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ﬁ agriculture is an essential sector that is witnessing the integration of advanced

NOISIAI

technologies to improve productivity and efficiency. Aerial crop monitoring using

drones has surfaced as a pivotal technology for precision agriculture, allowing farmers
to collect detailed data regarding crop health, soil conditions, and pest infestations. A robotic
farm monitoring system in simulation can provide an initial platform to test various automated
services before deploying them in the real field. This paper presents an agricultural robotic
simulator currently developed for the gladiolus field. Simulation has been designed using V-
REP (now known as CoppeliaSim) and Robot Operating System (ROS). Autonomous path
planning and navigation are achieved through Hector Simultaneous Localization and Mapping
(SLAM) and Rapidly Exploring Random Trees (RRT). One of the most common and fatal
diseases of the gladiolus plant named "Fusarium yellow” has been successfully detected through
image processing. This simulation is specifically designed to save resources and reduce the
time and cost of developing and testing real-time autonomous aerial robotic systems and test
algorithms for crop monitoring. Usability evaluation of the developed system through user
survey shows positive results.
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Introduction.

The world population is increasing, according to UN statistics, it will ascend from 7.3
billion today to 9.1 billion in 2050 [1]. Farmers are progressively under pressure to yield high
crop production, however, the disease rate in crops is increasing every day [2]. Early and
accurate detection and diagnosis of plant diseases are significant aspects of plant production.
Traditional monitoring methods such as ground surveys are often time-consuming and labor-
intensive [3] [4]. Aerial monitoring offers numerous advantages, including timely data
collection, enhanced analysis of crop health, and better decision-making capabilities for
farmers. Drones equipped with cameras and sensors can cover larger areas more efficiently,
providing actionable insights based on real-time data. It significantly enhances crop
management efficiency, enabling timely interventions for pest control, irrigation management,
and yield prediction [5].

Robotic simulation environments have gained significant traction in recent years for
their ability to enhance the development and testing of multi-purpose robotic systems. They
integrate realistic physics and sensor simulations to emulate real-world conditions. However,
there are limitations, and custom modifications are required when conventional robot
simulators are used directly in agricultural settings. Therefore, there is a need for dedicated
robot simulators in agricultural robotics research because it would help to create an agricultural
environment conveniently [6]. Such environments facilitate the simulation of drone flight
dynamics, sensor data collection, and crop health assessments under variable environmental
conditions without the risk and cost associated with physical trials. Recent studies highlight
the use of deep learning algorithms for processing simulated imagery to train autonomous
navigation systems and identify crop diseases or nutrient deficiencies. Moreover, research
showcases the integration of Internet of Things (IoT) technologies within these simulations,
allowing for real-time data collection and analysis to enhance decision-making processes for
precision agriculture.

The study in hand presents an agricultural simulation with a quadcopter equipped with various
sensors including a vision sensor for visual data and a laser scanner for distance measurements.
These sensors are simulated and linked with their respective ROS nodes. The implemented
algorithms include localization via Hector SLAM and path planning via the RRT technique.
The SLAM algorithm processes laser scanner input to generate a map and estimate the drone's
position, while RRT identifies potential paths to traverse autonomously. Disease detection is
performed on the imagery captured during the traversal.

Obijectives.

The proposed system allows for effective testing of the drone under various
conditions. Parameters such as crop density and sensor accuracy can be adjusted to evaluate
the performance of the system. Simulation results can be systematically analyzed to optimize
the algorithms and enhance the robustness of the drone before actual deployment in the field.
The drone’s localization and mapping error can be monitored over different trials to ensure
reliable performance. The user interface of the simulation has been evaluated by the
farmers/naive users as well as developers to meet their requirements in terms of usability,
reliability, and adaptability.

Literature Review.

The integration of robotics in agricultural practices is paving the way for smart
farming. Autonomous drones can navigate through fields, collect data, and perform tasks like
spraying fertilizers and pesticides. A related study detects fungus in the gladiolus field through
RGB imagery captured by a quadcopter. They have used machine learning techniques to
classify diseased plants with an accuracy of 91% [7]. However, to ensure that these systems
operate effectively, thorough testing is required in various environments which can be
achieved in a simulation.
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There are several environments available, allowing the researchers to create their
unique simulations. Numerous simulation tools have been researched to find an environment
that supports the agricultural details of multiple crops while also facilitating the dynamics of
aerial robots.

Gazebo [8] and AirSim [9] are among the most prominent simulation tools, providing
3D environments to simulate drone operations. Gazebo boasts realistic physics and a rich
sensory suite, allowing for nuanced modeling of environmental interactions, though it can be
resource-intensive and less user-friendly for beginners. AirSim, developed by Microsoft,
focuses more on aerial vehicles, offering high-fidelity simulations of flight dynamics and
sensor integration, but it may lack specific agricultural scenarios.

Flightmare [10] is a dynamic simulator made up of two main components. a physics
model and a Unity-based rendering engine. Both parts can function independently and are
made to be as flexible as possible. The distinct control of Flightmare's rendering and physics
engines may make integration more difficult and raise the learning curve for novice users,
despite the program's flexibility and independence in its constituent parts [11].

ROS (Robot Operating System) [12] is a popular and open-source software framework
that provides a high-level abstraction for building robotic applications. When it comes to
creating agricultural simulation, ROS can be a fantastic tool for developing a realistic and
efficient simulation environment. Some of the reasons are as follows.

Modularity. ROS follows modular architecture, allowing the breakdown of simulation into
smaller components. These smaller components are encapsulated in nodes and communicate
with other software modules through topics. This flexibility is particularly useful in agricultural
simulations, where different crops, soil types, and weather conditions require tailored
approaches. ROS's modular architecture enables developers to create custom solutions for
specific farming scenarios.

Tools and Packages. ROS comes with a vast library of tools and packages for various
functions such as simulation, visualization, navigation, and perception. These packages can be
casily integrated and reused, accelerating the development process. For instance, RVIZ (ROS-
VlsualiZer) is a 3D visualization tool for ROS applications. It provides a visual interface to
inspect the robot's sensor data, model, and environment.

Rapid Prototyping. ROS's high-level abstraction and vast ecosystem of tools allow us to
rapidly prototype and test a simulation. This enables it to iterate quickly and refine the
simulation based on field observations and feedback from stakeholders.

Community Support. ROS has a vast and active community, which means existing
knowledge, examples, and pre-built packages can be leveraged to accelerate project
development. This community support is particularly valuable for agricultural simulations,
where fine-tuning and optimizing the simulation is crucial.

Simulation-to-Real-World Transparency. ROS provides a seamless transition from
simulation to reality. Simulation can be directly deployed on real robots or platforms, reducing
the need for manual data transfer and reconfiguration.

AgROS is a very good example of an agricultural simulator based on ROS, that has
been designed with customized options of agricultural layout like crops and landscapes;
however, it only supports Unmanned Ground Vehicles (UGV) to be imported into simulation
[13].

Tools and Techniques.

The following frameworks have been selected for this proposed work.

Robot Operating System (ROS). A flexible framework for writing robot software, ROS
provides libraries and tools essential for building robotic applications. It supports
communication between the drone's various components and devices.
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V-REP/ CoppeliaSim. Recognized for its powerful simulation capabilities, V-REP (now
CoppeliaSim) [14][15] enables the design, simulation, and testing of robotic systems in a 3D
environment. It allows for visually rich simulations of aerial vehicles. It has been selected due
to its largest collection of features such as a scene editor, 3D model importing, and mesh
manipulation [16]

Hector SLAM. This technique is critical for navigating environments without GPS. It utilizes
laser scanner data and other sensors to build a map of the surroundings while localizing the
drone within that map [17].

Rapidly-exploring Random Trees (RRT). RRT is a motion planning algorithm that enables
the drone to efficiently navigate through complex environments by exploring feasible paths
[18]. RRT is more suitable for an aerial robot in outdoor agricultural fields due to the high
dimensionality of the environment and unpredictable obstacles, whereas the A* algorithm
works better for indoor smart farms [19]. Standard RRT algorithm has been used due to its
promising results as well as to demonstrate the scalability of the simulation that it can run
algorithms that have been developed outside of it and libraries can be integrated easily.
Global Thresholding. Global and adaptive thresholding are two common techniques used
in image segmentation to separate objects from the background. While global thresholding is
a simple, fast, and widely used method, adaptive thresholding techniques like Otsu's method
and k-means clustering can provide improved results in certain situations. However, since
adaptive thresholding techniques tend to be computationally expensive, global thresholding
has been selected for this project to keep the simulation robust and computationally

lightweight.
Methodology.
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Figure 1. System Architecture

This study presents a robotic monitoring simulation, designed to test how aerial robots
can be introduced into the crop fields for farm navigation and crop disease detection. The
designed simulation environment consists of a gladiolus crop field. The age of the crop is
about 3 months and is moderately affected by the Fusarium yellow’s infection, a soil-borne
fungal disease [20] A quadcopter equipped with a laser scanner and a vision sensor has been
incorporated as well.

The architecture integrates these components to create a cohesive ecosystem. The
ROS master node is responsible for the overall coordination of the system, managing nodes
for sensor input, control algorithms, and communication with the simulation environment.
The V-REP simulations work in tandem with ROS to visualize the drone’s movements and
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monitor the aerial crop settings. Hector SLAM is utilized for local mapping when navigating
through densely planted areas or where GPS signals are unreliable. RRT aids in determining
optimal paths, allowing the drone to maneuver between waypoints effectively, thereby
ensuring efficient data collection. These images are segmented and then a threshold is applied
to detect the amount of Fusarium yellow’s infection that has affected each plant. The image
processing is done using OpenCV libraries in ROS. Figure 1 represents all the elements that
integrate to form the agricultural simulated environment.

The environment consisted of a crop field, which was designed using the soil object
in V-REP. We imitated a real-life gladiolus field, by creating a 3-D gladiolus plant that was
roughly 3 months old. The gladiolus object was planted on the whole soil; to prevent
overlapping, the crops were planted row-wise with a considerable gap between them. The fact
that some of the plants were all green suggested that they were in good health. To ensure that
there are diseased plants in the field that can be found during the inspection procedure, other
plants were given brown and yellow hues.

The quadcopter used for navigation over the field and capturing image frames is also
a V-REP object. The quadcopter has been programmed by customizing the associated child
script (Lua script) to achieve the desired functionalities. We also attached additional sensors
with the quadcopter to fulfill the purpose of navigation and image capturing. The vision sensor
object inside the V-REP was attached to acquire images. The sensor was used instead of the
common RGB camera due to its significant role in the detection process. Moreover, V-REP
provides an API through which the content of the vision sensor can be accessed, but the
content of a camera cannot be later accessed.

In our project, we are using a perspective projection-type vision sensor along with the
default cameras that are attached to the quadcopter model because a vision sensor has a fixed
resolution while a camera has no specific resolution (i.e. it adjusts automatically to the view
size) [14]. Data of the vision sensor is sent over to ROS for image processing through OpenCV
libraries. The angle of the vision sensor is set to 60° while the resolution is set to 512 * 512.

Figure 2. Manual Control of quadcopter in simulated gladiolus field

In addition to the vision sensor, a Laser Scanner (Hokuyo UTM-30LX-01 scanning
laser rangefinder) is also attached. Data received from this sensor is used during the
autonomous localization of the quadcopter.

Two control modes have been implemented for the quadcopter, manual and
autonomous. If the user wants to control the flight of the quadcopter, they can self-guide it.
The manual control mechanism was implemented inside V-REP by creating a remote control
that allowed the user to take off the quadcopter, move it up, down, forward, backward, right,
and left, and then land it in the desired position. However, the autonomous movement of the
quadcopter was partially controlled by ROS and partially implemented inside V-REP.

Figure 2 shows a manually controlled quadcopter flying over the crop field with an active
laser scanner and a vision sensor.
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Quadcopter A quadcopter is a multi-rotor aerial vehicle that is lifted and propelled by four
rotors. The rotors control the lift, torque, and flight of the copter. It is operated by varying
the speed and spin movement of its four rotors. The thrust from the rotors of the quadcopter

plays an important role in maneuvering to keep the copter airborne. Quadcopters use two
pairs of identical fixed propellers of which one is clockwise (CW), and the other pair is counter-
clockwise (CCW) which results in its smooth movement [21].

Figure 3. Body and Inertial frame'
Dynamics. The Quadcopter operates in two frames. body and inertial frame. The inertial
frame is defined by the ground, with gravity pointing in the negative z direction. The body
frame is defined by the orientation of the quadcopter, with the rotor axes pointing in the
positive z direction and the arms (rotors) pointing in the x and y directions as shown in Figure
3.
Hover. Maintaining a constant state of altitude is called hovering. For hovering a balance of
forces is needed. If we want the quadcopter to hover, the SUM of all forces on the copter (I)
must be equal m*g (weight), where m is the mass, and g is the downward acceleration i.e.
gravity.

SUM (Fj)) = m * g <=> hover

Take-Off and Landing. Different kinds of movements can be achieved by different
combinations of forces produced by each rotor. To achieve takeoft, all four rotors spin in a
clockwise direction. The CW direction contributes positive net thrust (z-axis Body frame) on
the quad-copter body, thereby enabling translational motion about the positive z-axis (Inertial
frame). To achieve the landing, all the four rotors spin in a counterclockwise direction. The
CCW direction contributes negative net thrust (z-axis Body frame) on the quad-copter body,
thereby enabling translational motion about the negative z-axis if all rotors spin in the same
direction with the same velocity.
Flight dynamics. For flight control of quadcopter, the navigation commands are written in
the script. The virtual quadcopter inside V-REP uses the Eigen values and Eigen vectors for
calculations of flight dynamics. Power, thrust, and torque play a key role in different
movements during the flight which have been implemented mathematically through their
standard equations [21].
V-REP and ROS.

The system collaboratively configures the V-REP simulation with the ROS
environment. The first part in making this integration successful was to create a
communication bridge between V-REP and ROS, so the data from V-REP could be used
over ROS via APIs. V-REP provides a variety of APIs that are associated with almost all its
objects. In our case, we created a plugin between V-REP and ROS since all the ROS messages
that we required were directly supported. Through the plugin, the data from the V-REP is

1 https.//toglefritz.com/the-physics-of-quadcopter-flight/
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published over ROS in the form of topics as soon as the simulation starts. These topics are
then subscribed to the ROS nodes in our case, and the data is utilized as per the need.
Mapping System.

After the communication link between V-REP and ROS was established, the next

step was mapping the quadcopter over the field. Mapping is often difficult to achieve in
robots. Many techniques have been developed to improve the system of mapping such as
Behavior-based navigation [22] fuzzy logic-based approach [23], and SLAM (Simultaneous
Localization and Mapping) [24] SLAM tends to localize the robot while it’s creating the map
of its environment. The mapping results of SLAM are rather promising, but it is limited to
lesser populated spaces, where the environment is predictable [25] Considering these
characteristics of SLAM, its method of localization is best suited to our environment, which
does not have any obstacles.
Hector SLAM. To implement SLAM, we utilized the Hector SLAM package, which is
defaulted in ROS. The basic purpose of Hector SLAM is to combine the 2D SLLAM system
and the 3D navigation technique through robust scan matching using an inertial sensing
system. Hector SLAM received data from a laser scanner which was facing downward towards
the crops. It estimated the distance by calculating phase differences. Hector SLAM also
requires odometrical information to work with a quadcopter and the transformation of the
quadcopter as input; to localize the quadcopter to the environment and generate the desired
map. The optimization of the map with the alignment of the laser beam endpoints results in
the estimation of the 2D position of the quadcopter. This allowed the quadcopter to keep
track of its location in an unknown environment. To complete the process of scan matching,
the Gaussian-Newton equations were used. They helped in finding a transformation that
allowed the best fit between laser beams and the map. The visualization of the map could be
seen over the RViz. Changes had to be made to the nodes and the launch files of the Hector
SLAM package as needed to get the desired results [26][27]. Figure 4 shows a sample of the
map that has been generated for the field.

dyinteract = Move Camera [ JSelect i FocusCamera = Measure _~ 2DPoseEstimate _~ 2DNavGoal @ PublishPoint < —

Q@ Time

ROS Time: | 1498168524.50 ROS Elapsed: |1367.20 Wall Time: | 1498171166.42 wall Elapsed: |2591.61

Figure 4. Mapping through Hector SLAM

Navigation System.

To make the quadcopter navigate over the field from a start position to an endpoint,
the user can manually define a path. The path is computed in V-REP by using the built-in path
planning module that utilizes the Rapidly-exploring Random Tree (RRT) Connect algorithm.
The path planning module in V-REP allows convenient path planning in both 2D and 3D
spaces for vehicles. The module enables the user to set the start and goal position as well as
the markings of the obstacles that are to be avoided during navigation. The path that is created
by linking the start and goal position can be in any configuration space using a specific number
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of dimensions (X, Y, or Z) [14][15].

Figure 5. RRT expanding to explore a square [28]

Rapidly Exploring Random Trees. Researchers have investigated various path-planning
algorithms such as Breadth First search (BES), Depth First Search (DFS), A*, and Rapidly
Exploring Random Tree Connect (RRT) in simulated agricultural setups [28]. RRT's have been
widely used in autonomous robotic path and motion planning. The RRT is a randomized data
structure used to solve path-planning problems in a defined search space for robots that have
non-holonomic constraints. This algorithm finds paths in high dimensional spaces at
interactive time rates. RRT algorithm efficiently computes a path from start to goal
configuration in a given search space. The working of an RRT is usually faster than a
probabilistic road map, based on the fact that it maintains a connected structure with the
fewest number of edges. It works by incrementally building two rapidly exploring random
Trees rooted at the start and the goal configurations. Both trees explore the space around them
and advance towards each other using a simple greedy heuristic. The two trees expand towards
each other until both connect at a certain point and the path from the start configuration to
the goal configuration is achieved [18] One of the most important things when implementing
path planning is to focus on collision detection. Due to the incremental building nature of
RRT trees, it is highly suitable for incremental collision detection. Figure 5 shows how an RRT
connects quickly to explore the corners of a square. For planning the path, it searches in a
metric space say, X, from an initial state Xin to the final state Xgu. Algorithm 1 is an RRT from
an initial state with K number of vertices, where 1 represents a vertex [29].

Algorithm 1 Pseudocode for RRT

1. GENERATE_RRT (Xinit, K, At)

2. TiNit(Xinir);

3. for k=1 to K do

4. Xund < RANDOM_STATE();

5. Xnar = NEAREST_NEIGHBOR (Xtang, 7);
6

7

8

. u <= SELECT_INPUT (Xrand, Xnear);
. Xnew <= NEW_STATE (Xncar, u, At);
. t.add_vertex(Xnew);
9. t.add_edge(Xnear, Xnew, W);
10. RETURN 1

At the beginning, the vertex 7 is at the initial state, as the iterations start a random state
Xrand gets selected and then the closest vertex Xner to the random state Xuaa is selected. Following
this an input u is selected which minimizes the distance between Xpnd and Xnear. At the same
time, it is ensured that the boundary is maintained. To evaluate a potential new state, a
NEW_STATE procedure is called on each input. This new state Xn.w which is obtained after
calling upon input u is added into the vertex 1. An edge is created between Xpnd and Xney 1s also
added to the vertex and the input is recorded along with the edge [29].

RRT has been selected due to the non-holonomic properties of the quadcopters as
they only have 4 parallel force inputs that allow the control of 6 output coordinates, that is its
position and orientation in the space. Start and goal states are provided to the system. The
path computation is further refined to ensure that the quadcopter navigates over each row of
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gladiolus plants in the field. Lua script was maintained for the quadcopter to guide it to reach
its target. The base (Terrain) of our field has been defined as a search area for computing paths
based on three dimensions X, Y, and Z.

Image Acquisition and Processing.

After taking off, the quadcopter starts capturing images of the field using the attached
vision sensor. The acquired image frames of the crop field are processed with image processing
techniques to analyze crop health in the Image Handler node in ROS. Stored images were then
compiled into a video stream while removing duplicate frames.

Figure 6. Foreground extraction through Grab-cut technique

Figure 7. Original and detected diseased region after threshold segmentation

Following this procedure, there are various ways through which the segmentation of
the image can be achieved which include threshold-based, edge-based, region-based, and
clustering-based segmentation [30] In our case, once the video stream is generated, it is
subscribed by a ROS node which applies the Grab-cut algorithm on the image frames to
extract the plants and remove the background as depicted in Figure 6. The segmented image
frames are further refined with the scalar and InRange functions of OpenCV. Afterwards,
global threshold segmentation has been applied because of its robustness, when dealing with
segmentation based on the color. It partitions the image based on the intensity values of the
pixels in the image [31]. Equation 1 depicts the global threshold with an appropriate threshold
T.

oy if fley)>T

A black-and-white image is generated by this thresholding process, where the black
area represents the phase of every pixel outside of the intensity value range. The phase of every
pixel within the intensity value range is indicated by the white portion. For a better user
experience, two screens are shown in parallel. one with the original video and the other screen
with the video highlighting the detected diseased part of the field in white color. Figure 7
shows the disease detection result produced by the image handler node and the image
processing node.

Experiments & Results
A.  Unit Testing.
Unit testing is performed manually by exercising the working of every functional component
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of the system to determine accuracy, robustness and reliability of simulation, repeatedly. The
activities such as fixing bugs and refactoring of errors are performed during the development
of simulation. It is ensured that every unit implements the correct functionality and
encapsulates the appropriate error handling. Multiple trials were performed in the designed
simulation in both autonomous and manual modes. Functional components of simulation that
are tested through unit testing are as follows.
e Graphical User Interface of the simulation.
- The GUI provides a user-friendly interface for manual control of the quadcopter to
navigate the crop field.
- The interface includes a 3D visualization of the crop field with the quadcopter's
current location.
- A remote control is shown for manual control of the quadcopter's movement (take
off, up, down, left, right, forward, backward, landing).
- A camera view of the crop field from the quadcopter's perspective is displayed as well.
- Appropriate warning windows pop-up during manual control mode to guide the user.
For instance, a warning message will appear when quadcopter moves above the
optimal height (Fig 8). A warning message will appear for safe and secure landing of
quadcopter (Fig. 9).

Figure 8. Height warning

e Autonomous navigation of quadcopter.

- The quadcopter successfully navigated the crop field using laser sensor data,
maintaining a consistent altitude and speed.

- The autonomous navigation system ensured accurate coverage of the entire field, with
minimal overlap and no gaps.

e Map generation of field.
- The quadcopter generated a map of the crop field and its boundaries.
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Figure 9. Landing warning

- The map was used to plan the optimal flight path for the quadcopter, ensuring efficient
coverage of the entire field.

e Acquisition of image frames of crop field.

- The aerial robotics simulation environment successfully captured image frames of a
crop field with a resolution of 512x512 pixels.

- The images were captured at a rate of 30 frame per second which were then converted
into a video providing a smooth and continuous view of the field.

- The images were stored on the storage device for future reference.

e Application of image processing techniques on image frames of crop field.

- The pre-processing techniques enhanced the detection results.

- The processed images were analyzed for color features to identify potential disease
symptoms.

e Analysis of fusarium yellow disease detection in gladiolus field.

- The algorithms identified areas of interest (diseased areas) with an accuracy of 95%.
Experiments indicated a significant improvement in the ability to detect variations in crop
health through drone simulations compared to traditional methods. The analysis revealed that
the drone could effectively identify areas of stress within the crop, highlighting regions
requiring immediate attention. This capability not only allows for timely interventions but also
minimizes resource wastage, as input applications can be targeted rather than uniformly
applied.

Furthermore, the integration of drone technology reduced the time required for data collection
from several hours of manual labor to approximately 15 minutes of flight. This stark contrast
underscores the potential of UAVs to enhance operational efficiency in agricultural practices,
allowing farmers to focus on strategic decision-making.

B.  System Testing.

System testing is a level of testing in which a complete and integrated system is tested. The
purpose of system testing is to verify that it meets specified requirements of a system. For
system testing, black box testing approach is used which involves the external workings of the
system from the uset’s perspective.

User’s experience and satisfaction are trivial criteria to evaluate a simulation environment. The
proposed system has been designed for developers to test their agricultural techniques in a
simulated environment. Several experiments have been conducted to test the usability of the
developed simulated environment through a survey. The purpose of this survey was to
evaluate the efficiency and credibility of the proposed robotic simulation environment for crop
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monitoring in accordance with the developer’s expectations. The findings will assist
developers and researchers to improve the functionality of the system according to uset’s
requirements and ease of use.
C.  Qualitative Analysis.
The questionnaire was formed by employing user experience (UX) analysis. UX provides
insight into user’s perception and user satisfaction that how users feel about a system, such as
ease of use, perception of the value of the simulation, utility, and efficiency in performing
tasks. The main goal of the User Experience Questionnaire was to allow a fast and immediate
measurement of user experience of proposed system [31]. From user experience design coined
by Peter Morville [32], the following evaluation factors have been selected.

e Usefulness - All the features of the system must fulfill needs and must be helpful.

e Usability - System must be efficient and easy to use.

e Tindability - All the components of the graphical user interface of the system must be

easily locatable.

e Credibility - Users must trust and believe all the information provided by the system.
We chose 15 users to run and analyze the simulation environment. Half of the users were
experts on 3D simulations while the other half of the developers have no experience with such
simulations.

Table 1. Results of qualitative analysis of user evaluation

Expert Users Evaluation
Usefulness Usability Findability Credibility

Autonomous Motion 81% 73% 79% 77%
Manual Control 83% 81% 75% 84%
Image Capturing 84% 85% 87% 80%

Disease Detection 75% 80% 77% 76%
Naive Users Evaluation

Autonomous Motion 81% 78% 81% 80%
Manual Control 80% 83% 92% 76%
Image Capturing 90% 74% 78% 80%

Disease Detection 86% 81% 72% 81%

The users were asked to test the simulation in both Autonomous and Manual modes. In
Autonomous mode, they observe the take-off and landing process, autonomous path
navigation and image acquisition by the quadcopter. Disease detection module was also
evaluated in terms of how many infected plants have been detected implying the area
successfully covered by the quadcopter. In manual mode, the quadcopter navigation through
remote control, image acquisition and disease detection with regard to area coverage were
analyzed.

Users were later asked to fill in a questionnaire. The answers to the questionnaire were based
on a 5-point Likert scale. An average percentage was calculated based on the values generated
under each section. Results depict a positive user experience with the developed simulation
environment as shown in Table 1.

D.  Quantitative Analysis.

The uset’s given points to each module of the system were statistically evaluated to give more
meaning to the results. Likert scale points given by all users to each category were used to
calculate Standard Deviation (s) and Confidence Interval (CI). Formulas used are as follows.

xx @)

n
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Where X is the mean, §is the standard deviation of the sample and 7 is the sample size. CI is
calculated with 95% confidence and Z as 1.960. Table 2 summarizes the results of this analysis.
Table 2. Results of quantitative analysis of the user evaluation

Mean Standard Deviation Confidence Interval

Lower bound Upper bound
Autonomous Motion 78.75 2.76 76.83 80.67
Manual Control 81.75 5.28 78.09 85.41
Image Capturing 82.25 5.20 78.64 85.86
Disease Detection 78.5 4.38 75.47 81.53

E.  Discussion.
Experiments performed by both naive and expert users vary in their experiences. This
variation is evident in the higher values of standard deviation; for instance, in case of ‘Manual
Control’ and ‘Image Capturing’ modules. It emphasizes the need of efficient autonomous
control of the quadcopter which can be specially helpful for the farmers and other non-
technical persons. Both qualitative and quantitative analysis performed by the users advocate
the following key observations.
- Image capturing is the task which the naive users find most difficult to handle,

esllfecially in manual mode.

All the users experience better take-off and landing of the quadcopter in autonomous

mode.

Naive users value the ‘disease detection’ feature the most.

Expert users prefer to control the quadcopter manually.
The findings highlight the potential of drone technology in enhancing agricultural practices
through the automation of health assessments. The use of ROS within a simulated
environment provided a flexible and efficient platform for testing and refining health analysis
methodologies. Despite the promising results, several opportunities for enhancement were
noted during the experiments. The accuracy of the health assessments may be influenced by
factors such as lighting conditions and the resolution of sensor data. Additionally, the
dependency on simulations may overlook certain real-world variables, including soil
conditions and pest infestations that can affect plant health.

Conclusion.

The developed simulation environment is an ideal playground for testing and evaluating the
automation of various agricultural processes. In this work, an autonomous mapping and
navigation system for a quadcopter has been designed to inspect and detect Fusarium yellow
disease in gladiolus crop field. The work paves the way for further research and development,
aiming to refine the algorithms and enhance the capabilities of drones for precision
agriculture. Future studies will focus on integrating machine learning techniques to automate
data interpretation, offering farmers even deeper insights into crop management and health
optimization. Further agricultural machinery can be added in the proposed system to develop
a collaborative environment where heterogeneous autonomous machines will be working in
the field to achieve a mutual goal.
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