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NOISIAIQ

challenges because of its multifactorial nature. This study aims to develop a machine-

learning approach for predicting asthma diagnosis using key features such as body
mass index (BMI), age, lung function parameters (FEV1 and FVC), and demographic
information. A dataset containing clinical and demographic records was utilized to train and
evaluate models, including Random Forest, Neural Networks, and XGBoost classifiers. The
performance of the following models was assessed using metrics such as precision, recall,
accuracy, and F1-score, with Random Forest exhibiting the highest predictive performance. In
addition to traditional performance metrics, advanced visualization techniques like SHAP
(Shapley Additive ex Planation’s) values were employed to interpret model predictions and
assess feature importance. Results demonstrate that age, BMI, and lung function are key
predictors of asthma diagnosis, with lung function parameters showing the strongest
correlation with diagnosis outcomes. The study also explores various 3D and interactive
visualizations to enhance the interpretability of the models. The proposed approach
demonstrates that machine learning models when combined with clinical data, can accurately
predict asthma diagnosis and potentially aid healthcare professionals in early detection and
personalized treatment plans. This research highlights the potential of data-driven models in
improving asthma diagnosis and contributing to better clinical decision-making.
Keywords: Asthma diagnosis, Machine learning models, FVC (Forced Vital Capacity), Lung
function parameters, FEV1 (Forced Expiratory Volume in one second)

ﬁ sthma is a prevalent chronic respiratory disease, which poses significant diagnostic
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Introduction:

Asthma is an inflammatory condition of the airways that is affecting millions of
people worldwide, leading to significant morbidity and reduced quality of life. Its symptoms,
which include shortness of breath, wheezing, and chest tightness, vary greatly among
individuals and across different age groups. Early and accurate diagnosis of asthma is critical
to prevent exacerbations and manage the disease effectively. However, diagnosing asthma
can be challenging due to overlapping symptoms with other respiratory conditions and the
heterogeneity of its clinical presentation. In recent years, the integration of different
machine-learning techniques into medical research has shown great potential in improving
the accuracy and speed of diagnostic processes. Machine learning algorithms identify hidden
patterns, process vast amounts of patient data, and make predictions with high precision.
These models, when applied to clinical and physiological data, can assist in diagnosing
asthma more accurately than traditional methods. By leveraging advanced models such as
XGBoost, Neural Networks, and Random Forest, it is possible to automate the diagnosis
process while providing insights into the importance of different diagnostic factors. The
study focuses on using machine learning models to predict asthma diagnosis based on key
clinical features, including lung function parameters like Forced Vital Capacity (FVC) and
forced expiratory volume in one second (FEV1), along with demographic characteristics like
age and Body Mass Index (BMI). These features are known to influence lung function and
asthma severity, making them crucial predictors of the disease. In addition to building
accurate models, this research highlights the importance of explainability and interpretability
in machine learning. Tools like SHAP (Shapley Additive explanations) are employed to
understand the contributions of individual features to the model's predictions, offering
insights that can support clinicians in understanding the rationale behind predictions.
Furthermore, advanced data visualization techniques, including 3D scatter plots and feature
importance heatmaps, are applied to explore the relationships between many clinical features
and asthma diagnosis. This paper is organized as follows: Section 2 reviews the dataset and
features used for prediction. Section 3 presents the methodology, including the machine
learning models implemented. Section 4 covers the results and analysis of the models'
performance, in Section 5 there is a conclusion and future work.

Related Work:

To improve predictions of asthma self-management, the focus of the study was
machine learning methods to create early warning algorithms using the Asthma Mobile
Health Study (AMHS), a publicly available mHealth dataset. To distinguish between stable
and unstable periods, we used some popular supervised learning algorithms (classification).
We discovered that both naive Bayes-based classifiers and logistic regression are providing
accuracy (AUC > 0. 87) [1]. Asthma does not currently have a cure. Nonetheless, the illness
can be managed with current management techniques, such as the use of "preventer"
inhalers. An action plan and assisted self-management greatly lower the chance of an asthma
attack [2]. This study tests many machine-learning approaches to develop a model for
predicting asthma attacks. The bio signals dataset and the online environmental dataset are
the two primary components of the dataset that was employed. The study employed a variety
of machine-learning approaches, including random forests, support vector machines, logistic
regression, gradient boosting models, and decision trees [3].

A different study showed how a model's performance can be enhanced by applying
different predictors from other sources. Nearly 37 attributes were selected, including
environmental triggers and multiple bio signals. Pattern-Based Decision Trees (PBDT) and
pattern-based class-association rules (PBCAR) were the machine learning techniques that
were used. The model's accuracy in predicting asthma attacks was 0.87. With 87% and 86%
accuracy rates, respectively, PBDT outperformed PBCAR by a small margin. Another model
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for predicting asthma attacks exists. In addition to environmental triggers, they gathered a
dataset that contained bio signal data of three subjects. The model gives an accuracy of 93%
when the SVM algorithm is applied. However, this model was just trained and tested only on
three individuals, so, this was unclear how it would function if tested on a larger population
[4]. Asthma is a chronic, fluctuating illness. Since there is currently no treatment for asthma,
long-term maintenance is the main focus. Although mobile health (mHealth) holds promise
for managing chronic diseases, it must do more than just monitor patients. Therefore,
mHealth must use machine learning to deliver customized algorithms and feedback. It's
important to comprehend how these machine learning algorithms have been used in the
view of mHealth to control asthma [5]. Monitoring breathing and identifying respiratory
problems may aid in the early detection of asthma attacks. Portable sleep diagnostic devices
to track breathing are among the tools that have been suggested for home monitoring [6].

One of the main signs of an asthma episode is a decline in Peak Expiratory Flow
(PEF). Patients occasionally utilize peak flow meters at home to obtain objective values and
determine whether any intervention is necessary. Peak flow meters are not as detailed as
spirometers, which are another tool for measuring lung function [7]. This study's main goal
is to examine the predictive and variable importance evaluation capabilities of machine
learning systems. Several performance metrics, such as precision, accuracy, Kappa statistics,
recall, F-measure, AUC value. And ROC curve has been taken into account in a thorough
comparison. The best algorithms, according to the findings, are C5.0 for asthma, SVM (with
non-linear kernel), Random Forest (with CART learner), and GBM for COPD. However,
MEF50 for COPD and FEV3 for asthma are the most crucial variables. Among the top five
variables, FEV1 and FVC have been prevalent. Tests of statistical significance have validated
the variables' rank [8]. In a different study, a machine learning-based approach to eatly
exacerbation detection and subsequent triage was provided. In this application, supervised
algorithms were trained using the opinions of physicians in a clinically and statistically
thorough sample of patient data. The model's accuracy was assessed using a representative
patient validation set and a physician panel that initiates the same cases [9]. In this study, we
use cutting-edge machine-learning techniques to suggest a sustainable method of diagnosing
asthma. More precisely, we employ the extreme gradient boosting algorithm for
classification, feature selection was used to identify the data augmentation that increased the
dataset's durability and significant characteristics.

In this suggested method, data augmentation entails creating artificial samples that
expand the training dataset, which is subsequently used to improve training data first. That
may mitigate this issue of asthma-related data imbalance. The extreme gradient boosting
technique is then applied to select important features and increase diagnosis accuracy [10]. In
addition to, paroxysmal, intermittent, persistent, or persistent evidence plus acute attacks,
asthma symptoms can also be categorized by the duration, frequency, changes between night
and day, and nighttime symptoms. Asthma symptoms can also be categorized as seasonal
attacks, annual attacks, or a combination of both. It is still unclear how genetic,
environmental, viral, and dietary variables contribute to asthma [11]. Another study
presented the Adaptive Fuzzy Inference System (ANFIS), a backpropagation technique that
lowers asthma diagnostic mistakes [12]. When the asthma dataset is imbalanced, traditional
algorithms usually split minority classes into the majority classes, achieving a greater accuracy
rate; nevertheless, that makes it challenging for this algorithm to categorize significant
minority classes [13]. There is often an imbalance issue in the data on asthma symptoms. It
has recently been demonstrated that Generative Adversarial Networks (GANs) offer fresh
approaches to data augmentation for the imbalance issue [14] .In the present investigation,
we introduce a machine learning-based algorithm designed to forecast the risk of asthma.
Leveraging Internet-of-Things resources, this technology was comprehensively implemented
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on a mobile phone as a smartphone health application. Peak Expiratory Flow Rates (PEFR),
which are widely recognized as significant asthma risk determinants, are conventionally
assessed utilizing external devices such as peak flow meters. The results of this PEFR were
classified into three different risk categories: "Yellow" (Moderate Risk), "Green" (Safe), and
"Red" (High Risk), and are compared against the optimal peak flow measurement attained by
all individuals [15]. The primary goal of this research was to identify user requirements and
explore methodologies for integrating electronic components into inhalers to address these
needs and enhance both the provision of services and the user experience. Consequently, the
electronic systems incorporated within the inhaler will be controlled by a mobile application.

This application will provide notifications regarding the appropriate times for usage
as well as the geographical location of the inhaler [16]. In the proposed system, we
minimized the reliance on the inhaler, thereby facilitating the prevention of asthma
exacerbations. In this research endeavor, a cloud-based framework that adeptly integrates
multimodal data along with a user-friendly web interface was established. The apparatus is
designed for portability and is equipped with a sensor for temperature detection. Through
the utilization of this asthma management pack, each suffering from asthma has effectively
safeguarded their well-being against environmental conditions. The sensors employed in this
study quantify various outputs on the respiratory spectrum, which are contingent upon lung
volume and lung capacity [16].

All these studies used only lung health data while we are using some demographic
features with it to improve early prediction of asthma.

Material and Methods:

This section highlights the methodology that is used to develop, train, and check the
machine learning model's performance for predicting asthma diagnosis. This methodology
comprises several key stages, which include data preprocessing, feature selection, model
implementation, and performance evaluation. That is shown in Figure 1 below.

Dataset Description:

The dataset for this study was taken from Kaggle which consists of clinical and
demographic data from patients, with a specific focus on predicting asthma diagnosis. The
dataset consists of two target classes (0 = No Asthma, 1 = Asthma). This dataset consists of
features like age, BMI, lung function parameters (e.g., LungFunctionFEV1, Lung Function
FVC), and several categorical indicators for symptoms (e.g., dry cough, difficulty in
breathing). Key features include:

. Age: (in years)

. BMI: (Body Mass Index)

. Lung Function FEV1: (Forced Expiratory Volume in one second)
. Lung Function FVC: (Forced Vital Capacity)

. Diagnosis: (Target variable: 0 = No Asthma, 1 = Asthma)

The dataset is highly imbalanced, with fewer instances classified as (1 = Asthma) and
a greater number classified as (0 = No Asthma). In addition, other demographic features and
medical history, such as gender and medications, were available in the dataset but were not
directly used in this analysis, as the focus was on age, BMI, and lung function parameters.
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Figure 1 Block Diagram

Data Preprocessing:

This was a critical step that ensured the models were trained on clean and
standardized data. The following steps were performed here:
. Handling Missing Data: By using imputation techniques problem of Missing
values was solved, such as replacing missing lung function values with the median or mean
values of the given feature.
. Feature Scaling: Continuous variables like age, BMI, FEV1, and FVC were
standardized to have a standard deviation of one and a mean of zero. This step was
compulsory for models like Neural Networks that were sensitive to feature scaling.
. Data Splitting: This dataset was split into testing (20%) and training (80%) sets.
This training set was used to develop models, while the test dataset was used to check their
performance. All this workflow is shown in figure 2, which is given below.
Feature Selection:

The features selected for model training were chosen based on their relevance to
asthma diagnosis and lung function assessment:
. Age: Age is a significant factor influencing lung function and the likelihood of
asthma.
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. BMI: Obesity is associated with worse asthma outcomes and is included as a
predictor.

. Lung FunctionFEV1: FEV1 is a critical measure of airway obstruction.

. LungFunctionFVC: FVC helps assess the volume of air a patient can forcibly
exhale.

T i

training
data

Data \ |
( !
Er
Jtestset ) e
Algorithms.
-
Feature Scaling
Figure 2. Workflow

Radar Charts for Both Classes:

The radar charts in figure 3 for Class 1 and Class 0 represent the feature profiles for
every class based on a dataset involving features like Age, BMI, Lung Function FEV1, Lung
Function FVC, etc.

Feature Comparison for Class 0
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Figure 3. Feature Comparison for Class “O
Radar charts help in comparing multiple features simultaneously across different
classes, making it easier to spot feature-level differences. The variations in patterns and
lengths along each axis suggest key differences in how features are distributed for Class 0
versus Class 1. Data-driven decisions can be made based on this visualized comparison, such
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as identifying which features are more relevant for separating or distinguishing the two
classes.
Tablel._Differences in Radar Chart

Feature Class 0 (Radar Class 1 (Radar Comparison/Observation
Chart) Chart)
Age Moderate to high | Moderate values | Class 0 shows a broader range,
values indicating a higher average.
BMI High values Lower to Class 0 has a higher BMI
moderate values compared to Class 1.
Lung Function | Moderate to high | Low to moderate | Class 0 has higher average lung
FEV1 distribution distribution function values.
Lung Function Higher values Lower values FVC values are higher for
FVC Class 0 compared to Class 1.

Table 1 summarizes the differences observed in the radar charts for Class 1 and
Class 0 based on the features in the dataset:
Machine Learning Models:

Many machine learning models which are shown in figure 4 were implemented to
predict asthma diagnosis:

Machine Learning Models

A e v

Random Forest /\7|

-
b

Neural Networks

XGBOOST

Figure 4. Machine Learning Model

Random Forest Classifier: The tree-based model for regression and classification is called
RF. Using the majority voting criterion, the ensemble model aggregated the number of
decision trees [17]. By enhancing the model's accuracy and stability, the Random Forest
technique contributes to better generalization [18]. A robust, ensemble-based model that
uses various decision trees which make predictions. Random Forest is particularly used for
handling complex interactions between features and is resistant to overfitting.

The mathematical model can be written as:

t=1
Here:
. T gives the total number of trees.
. Ft (x) predicts the t-th decision tree.
. The final prediction y” is obtained by taking the majority vote or averaging the

predictions of all decision trees.
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Neural Networks (Multilayer Perceptron): A deep learning model that was employed to
capture non-linear relationships in the data. This architecture consists of an input layer that
has four nodes (one for each feature), a hidden layer, and an output layer for binary
classification (asthma or no asthma). The rectified linear unit (ReL.U) function was used for
hidden layers, here output layer used the sigmoid function.

P c(w(L)_h(L—i) ' b(L_))

Here:

. h()= O(W(l)' h&=4 bm)it is the activation function that is used at layer 1.
. W(l'), b(l')these are the biases and weights at layer 1.

. 0O is an activation function (commonly sigmoid for binary classification).
. L is the number of layers in the network.

This model learns the parameters W and by reducing a loss function (e.g., cross-
entropy loss).
XGBoost:

One well-liked tree learning algorithm is XGBoost. The foundation of the system is
second-order Taylor expansion of the objective function, that XGBoost employs to evaluate
model validity. By referring to this central part of the system, it matches the residuals of the
previous forecast. It repeatedly splits a new tree to match the residuals of the previous
forecast [19] It reduce s overfitting and is based on the DT method. It stands for eXtreme
Gradient Boosting [20].

An advanced gradient boosting algorithm that builds decision trees sequentially to
minimize prediction error. XGBoost is highly effective for structured data and is known for
its superior performance and speed.

K
y' = @ fi)
k=1
Where:
. k represents boosted tree numbers.
. Fr(x) represent k™ decision tree.
. @y is a weight for the k™ tree.
. The model is trained by reducing a loss function (e.g., cross-entropy loss) and

adding a new tree that corrects the errors of the previous trees.
Mathematical Model for Asthma Diagnosis Using Machine Learning:

In this problem, we are using many machine learning models (Neural Network,
Random Forest, and XGBoost) to predict asthma diagnosis (binary classification: Class 0 =
No Asthma, Class 1 = Asthma) based on several features like lung function (FEV1, FVC),
BMI, and Age. The general mathematical formulations for the machine learning models and
performance metrics used are as follows:

General Machine Learning Formulation:

Given a dataset D={(xi,yi)}, here:

. Xi= [Xi1,Xi2,- . . ,Xim] 1t represents the feature vector of the i-th sample, with m features
(e.g., Age, BMI, LungFunctionFEV1, LungFunctionFVC).

. yi€ {0,1} is the binary class label for asthma diagnosis (0 = No Asthma, 1 =
Asthma).

The aim is to find a function f(x;) which maps input x;to output ¥ Gy =f(x;) such that

Y.
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Model Training:

The models were trained on the preprocessed dataset. For each model, the following
procedure was used:
Hyper-parameter Tuning: Cross-validation and Grid search were used to perform an
optimized hyper-parameter for each model. For Random Forest, the number of trees and
the maximum depth were tuned. For Neural Networks, some hidden layers and nodes per
layer were adjusted, and for XGBoost, learning rate, max depth, and number of boosting
rounds were optimized.
Cross-Validation: To mitigate over-fitting, cross-validation k-fold (k=5) was used during
model training. This technique ensures that the models generalize well to unseen data by
training on multiple subsets of the training data.
Performance Evaluation:

After training, the models were evaluated on the test set using various classification
metrics:
Accuracy: It measures the proportion of correct predictions over total predictions. Figure 5

shows the accuracy of all models.
TP+TN

Accuracy = —m————
Y = TPiIN<FPiFN

Accuracy of Models on Asthma Diagnosis

100

0.98 1

0.96 1

0.94 -

Accuracy

0.90 +

0.88 1

0.86

Random Forest Neural Network XGBoost
Model

Figure 5. Models Accuracy

Precision: It was determined by adding all of the given model's predictions. Next, the
proportion of accurate forecasts is divided by the given number of predictions [21]. Indicates
the proportion of true positive asthma diagnoses from all predicted positives.

TP
TP+FP
Recall: Recall, sometimes referred to as the sensitivity or true positive rate, is a second
important statistic [22].Assesses the ability of the model that correctly identify patients with
asthma.

Precision =

TP
Recall = ——
TP +FN

F1-Score: Precision and recall are averaged to determine the F1 score. Generally speaking,
F1-Score is regarded as a trustworthy way that compare how well different classifiers
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perform, significantly when data is uneven [23]. The harmonic mean of the precision and the
recall provides a balanced measure of this model's performance.

Percision X Recall
F1l — Score = 2 X

Percision + Recall

Area Under the ROC Curve (AUC-ROC): ROC curves in figure 6 are employed to assess
how well classification algorithms perform. Plotting the True Positive Rate (TPR), which is
known as recall, against the False Positive Rate (FPR) at different threshold values is what
the curve does [24]. Providing the balance between specificity and sensitivity by plotting the
True Positive Rate (TPR) against the False Positive Rate (FPR) at different thresholds.

ROC Curve for Random Forest Model

0.8 4

0.6

0.4

True Positive Rate

—— ROC curve (area = 0.98)

0.0 +

Figure 6. ROC Curve
o The area under the ROC curve is 0.98, which indicates excellent performance.
o An AUC of 0.98 means that the model will differentiate a positive instance from a

negative instance correctly.

The Random Forest model demonstrates outstanding predictive power, as indicated
by the high AUC of 0.98, meaning it's very effective at differentiating between two classes in
the dataset.

Model Interpretability:

To evaluate the performance of the model, interpretability was a key focus of this
study. SHAP (Shapley Additive explanations) values were employed to tell model predictions
by quantifying the portion of each feature towards the prediction. This step helps to provide
insights into how specific features, such as age, BMI, and lung function, influence the
likelihood of asthma disease. For evaluation, we employed a confusion matrix, which is
composed of TP (true positive), FP (false positive), TN (true negative), and FN (false
negative). [25]

Confusion Matrix for Random Forest

True label

0 1
Predicted label

Figure 7. Confusion Matrix of RF
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Confusion Matrix for Neural Network

True label

True label

0

1

Predicted label

Figure 8. Confusion Matrix of NN

Confusion Matrix for XGBoost

o

0

Predicred label

Figure 9. Confusion Matrix of XGBOOST
Table 2 Metric of All Models

- 150

Model True Negatives | False Positives | False Negatives | True Positives | Model
(TN) (FP) (FN) (TP)

Random 283 5 4 68 Random
Forest Forest
Neural 2 286 1 71 Neural

Network Network

XGBoost 283 5 2 70 XGBoost

Table 2 summarizes the performance of all three models that are based on their confusion
matrices:

Random Forest confusion matrix in figure 7 and XGBoost confusion matrix in
tigure 8 offer strong performance with balanced metrics, suitable for real-world applications
requiring high accuracy and reliability in predictions. Neural Network confusion matrix in
figure 9 demonstrates high sensitivity but at the cost of very low specificity, which makes it
less practical in this context unless adjusted to reduce false positives.

Visualization Techniques:

We used advanced visualization techniques to find out the relationships between the
target variable and features:
. 3D Scatter Plots: Visualized the interaction between age, BMI, and lung function
parameters. These show the pairwise relationships between two features in figure 10, with
the color coding separating the diagnosis groups.
. The blue group (Diagnosis = 0) covers a wider range of values for both
LungFunctionFEV1 and FVC. The orange group (Diagnosis = 1) tends to be clustered
around lower lung function values, with some higher-age participants.
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3D Scatter Plot of Age, BMI, and LungFunctionFEV1 1.0

Diagnosis
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~—
>
w
[
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g
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g
3
- 0.4
0.2
0.0

Figure 10. 3D Scatter Plot
SHAP Summary Plots: SHAP Summary Plots in figure 11 showed the global
importance of features in predicting asthma diagnosis across the dataset.
Each dot represents an interaction between the two features (Age and BMI). The
color represents the value of one feature (blue for lower values, pink for higher values),
while the x-axis shows how this interaction affects the model's prediction (positive or
negative SHAP interaction values). The vertical lines show how the SHAP interaction value

for one feature (on the y-axis) varies across the dataset.

This plot indicates that the interaction between Age and BMI doesn't have a large or
consistent impact on the model's prediction, as the SHAP interaction values cluster close to

Z€1O0.
Age BMI

Age 4}—

BMi

-0.5 0.0 05-0.5 0.0 0’5
SHAP interaction val

Figure 11. SHAP Plots
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Correlation heatmap: From this heatmap in figure 12, we can conclude that there is very
little linear dependency between Age, BMI, and lung function parameters
(LungFunctionFEV1, LungFunctionFFVC). These low correlations suggest that none of these
features strongly influence each other in this dataset. Therefore, they could be considered
independent factors affecting the prediction of diagnosis, or their combined effects may
need more sophisticated modeling techniques like SHAP to fully understand their interaction

and importance in the classification models.
Correlation Heatmap

0.0021

*qe

- 06

- 04

0.0021

ngFunctionFEV1

LungFunctionFYC

Age L] Lungrunctionfevi ungfunctionrve
Figure 12. Correlation heatmap
Boxplot: Lung Function (FEV1) Distribution by Diagnosis:
Boxplot in figure 13 suggests that FEV1 is a distinguishing feature between the two

groups, with lower FEV1 values often associated with asthmatic patients.
Lung Function (FEV1) Distribution by Diagnosis

4.0

35 1

3.0

2.5

LwngFunctionFEV1

2,01

15 1

1.0 1

T T

0 1
Diaanosis

Figure 13. Boxplot of Lung Function (FEV1)
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Boxplot: Lung Function (FVC) Distribution by Diagnosis:
Boxplot in figure 14 suggests that similar to FEV1, the lower FVC values in asthmatic

patients indicate that these lung function parameters are vital for classifying asthma.
Lung Function (FVC) Distribution by Diagnosis

6
(s}

oo

=

LungFunctlonFVC

w

~

Diagnosis

Figure 14. Boxplot of Lung Function (FVC)

These two plots suggest that lung function metrics, particularly FEV1 and FVC, are
significantly lower for patients diagnosed with asthma compared to those without. These
features contribute strongly to distinguishing between asthmatic and non-asthmatic patients.
Violin Plot:

A violin plot in figure 15 is a technique that is used for data visualization and also to
show the distribution of a numerical variable for different categories of data, combining
aspects of a box plot and kernel density plot. It helps to provide insight into the probability
density of the dataset at different values, offering a more abstract view of data distribution as

compared to a simple box plot.
Lung Function (FEV1) by Diagnosis

[

Diagnosis
Figure 15. Violin Plot Lung Function (Fev1)
The violin plot in figure 16 shows that non-asthmatic patients tend to have higher
and more variable FEV1 values, while asthmatic patients generally have lower FEV1 values
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with less variation. This reinforces that FEV1 is a significant feature in differentiating
between asthmatic and non-asthmatic individuals.
Lung Function (FVC) by Diagnosis

w
!

>
!

LungFunctionFVC

w
1

° Diagnosis '
Figure 16. Violin Plot Lung Function (FVC)

This violin plot provides visualization of the distribution of FVC data for two
different diagnosis categories (0 and 1). The plot shows that FVC is generally higher for
individuals with a diagnosis of 0 (negative) and lower for those with a 1 (positive) diagnosis.
This visualization emphasizes that lung function may be significantly impacted for
individuals diagnosed positively, potentially making FVC a distinguishing feature for
classification or prediction.

Bar Chart:

The bar chart titled "Smoking Status Distribution in the Dataset" in figure 17
displays the distribution of smoking status across the dataset. X-axis represents two smoking
status categories, here:

. 0 is represented by non-smokers,
. 1 is represented by smokers.

The Y-axis shows the count of instances for each category.
Gender Distribution in the Dataset

600 A
500 -
400 A
300 A
200 A
100

o -

o —

Gender

Figure 17. Bar Chart

Partial Dependence Plots:

This plot in figure 18 shows the partial dependence of several features (BMI, FEV1,
and FVC on the prediction made by the model. Partial dependence plots (PDPs) help us
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understand how each feature influences the target variable (diagnosis) while keeping other

features constant.

(FEV1 and FVC) have an important impact on diagnosis, and the model is highly
sensitive to these features. A decrease in these values strongly correlates with a higher

likelihood of diagnosis.

BMI, however, seems to have minimal impact on the model's predictions, as

indicated by a flat curve.
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Figure 18. Partial Dependence Plots
PCA (Principal Component Analysis) Plot: This is a 2D PCA (Principal Component
Analysis) plot, which projects the dataset into two principal components, allowing us to
visualize the data in a simplified two-dimensional space.

2D PCA Plot
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This PCA plot in figure 19 shows that the dataset may be complex, and the two

classes are not linearly separable in this 2D projection. More sophisticated models or

additional features may be needed to better separate these classes.

Pair Plot:

This is a pair plot in figure 20 showing the relationships between four features in
your dataset: Age, BMI, FEV1, and FVC, grouped by the Diagnosis variable (0 or 1). The
pair plot provides a way to visualize both distributions and potential correlations between
these variables.
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Figure 20. Pair Plot

This plot shows a clearer distinction between the two classes, with more separation
between the blue and orange points compared to other pairs. This might indicate that the
combination of lung function metrics is more predictive of the diagnosis.

T-SNE Plot:

It is a t-SNE plot, which is a technique that is used for dimensional reduction and
provides visualization of high-dimensional data in the lower-dimensional space (in this case,
2D). The plot in figure 21 represents how your data points, which are labeled by the
diagnosis variable (0 or 1), are clustered or spread across two components generated by t-
SNE.
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t-SNE Plot
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Figure 21. T-SNE Plot

The t-SNE plot reveals how well the two classes (Diagnosis = 0 and Diagnosis = 1)
are separated or overlapping.

In this plot, the red points (0) are much more dominant, with the blue points (1)
scattered across the plot. However, there are small clusters where the blue points group
together.

There is no clear linear separation between the two classes. This could indicate that

data is complex and provides a non-linearly separable relation.
3D Bar Plot:

This is a 3D bar plot in figure 22 showing the relationship between Age, Diagnosis, and BMI.
3D Bar Plot of Age, Diagnosis, and BMI

70 0.0
80

Figure 22. 3D Bar Plot
Each bar in this 3D plot represents the combination of Age, BMI, and Diagnosis. The height

of each bar corresponds to the BMI values for the respective age groups and diagnosis label
(Diagnosis = 0 or Diagnosis = 1).
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There is a dense cluster of bars, showing how the values distribute across the three
variables (Age, BMI, and Diagnosis).
Result and Discussion: The machine learning models for asthma diagnosis prediction were
evaluated based on the selected features (Age, BMI, Lung Function FEV1, Lung Function
EFVC). Three models—Random Forest, Neural Network, and XGBoost—were trained and
tested on the dataset. Below are the results for each model:
Performance Comparison:
o Random Forest performed the best overall, achieving the highest recall, precision,
and Fl-score across both classes, with exceptional accuracy in predicting non-asthmatic
patients. XGBoost followed closely behind a strong balance between recall and precision for
both classes and makes it suitable for cases where class imbalance needs careful handling.
. Neural Network had slightly lower performance compared to the other two
models, but it still delivered strong results, especially for classifying asthmatic patients.

Table 3. Metric of All Models

Metric Random Forest Neural Network XGBoost
Accuracy 97% 95% 96%
Precision (Class 0) 0.99 0.97 0.98
Precision (Class 1) 0.91 0.88 0.91
Recall (Class 0) 0.97 0.96 0.97
Recall (Class 1) 0.98 0.91 0.93
F1-Score (Class 0) 0.98 0.97 0.98
F1-Score (Class 1) 0.95 0.89 0.92
AUC-ROC High (especially | Moderate (slightly lower | Balanced and high
Class 0) than Random Forest) across both classes

This table 3 provides a concise and clear compatison of the three models'

performance across the most critical metrics: recall, F1-score, accuracy, precision, and AUC-
ROC.
. SHAP (Shapley Additive exPlanations) dataset values were used to predict the
feature importance across all models. The results indicated that LungFunctionFEV1 and
LungFunctionFVC were the most critical features influencing asthma diagnosis, followed by
BMI and Age.

These results indicate that the selected features are relevant for predicting asthma
diagnosis, and machine learning models, particularly Random Forest and XGBoost, provide
high classification performance for this task.

In this study, we analyzed demographic and clinical features, including age, BMI, and
lung function metrics, to predict a specific health diagnosis using machine learning models.
Key patterns differentiating diagnosed and non-diagnosed groups were identified through
various visualizations, revealing important predictors like lung function values. Our model
comparisons showed that the Random Forest classifier achieved the highest accuracy at
97%, followed by Neural Networks at 95%, and XGBoost at 96%. Naive Bayes, while
performing slightly lower at 76%, provided useful insights into feature distributions.

These findings demonstrated the value of leveraging machine learning for accurate
prediction, diagnosis, and personalized interventions, emphasizing the importance of
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integrating diverse health features into predictive modeling frameworks for better patient

outcomes.

Conclusion:

This study demonstrates that machine learning models can effectively predict asthma
diagnosis by leveraging clinical and demographic data, specifically focusing on age, BMI, and
lung function parameters (FEV1 and FVC). Among the evaluated models, Random Forest
exhibited the highest predictive performance, achieving an accuracy of 97%, precision values
of 0.99 (Class 0) and 0.91 (Class 1), recall values of 0.97 (Class 0) and 0.98 (Class 1), and F1-
scores of 0.98 (Class 0) and 0.95 (Class 1). This model showed superior capability in
identifying patients without asthma (Class 0) while maintaining high performance for
asthmatic patients (Class 1). The Neural Network model, with an accuracy of 95%,
demonstrated strong but slightly lower performance compared to Random Forest,
particularly excelling at handling cases of asthma diagnosis (Class 1) with a recall of 0.91 and
a precision of 0.88 for this class. Similarly, XGBoost provided balanced and robust
predictions with an accuracy of 96%, maintaining high recall and precision values across
both classes, making it suitable for cases involving potential class imbalances. SHAP
(Shapley Additive exPlanations) dataset values were employed to enhance the interpretability
of these models, revealing that lung function parameters (FEV1 and FVC) were the most
influential predictors, followed by BMI and age. The results underlined the importance of
lung function measures in predicting asthma and indicate that integrating machine learning
techniques with clinical data can facilitate early detection and personalized treatment
strategies for asthma patients. Overall, this research supports the efficacy of data-driven
models in providing asthma diagnosis, offering healthcare professionals a valuable tool for
better clinical decision-making and patient management. The imbalanced dataset, with a
larger proportion of non-asthmatic cases (0) compared to asthmatic cases (1), further
emphasizes the robustness of the proposed models in handling such data distributions
effectively.
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