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Asthma is a prevalent chronic respiratory disease, which poses significant diagnostic challenges 
because of its multifactorial nature. This study aims to develop a machine-learning approach 
for predicting asthma diagnosis using key features such as body mass index (BMI), age, lung 
function parameters (FEV1 and FVC), and demographic information. A dataset containing 
clinical and demographic records was utilized to train and evaluate models, including Random 
Forest, Neural Networks, and XGBoost classifiers. The performance of the following models 
was assessed using metrics such as precision, recall, accuracy, and F1-score, with Random 

Forest exhibiting the highest predictive performance. In addition to traditional performance 
metrics, advanced visualization techniques like SHAP (Shapley Additive ex Planation’s) values 
were employed to interpret model predictions and assess feature importance. Results 
demonstrate that age, BMI, and lung function are key predictors of asthma diagnosis, with 
lung function parameters showing the strongest correlation with diagnosis outcomes. The 
study also explores various 3D and interactive visualizations to enhance the interpretability of 
the models. The proposed approach demonstrates that machine learning models when 
combined with clinical data, can accurately predict asthma diagnosis and potentially aid 
healthcare professionals in early detection and personalized treatment plans. This research 
highlights the potential of data-driven models in improving asthma diagnosis and contributing 
to better clinical decision-making. 
Keywords: Asthma diagnosis, Machine learning models, FVC (Forced Vital Capacity), Lung 
function parameters, FEV1 (Forced Expiratory Volume in one second) 
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Introduction: 
Asthma is an inflammatory condition of the airways that is affecting millions of 

people worldwide, leading to significant morbidity and reduced quality of life. Its symptoms, 
which include shortness of breath, wheezing, and chest tightness, vary greatly among 
individuals and across different age groups. Early and accurate diagnosis of asthma is critical 
to prevent exacerbations and manage the disease effectively. However, diagnosing asthma 
can be challenging due to overlapping symptoms with other respiratory conditions and the 
heterogeneity of its clinical presentation. In recent years, the integration of different 
machine-learning techniques into medical research has shown great potential in improving 
the accuracy and speed of diagnostic processes. Machine learning algorithms identify hidden 
patterns, process vast amounts of patient data, and make predictions with high precision. 
These models, when applied to clinical and physiological data, can assist in diagnosing 
asthma more accurately than traditional methods. By leveraging advanced models such as 
XGBoost, Neural Networks, and Random Forest, it is possible to automate the diagnosis 
process while providing insights into the importance of different diagnostic factors. The 
study focuses on using machine learning models to predict asthma diagnosis based on key 
clinical features, including lung function parameters like Forced Vital Capacity (FVC) and 
forced expiratory volume in one second (FEV1), along with demographic characteristics like 
age and Body Mass Index (BMI). These features are known to influence lung function and 
asthma severity, making them crucial predictors of the disease. In addition to building 
accurate models, this research highlights the importance of explainability and interpretability 
in machine learning. Tools like SHAP (Shapley Additive explanations) are employed to 
understand the contributions of individual features to the model's predictions, offering 
insights that can support clinicians in understanding the rationale behind predictions. 
Furthermore, advanced data visualization techniques, including 3D scatter plots and feature 
importance heatmaps, are applied to explore the relationships between many clinical features 
and asthma diagnosis. This paper is organized as follows: Section 2 reviews the dataset and 
features used for prediction. Section 3 presents the methodology, including the machine 
learning models implemented. Section 4 covers the results and analysis of the models' 
performance, in Section 5 there is a conclusion and future work. 
Related Work: 

To improve predictions of asthma self-management, the focus of the study was 
machine learning methods to create early warning algorithms using the Asthma Mobile 
Health Study (AMHS), a publicly available mHealth dataset. To distinguish between stable 
and unstable periods, we used some popular supervised learning algorithms (classification). 
We discovered that both naïve Bayes-based classifiers and logistic regression are providing 
accuracy (AUC > 0. 87) [1]. Asthma does not currently have a cure. Nonetheless, the illness 
can be managed with current management techniques, such as the use of "preventer" 
inhalers. An action plan and assisted self-management greatly lower the chance of an asthma 
attack [2]. This study tests many machine-learning approaches to develop a model for 
predicting asthma attacks. The bio signals dataset and the online environmental dataset are 
the two primary components of the dataset that was employed. The study employed a variety 
of machine-learning approaches, including random forests, support vector machines, logistic 
regression, gradient boosting models, and decision trees [3].  

A different study showed how a model's performance can be enhanced by applying 
different predictors from other sources. Nearly 37 attributes were selected, including 
environmental triggers and multiple bio signals. Pattern-Based Decision Trees (PBDT) and 
pattern-based class-association rules (PBCAR) were the machine learning techniques that 
were used. The model's accuracy in predicting asthma attacks was 0.87. With 87% and 86% 
accuracy rates, respectively, PBDT outperformed PBCAR by a small margin. Another model 
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for predicting asthma attacks exists. In addition to environmental triggers, they gathered a 
dataset that contained bio signal data of three subjects. The model gives an accuracy of 93% 
when the SVM algorithm is applied. However, this model was just trained and tested only on 
three individuals, so, this was unclear how it would function if tested on a larger population 
[4]. Asthma is a chronic, fluctuating illness. Since there is currently no treatment for asthma, 
long-term maintenance is the main focus. Although mobile health (mHealth) holds promise 
for managing chronic diseases, it must do more than just monitor patients. Therefore, 
mHealth must use machine learning to deliver customized algorithms and feedback. It's 
important to comprehend how these machine learning algorithms have been used in the 
view of mHealth to control asthma [5]. Monitoring breathing and identifying respiratory 
problems may aid in the early detection of asthma attacks. Portable sleep diagnostic devices 
to track breathing are among the tools that have been suggested for home monitoring [6].  

One of the main signs of an asthma episode is a decline in Peak Expiratory Flow 
(PEF). Patients occasionally utilize peak flow meters at home to obtain objective values and 
determine whether any intervention is necessary. Peak flow meters are not as detailed as 
spirometers, which are another tool for measuring lung function [7]. This study's main goal 
is to examine the predictive and variable importance evaluation capabilities of machine 
learning systems. Several performance metrics, such as precision, accuracy, Kappa statistics, 
recall, F-measure, AUC value.  And ROC curve has been taken into account in a thorough 
comparison. The best algorithms, according to the findings, are C5.0 for asthma, SVM (with 
non-linear kernel), Random Forest (with CART learner), and GBM for COPD. However, 
MEF50 for COPD and FEV3 for asthma are the most crucial variables. Among the top five 
variables, FEV1 and FVC have been prevalent. Tests of statistical significance have validated 
the variables' rank [8]. In a different study, a machine learning-based approach to early 
exacerbation detection and subsequent triage was provided. In this application, supervised 
algorithms were trained using the opinions of physicians in a clinically and statistically 
thorough sample of patient data. The model's accuracy was assessed using a representative 
patient validation set and a physician panel that initiates the same cases [9]. In this study, we 
use cutting-edge machine-learning techniques to suggest a sustainable method of diagnosing 
asthma. More precisely, we employ the extreme gradient boosting algorithm for 
classification, feature selection was used to identify the data augmentation that increased the 
dataset's durability and significant characteristics.  

In this suggested method, data augmentation entails creating artificial samples that 
expand the training dataset, which is subsequently used to improve training data first. That 
may mitigate this issue of asthma-related data imbalance. The extreme gradient boosting 
technique is then applied to select important features and increase diagnosis accuracy [10]. In 
addition to, paroxysmal, intermittent, persistent, or persistent evidence plus acute attacks, 
asthma symptoms can also be categorized by the duration, frequency, changes between night 
and day, and nighttime symptoms. Asthma symptoms can also be categorized as seasonal 
attacks, annual attacks, or a combination of both. It is still unclear how genetic, 
environmental, viral, and dietary variables contribute to asthma [11]. Another study 
presented the Adaptive Fuzzy Inference System (ANFIS), a backpropagation technique that 
lowers asthma diagnostic mistakes [12]. When the asthma dataset is imbalanced, traditional 
algorithms usually split minority classes into the majority classes, achieving a greater accuracy 
rate; nevertheless, that makes it challenging for this algorithm to categorize significant 
minority classes [13]. There is often an imbalance issue in the data on asthma symptoms. It 
has recently been demonstrated that Generative Adversarial Networks (GANs) offer fresh 
approaches to data augmentation for the imbalance issue [14] .In the present investigation, 
we introduce a machine learning-based algorithm designed to forecast the risk of asthma. 
Leveraging Internet-of-Things resources, this technology was comprehensively implemented 
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on a mobile phone as a smartphone health application. Peak Expiratory Flow Rates (PEFR), 
which are widely recognized as significant asthma risk determinants, are conventionally 
assessed utilizing external devices such as peak flow meters. The results of this PEFR were 
classified into three different risk categories: "Yellow" (Moderate Risk), "Green" (Safe), and 
"Red" (High Risk), and are compared against the optimal peak flow measurement attained by 
all individuals [15]. The primary goal of this research was to identify user requirements and 
explore methodologies for integrating electronic components into inhalers to address these 
needs and enhance both the provision of services and the user experience. Consequently, the 
electronic systems incorporated within the inhaler will be controlled by a mobile application.  

This application will provide notifications regarding the appropriate times for usage 
as well as the geographical location of the inhaler [16]. In the proposed system, we 
minimized the reliance on the inhaler, thereby facilitating the prevention of asthma 
exacerbations. In this research endeavor, a cloud-based framework that adeptly integrates 
multimodal data along with a user-friendly web interface was established. The apparatus is 
designed for portability and is equipped with a sensor for temperature detection. Through 
the utilization of this asthma management pack, each suffering from asthma has effectively 
safeguarded their well-being against environmental conditions. The sensors employed in this 
study quantify various outputs on the respiratory spectrum, which are contingent upon lung 
volume and lung capacity [16]. 

All these studies used only lung health data while we are using some demographic 
features with it to improve early prediction of asthma.  
Material and Methods: 

This section highlights the methodology that is used to develop, train, and check the 
machine learning model's performance for predicting asthma diagnosis. This methodology 
comprises several key stages, which include data preprocessing, feature selection, model 
implementation, and performance evaluation. That is shown in Figure 1 below. 
Dataset Description: 

The dataset for this study was taken from Kaggle which consists of clinical and 
demographic data from patients, with a specific focus on predicting asthma diagnosis. The 
dataset consists of two target classes (0 = No Asthma, 1 = Asthma). This dataset consists of 
features like age, BMI, lung function parameters (e.g., LungFunctionFEV1, Lung Function 
FVC), and several categorical indicators for symptoms (e.g., dry cough, difficulty in 
breathing). Key features include: 
• Age: (in years) 
• BMI: (Body Mass Index) 
• Lung Function FEV1: (Forced Expiratory Volume in one second) 
• Lung Function FVC: (Forced Vital Capacity) 
• Diagnosis: (Target variable: 0 = No Asthma, 1 = Asthma) 

The dataset is highly imbalanced, with fewer instances classified as (1 = Asthma) and 
a greater number classified as (0 = No Asthma). In addition, other demographic features and 
medical history, such as gender and medications, were available in the dataset but were not 
directly used in this analysis, as the focus was on age, BMI, and lung function parameters. 
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Figure 1 Block Diagram 

Data Preprocessing: 
This was a critical step that ensured the models were trained on clean and 

standardized data. The following steps were performed here: 
• Handling Missing Data: By using imputation techniques problem of Missing 
values was solved, such as replacing missing lung function values with the median or mean 
values of the given feature. 
• Feature Scaling: Continuous variables like age, BMI, FEV1, and FVC were 
standardized to have a standard deviation of one and a mean of zero. This step was 
compulsory for models like Neural Networks that were sensitive to feature scaling. 
• Data Splitting: This dataset was split into testing (20%) and training (80%) sets. 
This training set was used to develop models, while the test dataset was used to check their 
performance. All this workflow is shown in figure 2, which is given below. 
Feature Selection: 

The features selected for model training were chosen based on their relevance to 
asthma diagnosis and lung function assessment: 
• Age: Age is a significant factor influencing lung function and the likelihood of 
asthma. 
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• BMI: Obesity is associated with worse asthma outcomes and is included as a 
predictor. 
• Lung FunctionFEV1: FEV1 is a critical measure of airway obstruction. 
• LungFunctionFVC: FVC helps assess the volume of air a patient can forcibly 
exhale. 

 

Figure 2. Workflow 
Radar Charts for Both Classes: 

The radar charts in figure 3 for Class 1 and Class 0 represent the feature profiles for 
every class based on a dataset involving features like Age, BMI, Lung Function FEV1, Lung 
Function FVC, etc. 

 
Figure 3. Feature Comparison for Class “O 

Radar charts help in comparing multiple features simultaneously across different 
classes, making it easier to spot feature-level differences. The variations in patterns and 
lengths along each axis suggest key differences in how features are distributed for Class 0 
versus Class 1. Data-driven decisions can be made based on this visualized comparison, such 
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as identifying which features are more relevant for separating or distinguishing the two 
classes. 

Table1. Differences in Radar Chart 

Feature Class 0 (Radar 
Chart) 

Class 1 (Radar 
Chart) 

Comparison/Observation 

Age Moderate to high 
values 

Moderate values Class 0 shows a broader range, 
indicating a higher average. 

BMI High values Lower to 
moderate values 

Class 0 has a higher BMI 
compared to Class 1. 

Lung Function 
FEV1 

Moderate to high 
distribution 

Low to moderate 
distribution 

Class 0 has higher average lung 
function values. 

Lung Function 
FVC 

Higher values Lower values FVC values are higher for 
Class 0 compared to Class 1. 

Table 1 summarizes the differences observed in the radar charts for Class 1 and 
Class 0 based on the features in the dataset: 
Machine Learning Models: 

Many machine learning models which are shown in figure 4 were implemented to 
predict asthma diagnosis: 

 
Figure 4. Machine Learning Model 

Random Forest Classifier: The tree-based model for regression and classification is called 
RF. Using the majority voting criterion, the ensemble model aggregated the number of 
decision trees [17]. By enhancing the model's accuracy and stability, the Random Forest 
technique contributes to better generalization [18]. A robust, ensemble-based model that 
uses various decision trees which make predictions. Random Forest is particularly used for 
handling complex interactions between features and is resistant to overfitting. 
The mathematical model can be written as: 

 
Here: 
• T gives the total number of trees. 
• Ft (x) predicts the t-th decision tree. 
•  The final prediction y^ is obtained by taking the majority vote or averaging the 
predictions of all decision trees. 
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Neural Networks (Multilayer Perceptron): A deep learning model that was employed to 
capture non-linear relationships in the data. This architecture consists of an input layer that 
has four nodes (one for each feature), a hidden layer, and an output layer for binary 
classification (asthma or no asthma). The rectified linear unit (ReLU) function was used for 
hidden layers, here output layer used the sigmoid function. 

 
Here: 

• h(l)= it is the activation function that is used at layer l. 

• , these are the biases and weights at layer l. 

•  is an activation function (commonly sigmoid for binary classification). 

•  is the number of layers in the network. 

This model learns the parameters  and  by reducing a loss function (e.g., cross-
entropy loss). 
XGBoost: 

One well-liked tree learning algorithm is XGBoost. The foundation of the system is 
second-order Taylor expansion of the objective function, that XGBoost employs to evaluate 
model validity. By referring to this central part of the system, it matches the residuals of the 
previous forecast. It repeatedly splits a new tree to match the residuals of the previous 
forecast [19] It reduce s overfitting and is based on the DT method. It stands for eXtreme 
Gradient Boosting [20]. 

An advanced gradient boosting algorithm that builds decision trees sequentially to 
minimize prediction error. XGBoost is highly effective for structured data and is known for 
its superior performance and speed. 

 
Where: 
• k represents boosted tree numbers. 

•  represent kth decision tree. 

•  is a weight for the kth tree. 
• The model is trained by reducing a loss function (e.g., cross-entropy loss) and 
adding a new tree that corrects the errors of the previous trees. 
Mathematical Model for Asthma Diagnosis Using Machine Learning: 

In this problem, we are using many machine learning models (Neural Network, 
Random Forest, and XGBoost) to predict asthma diagnosis (binary classification: Class 0 = 
No Asthma, Class 1 = Asthma) based on several features like lung function (FEV1, FVC), 
BMI, and Age. The general mathematical formulations for the machine learning models and 
performance metrics used are as follows: 
General Machine Learning Formulation: 

Given a dataset D={(xi,yi)}, here: 
• xi=[xi1,xi2,…,xim] it represents the feature vector of the i-th sample, with m features 
(e.g., Age, BMI, LungFunctionFEV1, LungFunctionFVC). 

• yi ∈ {0,1} is the binary class label for asthma diagnosis (0 = No Asthma, 1 = 
Asthma). 

The aim is to find a function f(xi) which maps input xi to output I =f(xi) such that 

I  
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Model Training: 

The models were trained on the preprocessed dataset. For each model, the following 
procedure was used: 
Hyper-parameter Tuning: Cross-validation and Grid search were used to perform an 
optimized hyper-parameter for each model. For Random Forest, the number of trees and 
the maximum depth were tuned. For Neural Networks, some hidden layers and nodes per 
layer were adjusted, and for XGBoost, learning rate, max depth, and number of boosting 
rounds were optimized. 
Cross-Validation: To mitigate over-fitting, cross-validation k-fold (k=5) was used during 
model training. This technique ensures that the models generalize well to unseen data by 
training on multiple subsets of the training data. 
Performance Evaluation: 

After training, the models were evaluated on the test set using various classification 
metrics: 
Accuracy: It measures the proportion of correct predictions over total predictions. Figure 5 
shows the accuracy of all models. 

 
 

 
Figure 5. Models Accuracy 

 
Precision: It was determined by adding all of the given model's predictions. Next, the 
proportion of accurate forecasts is divided by the given number of predictions [21]. Indicates 
the proportion of true positive asthma diagnoses from all predicted positives. 

 
Recall: Recall, sometimes referred to as the sensitivity or true positive rate, is a second 
important statistic [22].Assesses the ability of the model that correctly identify patients with 
asthma. 

 
F1-Score: Precision and recall are averaged to determine the F1 score. Generally speaking, 
F1-Score is regarded as a trustworthy way that compare how well different classifiers 
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perform, significantly when data is uneven [23]. The harmonic mean of the precision and the 
recall provides a balanced measure of this model's performance. 

 

Area Under the ROC Curve (AUC-ROC): ROC curves in figure 6 are employed to assess 
how well classification algorithms perform. Plotting the True Positive Rate (TPR), which is 
known as recall, against the False Positive Rate (FPR) at different threshold values is what 
the curve does [24]. Providing the balance between specificity and sensitivity by plotting the 
True Positive Rate (TPR) against the False Positive Rate (FPR) at different thresholds. 

 

 
Figure 6. ROC Curve 

• The area under the ROC curve is 0.98, which indicates excellent performance.  
• An AUC of 0.98 means that the model will differentiate a positive instance from a 
negative instance correctly. 

The Random Forest model demonstrates outstanding predictive power, as indicated 
by the high AUC of 0.98, meaning it's very effective at differentiating between two classes in 
the dataset. 
Model Interpretability: 

To evaluate the performance of the model, interpretability was a key focus of this 
study. SHAP (Shapley Additive explanations) values were employed to tell model predictions 
by quantifying the portion of each feature towards the prediction. This step helps to provide 
insights into how specific features, such as age, BMI, and lung function, influence the 
likelihood of asthma disease. For evaluation, we employed a confusion matrix, which is 
composed of TP (true positive), FP (false positive), TN (true negative), and FN (false 
negative). [25] 

 
Figure 7. Confusion Matrix of RF 
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Figure 8. Confusion Matrix of NN 

 
Figure 9. Confusion Matrix of XGBOOST 

Table 2 Metric of All Models 
Model True Negatives 

(TN) 
False Positives 

(FP) 
False Negatives 

(FN) 
True Positives 

(TP) 
Model 

Random 
Forest 

283 5 4 68 Random 
Forest 

Neural 
Network 

2 286 1 71 Neural 
Network 

XGBoost 283 5 2 70 XGBoost 

Table 2 summarizes the performance of all three models that are based on their confusion 
matrices: 

Random Forest confusion matrix in figure 7 and XGBoost confusion matrix in 
figure 8 offer strong performance with balanced metrics, suitable for real-world applications 
requiring high accuracy and reliability in predictions. Neural Network confusion matrix in 
figure 9 demonstrates high sensitivity but at the cost of very low specificity, which makes it 
less practical in this context unless adjusted to reduce false positives. 
Visualization Techniques: 

We used advanced visualization techniques to find out the relationships between the 
target variable and features: 
• 3D Scatter Plots: Visualized the interaction between age, BMI, and lung function 
parameters. These show the pairwise relationships between two features in figure 10, with 
the color coding separating the diagnosis groups. 
• The blue group (Diagnosis = 0) covers a wider range of values for both 
LungFunctionFEV1 and FVC. The orange group (Diagnosis = 1) tends to be clustered 
around lower lung function values, with some higher-age participants. 
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Figure 10. 3D Scatter Plot 

• SHAP Summary Plots: SHAP Summary Plots in figure 11 showed the global 
importance of features in predicting asthma diagnosis across the dataset. 
Each dot represents an interaction between the two features (Age and BMI). The 

color represents the value of one feature (blue for lower values, pink for higher values), 
while the x-axis shows how this interaction affects the model's prediction (positive or 
negative SHAP interaction values). The vertical lines show how the SHAP interaction value 
for one feature (on the y-axis) varies across the dataset. 

This plot indicates that the interaction between Age and BMI doesn't have a large or 
consistent impact on the model's prediction, as the SHAP interaction values cluster close to 
zero. 

 
Figure 11. SHAP Plots 
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Correlation heatmap: From this heatmap in figure 12, we can conclude that there is very 
little linear dependency between Age, BMI, and lung function parameters 
(LungFunctionFEV1, LungFunctionFVC). These low correlations suggest that none of these 
features strongly influence each other in this dataset. Therefore, they could be considered 
independent factors affecting the prediction of diagnosis, or their combined effects may 
need more sophisticated modeling techniques like SHAP to fully understand their interaction 
and importance in the classification models. 

 
Figure 12. Correlation heatmap 

Boxplot: Lung Function (FEV1) Distribution by Diagnosis: 
Boxplot in figure 13 suggests that FEV1 is a distinguishing feature between the two 

groups, with lower FEV1 values often associated with asthmatic patients. 

 
Figure 13. Boxplot of Lung Function (FEV1) 
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Boxplot: Lung Function (FVC) Distribution by Diagnosis: 
Boxplot in figure 14 suggests that similar to FEV1, the lower FVC values in asthmatic 
patients indicate that these lung function parameters are vital for classifying asthma. 

 
Figure 14. Boxplot of Lung Function (FVC) 

These two plots suggest that lung function metrics, particularly FEV1 and FVC, are 
significantly lower for patients diagnosed with asthma compared to those without. These 
features contribute strongly to distinguishing between asthmatic and non-asthmatic patients. 
Violin Plot: 

A violin plot in figure 15 is a technique that is used for data visualization and also to 
show the distribution of a numerical variable for different categories of data, combining 
aspects of a box plot and kernel density plot. It helps to provide insight into the probability 
density of the dataset at different values, offering a more abstract view of data distribution as 
compared to a simple box plot. 

 
Figure 15. Violin Plot Lung Function (Fev1) 

The violin plot in figure 16 shows that non-asthmatic patients tend to have higher 
and more variable FEV1 values, while asthmatic patients generally have lower FEV1 values 
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with less variation. This reinforces that FEV1 is a significant feature in differentiating 
between asthmatic and non-asthmatic individuals. 

 
Figure 16. Violin Plot Lung Function (FVC) 

This violin plot provides visualization of the distribution of FVC data for two 
different diagnosis categories (0 and 1). The plot shows that FVC is generally higher for 
individuals with a diagnosis of 0 (negative) and lower for those with a 1 (positive) diagnosis. 
This visualization emphasizes that lung function may be significantly impacted for 
individuals diagnosed positively, potentially making FVC a distinguishing feature for 
classification or prediction. 
Bar Chart: 

The bar chart titled "Smoking Status Distribution in the Dataset" in figure 17 
displays the distribution of smoking status across the dataset. X-axis represents two smoking 
status categories, here: 
• 0 is represented by non-smokers, 
• 1  is represented by smokers. 

The Y-axis shows the count of instances for each category. 

 
Figure 17. Bar Chart 

Partial Dependence Plots: 
This plot in figure 18 shows the partial dependence of several features (BMI, FEV1, 

and FVC on the prediction made by the model. Partial dependence plots (PDPs) help us 
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understand how each feature influences the target variable (diagnosis) while keeping other 
features constant. 

(FEV1 and FVC) have an important impact on diagnosis, and the model is highly 
sensitive to these features. A decrease in these values strongly correlates with a higher 
likelihood of diagnosis. 

BMI, however, seems to have minimal impact on the model's predictions, as 
indicated by a flat curve. 

 
Figure 18. Partial Dependence Plots 

PCA (Principal Component Analysis) Plot: This is a 2D PCA (Principal Component 
Analysis) plot, which projects the dataset into two principal components, allowing us to 
visualize the data in a simplified two-dimensional space. 

 
Figure 19. PCA 
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This PCA plot in figure 19 shows that the dataset may be complex, and the two 
classes are not linearly separable in this 2D projection. More sophisticated models or 
additional features may be needed to better separate these classes. 
Pair Plot: 

This is a pair plot in figure 20 showing the relationships between four features in 
your dataset: Age, BMI, FEV1, and FVC, grouped by the Diagnosis variable (0 or 1). The 
pair plot provides a way to visualize both distributions and potential correlations between 
these variables. 

 
Figure 20. Pair Plot 

This plot shows a clearer distinction between the two classes, with more separation 
between the blue and orange points compared to other pairs. This might indicate that the 
combination of lung function metrics is more predictive of the diagnosis. 
T-SNE Plot: 

It is a t-SNE plot, which is a technique that is used for dimensional reduction and 
provides visualization of high-dimensional data in the lower-dimensional space (in this case, 
2D). The plot in figure 21 represents how your data points, which are labeled by the 
diagnosis variable (0 or 1), are clustered or spread across two components generated by t-
SNE. 
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Figure 21. T-SNE Plot 

The t-SNE plot reveals how well the two classes (Diagnosis = 0 and Diagnosis = 1) 
are separated or overlapping. 

In this plot, the red points (0) are much more dominant, with the blue points (1) 
scattered across the plot. However, there are small clusters where the blue points group 
together. 

There is no clear linear separation between the two classes. This could indicate that 
data is complex and provides a non-linearly separable relation. 
3D Bar Plot: 
This is a 3D bar plot in figure 22 showing the relationship between Age, Diagnosis, and BMI. 

 
Figure 22. 3D Bar Plot 

Each bar in this 3D plot represents the combination of Age, BMI, and Diagnosis.The height 
of each bar corresponds to the BMI values for the respective age groups and diagnosis label 
(Diagnosis = 0 or Diagnosis = 1). 
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There is a dense cluster of bars, showing how the values distribute across the three 
variables (Age, BMI, and Diagnosis). 
Result and Discussion: The machine learning models for asthma diagnosis prediction were 
evaluated based on the selected features (Age, BMI, Lung Function FEV1, Lung Function 
FVC). Three models—Random Forest, Neural Network, and XGBoost—were trained and 
tested on the dataset. Below are the results for each model: 
Performance Comparison: 
• Random Forest performed the best overall, achieving the highest recall, precision, 
and F1-score across both classes, with exceptional accuracy in predicting non-asthmatic 
patients. XGBoost followed closely behind a strong balance between recall and precision for 
both classes and makes it suitable for cases where class imbalance needs careful handling. 
• Neural Network had slightly lower performance compared to the other two 
models, but it still delivered strong results, especially for classifying asthmatic patients. 

Table 3. Metric of All Models 

Metric Random Forest Neural Network XGBoost 

Accuracy 97% 95% 96% 

Precision (Class 0) 0.99 0.97 0.98 

Precision (Class 1) 0.91 0.88 0.91 

Recall (Class 0) 0.97 0.96 0.97 

Recall (Class 1) 0.98 0.91 0.93 

F1-Score (Class 0) 0.98 0.97 0.98 

F1-Score (Class 1) 0.95 0.89 0.92 

AUC-ROC High (especially 
Class 0) 

Moderate (slightly lower 
than Random Forest) 

Balanced and high 
across both classes 

This table 3 provides a concise and clear comparison of the three models' 
performance across the most critical metrics: recall, F1-score, accuracy, precision, and AUC-
ROC. 
• SHAP (Shapley Additive exPlanations) dataset values were used to predict the 
feature importance across all models. The results indicated that LungFunctionFEV1 and 
LungFunctionFVC were the most critical features influencing asthma diagnosis, followed by 
BMI and Age. 

These results indicate that the selected features are relevant for predicting asthma 
diagnosis, and machine learning models, particularly Random Forest and XGBoost, provide 
high classification performance for this task. 

In this study, we analyzed demographic and clinical features, including age, BMI, and 
lung function metrics, to predict a specific health diagnosis using machine learning models. 
Key patterns differentiating diagnosed and non-diagnosed groups were identified through 
various visualizations, revealing important predictors like lung function values. Our model 
comparisons showed that the Random Forest classifier achieved the highest accuracy at 
97%, followed by Neural Networks at 95%, and XGBoost at 96%. Naive Bayes, while 
performing slightly lower at 76%, provided useful insights into feature distributions. 

These findings demonstrated the value of leveraging machine learning for accurate 
prediction, diagnosis, and personalized interventions, emphasizing the importance of 
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integrating diverse health features into predictive modeling frameworks for better patient 
outcomes. 
Conclusion: 

This study demonstrates that machine learning models can effectively predict asthma 
diagnosis by leveraging clinical and demographic data, specifically focusing on age, BMI, and 
lung function parameters (FEV1 and FVC). Among the evaluated models, Random Forest 
exhibited the highest predictive performance, achieving an accuracy of 97%, precision values 
of 0.99 (Class 0) and 0.91 (Class 1), recall values of 0.97 (Class 0) and 0.98 (Class 1), and F1-
scores of 0.98 (Class 0) and 0.95 (Class 1). This model showed superior capability in 
identifying patients without asthma (Class 0) while maintaining high performance for 
asthmatic patients (Class 1). The Neural Network model, with an accuracy of 95%, 
demonstrated strong but slightly lower performance compared to Random Forest, 
particularly excelling at handling cases of asthma diagnosis (Class 1) with a recall of 0.91 and 
a precision of 0.88 for this class. Similarly, XGBoost provided balanced and robust 
predictions with an accuracy of 96%, maintaining high recall and precision values across 
both classes, making it suitable for cases involving potential class imbalances. SHAP 
(Shapley Additive exPlanations) dataset values were employed to enhance the interpretability 
of these models, revealing that lung function parameters (FEV1 and FVC) were the most 
influential predictors, followed by BMI and age. The results underlined the importance of 
lung function measures in predicting asthma and indicate that integrating machine learning 
techniques with clinical data can facilitate early detection and personalized treatment 
strategies for asthma patients. Overall, this research supports the efficacy of data-driven 
models in providing asthma diagnosis, offering healthcare professionals a valuable tool for 
better clinical decision-making and patient management. The imbalanced dataset, with a 
larger proportion of non-asthmatic cases (0) compared to asthmatic cases (1), further 
emphasizes the robustness of the proposed models in handling such data distributions 
effectively. 
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