density? 𝑛0, 𝑣𝑥 , 𝑣𝑦, and 𝑣𝑧 are the x, y and z-components of velocities normalized 

by 𝑐𝑠 (= √
𝑇𝑒

𝑚𝑖
) , space coordinated by 𝜌𝑖 (=

𝑐𝑠

Ω𝒊
) , time 𝑡  by  Ω𝒊

−1 , where 𝑒  is the electronic 

charge,  Ω𝒊 =
𝑒𝐵𝑂

𝑚𝑖
 and 𝛼 =

𝑇𝑖

𝑇𝑒
. 

Derivation of Sagdeev Potential: 
In this study we introduced the commoving frame in normalized form as follows [23]; 

𝜂 =
1

𝑀
(sin 𝜃  𝑥 + cos 𝜃  𝑧 − 𝑀𝑡)                                                      (10) 

where 𝑀 =
𝑣𝑝

𝑐𝑠
 is known as the Mach number and 𝑣𝑝 =  

𝜔

𝑘
. Equations (1)-(4) then can 

be written, as 
𝑛𝑖

𝑀

𝑑

𝑑𝜂
(sin 𝜃 𝑣𝑥 + cos 𝜃 𝑣𝑧) =

𝑑𝑛𝑖

𝑑𝜂
                                                      (11) 

(sin 𝜃 𝑣𝑥 + cos 𝜃 𝑣𝑧 − 𝑀)
𝑑𝑣𝑥
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𝛼

𝑛𝑖
)

𝑑𝑛𝑖

𝑑𝜂
+ 𝑀𝑣𝑦          (12) 

(sin 𝜃 𝑣𝑥 + cos 𝜃 𝑣𝑧 − 𝑀)
𝑑𝑣𝑦

𝑑𝜂
= −𝑀𝑣𝑥                                                (13) 
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(sin 𝜃 𝑣𝑥 + cos 𝜃 𝑣𝑧 − 𝑀)
𝑑𝑣𝑧

𝑑𝜂
= − cos 𝜃 (𝐴𝑟𝑞 +

𝛼

𝑁
)

𝑑𝑛𝑖

𝑑𝜂
                          (14) 

In the above set of Eqs. (11)-(14), we assumed the quasineutrality 𝑛 ≈ 𝑛𝑖 ≈ 𝑛𝑒, which 
is a valid approximation and can be used in low-frequency waves, such as ion-acoustic waves 

[9]. Upon integrating Eq. (11) for boundary conditions when  𝜂 → ±∞, 𝑛𝑖 → 1, 𝑣𝑥 = 𝑣𝑦 =

𝑣𝑧 = 0, we obtained 

sin 𝜃 𝑣𝑥 +  cos 𝜃 𝑣𝑧 = (1 − 1 𝑛𝑖⁄ )𝑀                                         (15) 

Furthormore, we integrated Eqs. (12)-(14) using the boundary conditions 𝜂 →
±∞, 𝑛𝑖 → 1, 𝑣𝑥 = 𝑣𝑦 = 𝑣𝑧 = 0 . After solving, we obtained the three velocity components 

as:𝑣𝑥 =
1

𝑛𝑖

𝑑𝑣𝑦

𝑑𝜂
                                                               (16) 

𝑣𝑦 =
1

𝑀 sin 𝜃
(𝐴𝑟𝑞 +

 𝛼

𝑛𝑖
−

𝑀2

𝑛𝑖
3

)
𝑑𝑛𝑖

𝑑𝜂
                     (17) 

𝑣𝑧 =
𝐴𝑟𝑞 cos 𝜃

2𝑀
(𝑛𝑖

2 − 1) +
𝛼 cos 𝜃

𝑀
(𝑛𝑖 − 1)         (18) 

After putting Eq. (17) into Eq. (16) and then Eqs. (16) and (18) into Eq. (15), we get 

1

𝑛𝑖

𝑑

𝑑𝜂
[

1

𝑀
(𝐴𝑟𝑞 +

𝛼 

𝑛𝑖
−

𝑀2

𝑛𝑖
3

)
𝑑𝑛𝑖

𝑑𝜂
]

= {𝑀 (1 −
1

𝑛𝑖
) +

𝐴𝑟𝑞 cos2 𝜃

2𝑀
(1 − 𝑛𝑖

2) +
𝛼 cos2 𝜃

𝑀
(1 − 𝑛𝑖)}         (19) 

Now by multiplying terms in ‘[ ]’ on both sides and simplifications, we get 

1

2

𝑑

𝑑𝜂
[

1

𝑀
(𝑅 +

𝛼 

𝑛𝑖
−

𝑀2

𝑛𝑖
3

)
𝑑𝑛𝑖

𝑑𝜂
]

2

= {𝑀(𝑛𝑖 − 1) +
𝑅 cos2 𝜃

2𝑀
(𝑛𝑖 − 𝑛𝑖

3) +
𝛼 cos2 𝜃

𝑀
(𝑛𝑖

− 𝑛𝑖
2)} [

1

𝑀
(𝑅 +

𝛼 

𝑛𝑖
−

𝑀2

𝑛𝑖
3

)
𝑑𝑛𝑖

𝑑𝜂
]                                                            (20) 

Upon integrating Eq. (20) using the same boundary conditions, we obtained an equation that 

resembled the equation for a particle moving in a pseudopotential potential. (
𝑑𝑛𝑖

𝑑𝜂
)

2

+ 𝑆(𝑛𝑖) =

0                                                           (21) 
where 

S(𝑛𝑖) = −
𝑀2

[(𝐴𝑟𝑞+
𝛼 

𝑛𝑖
−

𝑀2

𝑛𝑖
3)]

2 [𝐴𝑟𝑞cos2 𝜃 (
1

2𝑛𝑖
+

𝑛𝑖

2
− 1) +

𝐴𝑟𝑞

2
(𝑛𝑖 − 1)2 +

1

𝑀2 {
𝐴𝑟𝑞

2 cos2 𝜃

8
(2𝑛𝑖

2 − 𝑛𝑖
4 − 1) −

𝐴𝑟𝑞
2 cos2 𝜃𝛼2

8
(𝑛𝑖 − 1)2 + 𝑀4 (

1

𝑛𝑖
−

1

2𝑛𝑖
2 −

1

2
)} +

𝛼 {cos2 𝜃 (
1

𝑛𝑖
− 1) + (𝑛𝑖 − 1) + 2𝐴𝑟𝑞 cos2 𝜃 (𝑛𝑖

2 − 1) +
4 cos3 𝜃

8𝑀2
(4𝑛𝑖 − 𝑛𝑖

3) −

(cos2 𝜃 − 1) log 𝑛𝑖}]       (22 ) 

is the Sagdeev potential. 
Python-based Algorithm 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy.fftpack import fft, ifft 
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# Define simulation parameters 
L = 50.0  # Spatial domain length 
N = 256   # Number of grid points 
dx = L / N  # Grid spacing 
dt = 0.01  # Time step 
t_max = 10.0  # Maximum time 
x = np.linspace(-L/2, L/2, N) 
# Plasma parameters (r, q) distributed plasmas 
r = 0.5  # Nonthermal parameter 
q = 1.6  # Distribution index 
phi_0 = 1.0  # Soliton amplitude 
w = 5.0  # Soliton width 
# Define initial soliton profile 
def initial_condition(x, phi_0, w): 
    return phi_0 * np.cosh(x / w) ** -2 
phi = initial_condition(x, phi_0, w) 
# Fourier wavenumbers 
k = 2 * np.pi * np.fft.fftfreq(N, d=dx) 
# KdV coefficients (A and B depend on plasma parameters) 
A = 1.0  # Nonlinearity coefficient (function of r, q) 
B = 0.1  # Dispersion coefficient (function of r, q) 
# Time evolution using pseudo-spectral method 
def kdv_step(phi, k, A, B, dt): 
    phi_hat = fft(phi) 
    dphi_hat = -1j * k * fft(0.5 * A * phi**2) - B * (1j * k)**3 * phi_hat 
    return np.real(ifft(phi_hat + dt * dphi_hat)) 
# Time-stepping loop 
time = 0.0 
phi_list = [phi] 
while time < t_max: 
    phi = kdv_step(phi, k, A, B, dt) 
    phi_list.append(phi) 
    time += dt 
# Plot results 
plt.figure(figsize=(8, 6)) 
for i in range(0, len(phi_list), len(phi_list) // 5): 
    plt.plot(x, phi_list[i], label=f'Time {i * dt:.2f}') 
plt.xlabel('Position (x)') 

plt.ylabel('Amplitude (ϕ)') 
plt.title('Ion-Acoustic Soliton Evolution') 
plt.legend() 
plt.grid() 
plt.show() 
Numerical Results: 

For a soliton solution to exist, the Sagdeev potential (Eq. (22)) needed to meet the following 

conditions. 
𝑆(𝑛𝑖)|𝑛𝑖=1 = 0,          𝑆′(𝑛𝑖)|𝑛𝑖=1 = 0,             𝑆′′(𝑛𝑖)|𝑛𝑖=1 < 0

𝑆(𝑛𝑖)|𝑛𝑖=𝑛𝑚𝑎𝑥
= 0,            𝑆′(𝑛𝑖)|𝑛𝑖=𝑛𝑚𝑎𝑥

 > 0
                 (23) 

When the Sagdeev potential (Eq. (22)) satisfied the above conditions, the following 
condition on the Mach number is obtained.  



                                 International Journal of Innovations in Science & Technology 

Feb 2025|Vol 7 | Issue 1                                                                       Page |318 

cos2 𝜃 √𝐴𝑟𝑞 + 𝛼   < 𝑀 < √𝐴𝑟𝑞 + 𝛼                                       (24) 

When the above condition was satisfied on the Mach number, we obtained the Sagdeev 
potential that corresponds to the density hump soliton. We plotted the Sagdeev potential (Eq. 

(22)) for different values of spectral indices 𝑟, 𝑞 and Mach number satisfying the condition 924) 
and then plot the soliton structures which were obtained numerically from Eq. (22). 

In Figure.-1(a), Sagdeev potential is depicted for different values of 𝑟 for fixed values of 

𝑞, 𝑀 and 𝜃. We observed that Sagdeev potential’s depth and width increase with the increasing 

value of 𝑟.  Solitons corresponding to the Sagdeev potentials in Figure.-1(a) are plotted in 
Figure.-1(b). It can be noted that an increase in r makes the density hump structures taller and 

more slender. In Figure.-2(a) Sagdeev potential is depicted for different values of 𝑞 for fixed 

values of 𝑟 , 𝑀  and 𝜃 . It was observed that the depth and width of the Sagdeev potential 

increased with the rising value of 𝑞. Solitons corresponding to the Sagdeev potentials in Figure.-

2(a) are plotted in Figure.-2(b). We also noted that an increase in 𝑞 makes the density of hum 
structures taller and slenderer. In Figure.-3(a) Sagdeev potential was depicted for different values 

of 𝑀 for fixed values of 𝑟, 𝑞  and 𝜃. It was observed that the depth and width of the Sagdeev 

potential increased with the rising Mach number 𝑀. Solitons corresponding to the Sagdeev 

potentials in Figure.-3(a) are plotted in Figure.-3(b). We observed that an increase in 𝑀 makes 
the density of hum structures taller and slenderer. 

 

 
Figure 1: Sagdeev potential structures (upper panel) and corresponding solitons (lower 

panel) for different values of 𝑟 = 1 (thick line), 𝑟 = 2 (dashed line), 𝑟 = 3 (thin line) 

when 𝑞 = 2, 𝑀 = 0.85, 𝜃 = 45° and 𝜏 = 0.1. 
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Figure 2: Sagdeev potential structures (upper panel) and corresponding solitons (lower 

panel) for different values of 𝑞 = 2 (thick line), 𝑞 = 4 (dashed line), 𝑞 = 7 (thin line) 

when 𝑟 = 2, 𝑀 = 0.85, 𝜃 = 45° and 𝜏 = 0.1. 
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Figure 3: Sagdeev potential structures (upper panel) and corresponding solitons (lower 

panel) for different values of Mach number 𝑀 = 0.80 (thick line), 𝑀 = 0.85 (dashed 

line), 𝑀 = 0.90 (thin line) when 𝑟 = 1, 𝑞 = 2, 𝜃 = 45° and 𝜏 = 0.1. 
This paper presented a comprehensive nonlinear formulation in a warm, magnetized 

plasma for electrostatic waves such as ion-acoustic waves. To obtain the nonlinear wave solution, 
quasi-neutrality is taken into account in the fluid equations and assumed that electrons follow 

(𝑟, 𝑞)  distribution. For the analysis of nonlinear ion-acoustic waves and their propagation 
characteristics, we used the pseudo-potential or Sagdeev potential technique and the Mach 
number range is derived under which solitary structures are obtained. Our model results showed 
that density hump solitons can be formed as observed by the Freja satellite in the upper 

ionospheric region. We found that if either of the spectral indices 𝑟 or 𝑞 increases, the soliton 

becomes taller and slenderer. As the value of 𝑟 increases, the distribution tends to exhibit a flat 

top and consequently, the number of low-energy particles increases. Also, as the value of 𝑞 
increases, the distribution tends to exhibit a high-energy tail and consequently, the number of 
high-energy particles increases. Thus the flat top distribution with a high-energy tail supports 
the observations of density hump structures with larger amplitude and thinner profiles. 
Moreover, we found an increase in Mach number makes the soliton taller and slenderer. It has 
been observed that in the auroral region, density hump structures associated with the ion-
acoustic waves have been observed by Freja and Viking satellites [19][20]. From the Figure. 1-3, 
we obtained the compressive solitary structures or density hump structures up to the order of 
70% of the background value, which are in agreement with the observations of Freja and Viking 
satellites. Therefore, the results obtained in this study will explain the observations of density 
solitons in space plasmas where such non-Maxwellian distributions are observed. 
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