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NOISIAI

survival rates due to late diagnosis. Accurate detection and diagnosis of lung nodules is

important for early-stage detection. Machine learning and deep learning techniques
have greatly improved the precision of lung nodule segmentation and classification in
Computed Tomography (CT) images. The study presents a novel approach to segmenting and
classifying nodules by combining foundational models with deep learning architectures. We
have used the Segment Anything Model (SAM2) to segment lung nodules and Dense Net to
classify them as benign and malignant. SAM2 has been tested on the datasets using different
prompts to achieve better results. Foundational Models and Deep Learning architecture’s
integration significantly improved Computer-Aided Detection (CADe) and Computer-Aided
Diagnosis (CADx) in medical images. Experimental results proved the effectiveness of the
proposed model for early-stage detection and classification of lung nodules from CT scans.
SAM2 model achieves a Dice Similarity Coefficient (DSC) of 97.87% and an Intersection over
Union (IoU) of 95.82% for segmentation, and the Dense Net model's classification accuracy
is 97.34%. The experimental results demonstrate the performance of our model compared to
existing techniques.
Keywords: SAM2, Transfer Learning, Vision Transformer Model, Bounding Box Prompts,
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Introduction:

Lung cancer is among the most life-threatening diseases globally, characterized by a
high incidence and low survival rates due to late detection. It accounts for 18% of all cancer
cases and is responsible for approximately 1.8 million deaths each year. According to the
Global Cancer Observatory (GLOBOCAN), lung cancer holds the highest rank in both
incidence and mortality rates worldwide [1]. The situation in Asia is even more severe, with a
lung cancer incidence rate of 63.1%, a mortality rate of 62.9%, and a 5-year prevalence rate of
63.9% [1].

Medical imaging techniques such as Computed Tomography (CT) and X-rays have
helped in lung nodule detection and classification [2]. Due to the extensive use of CT scans
and the complexity of medical images, Computer-Aided Detection (CADe) and Computer-
Aided Diagnosis (CADx) play a crucial role in supporting radiologists by enhancing the
accuracy of lung nodule detection and diagnosis [3]. Traditional image processing techniques
such as thresholding, region-based methods, and edge detection face limitations when
handling the complexity of medical images [4].

Deep Learning plays an important role in lung cancer detection and classification for
better treatment and follow-up procedures [5]. Deep Learning models learn features from
medical images and precisely segment nodules from medical images such as CT scans and X-
rays. The advancements in Deep Learning Models have significantly enhanced the
performance of medical images [6]. Convolution Neural Networks (CNNs) can analyze
complex medical image architectures but have limitations when dealing with 3D data. To
overcome this issue, 3D CNN architectures [7] have been developed to process the length,
height, width, and depth of 3D scans, enabling the extraction of meaningful features.
However, these models demand extensive training to comprehend the intricate structures of
medical images [8]. For instance, the development of DHEA-Net [9] consists of dual encoder-
based architecture that uses CT scans and coronal views to improve segmentation accuracy.
The refined UNET architecture was developed by [10] with similar architectural
improvements [11]. Another systematic review and meta-analysis evaluated the diagnostic
accuracy of deep learning models with lesion-wise sensitivity [12].

Foundational Models [13] have been trained on extensive data, models can generalize
well on unseen tasks. Meta-Al segmentation models are well known for their zero-shot
capabilities. Segmentation Anything Model (SAM) has been trained on multiple modalities and
can segment unseen tasks in a zero-shot manner accurately [14]. A variant of SAM, called
MedSAM [15] has demonstrated improved accuracy across various medical datasets. SAM2
offers superior segmentation capabilities compared to SAM and is also capable of segmenting
videos [16]. SAM2 features a memory bank that tracks objects across frames, enabling
continuous segmentation even when objects temporarily disappear and reappear on the screen.
Lung nodule classification is also a challenging task for the diagnosis of lung cancer.

Computer Vision and Machine Learning models have great contributions to the
diagnostics of many diseases. In a study, LCP- CNN [17] was trained on CT scans to generate
malignancy scores and to classify nodules as benign and malignant with less false positive rate.
This study [18] adopted a self-supervised learning technique by utilizing an adaptive slice
selection model for pre-processing and then utilizing the self-supervised approach to learn
features for classification. Progressive Growing Channel Attentive Non-Local (ProCAN) [19]
network was developed for nodule classification. A channel-wise attention mechanism is
applied, and the model is trained to improve learning capability. AlexNet architecture was
introduced by [20] with modifications in layer ordering and hyperparameter adjustments to
improve the performance of the model. Pre-processing steps such as zero centering,
normalization, and segmentation were also implemented. Ren et al. [21] developed an
ensemble framework by using LeNEt, GoogleNet, AlexNet, ResNet, VGG16, and DenseNet
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for lung cancer classification. Dosovitskiy developed CNN and an attention-based model [22].
Deep learning approaches have shown significant results in medical image processing systems.
However, accuracy and high false positive rates have been a challenge in handling medical
images. To overcome the issue, we presented a fusion of SAM2 with the deep learning
architecture DenseNet.
Objectives:
The objectives of this research are as follows:

1. Develop an automated framework for nodule detection and classification.

2. Improve segmentation and classification accuracy using Segment Anything Model 2

and DenseNet.
3. Validate the model on diverse datasets and compare the proposed model with existing
techniques.

4. Investigate the impact of foundational models on medical images.
Material and Methods:
Dataset:

In this study, the LUNA16 [23] dataset was utilized, it consists of 888 volumetric CT

scans which is a subset of the Lung Image Database Consortium (LIDC) [24] containing a
total of 1018 scans. LIDC and LUNA16 are both used in lung cancer detection and diagnosis
systems. The LUNA16 dataset stores scans in Metalmage (.mhd) format, divided into 10
subsets, with an annotation file that provides the real-world coordinates and diameters of
nodules. Figure 1 shows sample images of the LUNA16 dataset. The LIDC dataset consists
of DICOM files, which are preprocessed to segment a complete lung CT scan into individual
lung lobes. Four radiologists annotated the nodules and calculated radiomic features for
calculating malignancy scores which are helpful in the classification of nodules as benign and

malignant. Figure 2 shows sample images from the LIDC dataset.
1.3.6.1.4.1.14519.5.2.1.6279.6001.108197895896446896 160048741492

Slice_0 Slice_1 Slice_2 Slice_116 Slice_117 Slice_118

1.3.6.1.4.1.14519.5.2.1.6279.6001.109002525524522225658609808059

Slice_0 Slice_1 Slice_2 Slice_158 Slice_159 Slice_160

1.3.6.1.4.1.14519.5.2.1.6279.6001.129055977637338639741695800950

Slice_0 Slice_1 Slice 2 Slice 480 Slice 481  Slice_482
Figure 1: Sample images of LUNA16 dataset
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Figure 2 Sample images of the LIDC-IDRI dataset

Methodology:

We utilized SAM2 for the segmentation of lung nodules and DenseNet for lung nodule
classification as benign and malignant. Figure 3 illustrates the proposed research methodology
while Figure 4 presents the step-by-step flow diagram for this study.

Preprocessing:

CT scans have varying resolutions because of different scanners and protocols used.
These varying resolutions affect the segmentation accuracy of the model. The two types of
variabilities that arise in CT scans are Spatial Resolution Variability which is a difference in
pixel spacing or slice thickness and Intensity Variability which is a difference in voxel intensity
distribution due to the different protocols of each scanner. To overcome these issues, we have
applied the following preprocessing techniques.

Spatial Normalization or Resampling:

Resampling converts all images to common voxel spacing so that all anatomical
structures appear the same size across all images. The resampling factor can be calculated using
Equations 1 and 2.

0
resampling_factor_x = d—x (D)
X
0
resampling_factor_y = d_y (2)
y

Where oy and oy are the original spacing and d, and dy are the desired spacing.
The new image size can be calculated using equations 3 and 4.

H' = H X resampling_factor_y 3)

W' = W X resampling_factor_x (4)
The new image size will be (H’, W”).
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X —min
y=255———* (5)
max, —min,

Intensity Normalization:

CT scans have intensity variations due to the different scanners used which can

downgrade the model’s performance. To normalize intensity distributions for better contrast

of a CT scan, equation 5 is used. Figure 5 shows the sample CT scan before and after applying

normalization techniques.
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Figure 4. Flow Diagram for Lung Nodule Segmentation and Classification
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Figure 5 Sample image before and after preprocessing
SAM?2 for Segmentation of Lung Nodules:

Segment Anything Model is a Vision Transformer (ViT) [22] based model trained on
extensive datasets and has great generalization ability on unseen tasks. In this research, we
have used SAM2 [16] which has better segmentation results than SAM. Before applying SAM2
to our datasets, the LUNA16 dataset must first undergo preprocessing. The LUNA16 dataset’s
annotation contains real-wotld coordinates that need to be converted to voxel coordinates.
We utilized equation 6 to convert real-world coordinates to voxel coordinates. Figure 6
presents the code used to convert real-world coordinates into voxel coordinates.

WorldCoord|i] — Origin|[i] )
—— fori=012 (6)
Spacing|i]

VoxelCoord[i] =

Where:
e VoxelCoord[i] is the voxel coordinates along with dimension.
e WorldCoord[i] is the world coordinates along the dimension, already available in the
annotation file.
e Origin[i] is the origin of the CT scan available in image metadata.
e metadata.

e Spacing]i] is the spacing between voxels in a CT scan, also available in imag

voxel coords = world to voxel([coordX, coordY, coordZ], origin, spacing)
voxel coords nd(c c in voxel coords]

print(f"k at ({coordX}, {coordY}, {coordZ})’

print( {voxel_coords}")

z _nodule = voxel coords[2]

z_radius = int(round(diameter mm / 2 / spacing[2]))
z_start = max( z_nodule - z_radius)

z end = min(array.shape[8], z nodule + z radius + 1)
print(f"Nodule 2 {z_start} to {z_end - 1}")

radius = int(round(diameter_mm / 2 / spacing[@]))

print( o us in s: {radius}")

Figure 6 Real-world coordinates to voxel coordinates
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From a complete volumetric CT scan, we extracted slices containing nodules and fed
them into SAM2 along with annotations for segmentation purposes. SAM2 is capable of
segmenting objects in a zero-shot manner. Zero-shot segmentation capability of the SAM2
model plays an important role in lung nodule segmentation. Unlike traditional models, which
require a large amount of manually annotated data and complex training, SAM2 eliminates the
need for extensive annotation and training. Lung nodule variabilities such as size, shape, and
textures make it even more challenging. SAM2 zero-shot ability allows segmentation without
specific training which makes it better for clinical applications. SAM2 can generalize across
diverse medical imaging conditions and nodule variations which allows it to capture details
that traditional supervised models may miss. Its zero-shot ability also makes it more robust
and transferable. It follows a promptable segmentation approach and can segment objects
based on different types of prompts such as boxes, points, and masks. It is a transformer-
based architecture and allows better generalization across various domains. Vision
transformers can extract various spatial and contextual information at the encoder part. The
prompts are converted to embeddings at a prompt encoder that helps the segmentation
process. Lastly, the mask decoder generates a segmentation mask. The features from the image
encoder and embeddings from the prompt encoder help in generating segmentation masks.
These masks are refined through the attention mechanism of transformers.

Data Augmentation:

Medical image datasets are often imbalanced which can affect the model’s
performance and cause a bias towards the majority class. To overcome the issue, data
augmentation techniques such as rotations and flipping have been applied to the dataset to
make it balanced. Data augmentation techniques increase the diversity of a dataset. Different
scanners have different orientations. Applying random rotations to the dataset will increase
the model’s rotational invariance. Slight patient movements can add variations to medical
images. Applying small angle rotations will help in better generalization of a model. Horizontal
and vertical flipping can be applied to handle lateral variations when the patient is lying on
different sides and images are taken from different planes. Figure 7 shows some augmentation

results.

Normalized Rotation Augmented Scaled Augmented

Figure 7. Sample augmented images
DenseNet Model for Classification:

In this study, we also utilized DenseNET-121 for nodule classification as benign and
malignant. DenseNET-121 is known for its densely connected layers which improve gradient
flow and encourage feature reuse. DenseNet reduces information loss and improves learning
by establishing direct connections between each layer and its subsequent layers. This property
of DenseNet makes it useful in medical imaging tasks where details are critical for
classification, and we cannot afford to lose any details. DenseNET has high parameter
efficiency and better feature extraction capabilities which make it capable of solving nodule
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classification tasks. The DenseNET architecture consists of four dense blocks where features
are concatenated. This makes the model learn intricate patterns of lung CT scans. Figure 8
shows the architecture of the DenseNet-121 model. The model is finetuned on a dataset with
GPU available on Google Colab which helps in reducing training and inference time.
DenseNET is designed for multi-classification. Since our research focuses on the binary
classification of benign and malignant nodules, the final classification layer was modified to
contain only two neurons. A learning rate of 0.001 was applied, with a learning rate scheduler
implemented to gradually reduce the rate for improved adjustments during training stages.
Adam optimizer and Stochastic Gradient Descent (SGD) were utilized, with a batch size of
32 to balance memory efficiency and training stability. Since this is a binary classification task,
Cross Entropy loss was used for evaluation. The model was trained for 100 epochs. Table 1
shows hyperparameters used in model training.

Dense
Block 3

Dense
Block 2

Dense
Block 1

Input

Prediction
Image

Convolution
Convolution
Convolution

Figure 8 DenseNet-121 Architecture
Table 1. DenseNet-121 model training hyperparameters

Parameter Value
Optimizer Stochastic Gradient
Descent (SGD)
Loss Function Cross Entropy
Epochs 100
Batch size 32
Learning rate 0.001

Evaluation Parameters for Segmentation:

Dice Score: The Dice Score is also known as the Dice Similarity Coefficient (DSC). The Dice
score is used to evaluate the similarity between predicted segmentation and ground truth. It is
calculated by taking twice the TP divided by the total pixel count of the image. The Dice Score

is calculated using Equation 7.

Dice Seore 2 X TP ,
lceScore = o TR+ FP+FN )

Intersection over Union: IoU measures the overlapping region between predicted results
and ground truths. IoU is calculated by taking the overlapping region (intersection) between
actual and predicted output divided by the total region (union). The IoU is calculated using
Equation 8.

loU i 8
T TPYFP+EN (8)
Loss Function for Classification:

Binary Cross Entropy Loss: To classify nodules as benign and malignant, we have used
Binary Cross Entropy Loss (BCE) to compute loss. BCE is also known as Binary Log Loss. It
is a loss function that measures the difference between predicted binary results and the actual
binary result. BCE is calculated using equation 9.

N
1
BCE = —NZ(ti. log(pi) + (1 — ti) log(1 —pD))  (9)
Where:

T; is the true label for instance i.
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pi is the predicted label for instance 1.
Result and Discussion:

The segmentation results of the SAM2 model were assessed using standard image
segmentation evaluation metrics including Dice Similarity Coefficient (DSC), Intersection
over Union (IoU), and Sensitivity. The model was assessed on two datasets LIDC-IDRI and
LUNA16 using mask and box prompts to guide the segmentation process.

On the LUNA16 dataset, which consists of complete CT scans, SAM2 achieved an
average performance of 95.72% Dice Score, 91.77% Intersection over Union (IoU), and
96.42% Sensitivity using the box prompt. The LUNA16 dataset consists of full CT scans
where nodules are present within lung regions. Although SAM2 performed well, the presence
of irrelevant structures slightly impacted the performance. Figure 9 shows the segmentation
results on the LUNA16 dataset.

While, the LIDC-IDRI dataset, which does not have complete CT scans, shows a
97.87% Dice Score, 95.82% IoU, and 97.9% Sensitivity. Figure 10 shows segmentation results
on the LIDC-IDRI dataset. Segmentation results on the LIDC-IDRI dataset were better than
those on the LUNA16 dataset because the LIDC-IDRI dataset provided lung CT scans already
cropped to lobes, defining the Region of Interest (ROI). This preprocessing removed
unnecessary details, enabling the model to segment nodules more effectively.

Inputimage Ground truth Segmentation results

Figure 9. Segmentation results on the LUNA16 dataset

To further validate the performance of SAM2, its performance was compared with
other state-of-the-art segmentation techniques. Table 2 shows the comparison of SAM2 with
different segmentation models. SAM2 has fast inference time compared to other traditional
segmentation networks which requires extensive task-specific fine-tuning. SAM2 zero-shot
ability can segment nodules in a very short time making it suitable for clinical applications
without the need for extensive training on institution-specific data. Prompt base segmentation
allows flexible user inputs which make it adaptable across various clinical scenarios. Although
SAM2 achieves better results, it requires GPU memory during inference which adds
computational cost in resource-constrained systems.
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Inputimage Ground truth Segmentation results

- L —

Figure 10. Segmentation results on the LIDC-IDRI dataset
Table 2. Comparison with different segmentation models

Techniques Dataset | Dice Score% | IoU%
Dual Branch Residual | LIDC-IDRI 82.74 ---

Network [25]

RFRVNet [21] LUNAIG6 95.01 83.00

EFCM [26] LUNAIG6 97.10 91.96

SAM [27] LUNAIG6 97.08 95.60

Ours LUNAIG 95.72 91.77

Ours LIDC-IDRI 97.87 95.82

After segmentation, the detected lung nodules were classified into benign and
malignant using the DenseNet model. Each radiologist has defined radiomic features for each
nodule and based on these radiomic features, a malignancy score between 1-5 is calculated.
The nodules having a malignancy score greater than 3 are considered malignant while those
with a malignancy score less than 3 are benign. DenseNet model is trained using these
malignancy scores for 100 epochs. The proposed model achieved an overall classification
accuracy of 97.34% and a validation accuracy of 95.81%. The proposed classification model
achieved better results compared to state-of-the-art methods. Table 3 represents the proposed
model's performance analysis compared to state-of-the-art methods.

Table 3. Comparison with different classification models

Classification Method | Accuracy % | Sensitivity % | Specificity %
CLIP 28] 70.96 86.77 56.33
GCA+WIRN [29] 94.32 91.49 93.69
ResNet50 [30] 92.56 93.78 90.14
Collaborative Deep 93.24 91.92 91.37
Learning [30]
Proposed Model 97.34 98.52 96.15

Discussion:
SAM2 has demonstrated superior performance compared to traditional deep learning-
based segmentation models. Unlike traditional segmentation models that require extensive
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training for downstream tasks, SAM2 foundational model architecture segment nodules
without retraining. Traditional models must be trained on specific datasets which limits their
generalization ability for other datasets. On the other hand, SAM2 can adapt to new datasets
because it has been trained on diverse modalities during pretraining. SAM2 prompt-based
segmentation ability provides flexibility in guiding the segmentation process. In contrast,
traditional models rely on fixed pre-defined features or pixel-wise annotations which require
radiologists’ expertise and are time-consuming. The prompt-based approach allows the model
to focus on the Region of Interest (ROI), minimizing segmentation errors. Unlike
conventional CNN-based segmentation models that extract hierarchical features, SAM2
utilizes Vision Transformers (ViTs) architecture to capture long-range dependencies to
recognize nodules' texture, shapes, and sizes which are important for accurate segmentation.
SAM2 showed a slightly lower Dice Score for the LUNA16 dataset due to challenges in
detecting nodules from nearby tissues or vessels with slightly similar textures. While SAM2
provides real-time segmentation, it requires high GPU memory which is a constraint for
clinical deployment. Traditional deep learning models although slower are computationally
more efficient. Our DenseNet model also achieved better classification accuracy
outperforming other state-of-the-art methods. The sensitivity score demonstrates that nodules
are correctly classified. While our approach significantly improved lung nodule segmentation
and classification, there are several areas for future improvement. SAM2 works effectively on
Box and masks prompt but this does not make it fully automated. Therefore, further work can
be done by introducing text prompts for the SAM2 model to segment lung nodules in a fully
automated manner. Also, the datasets are collected from specific demographic groups that do
not represent a diverse global patient population. Also, LUNA16 has nodules with a diameter
=3mm which makes the model less sensitive to small or less distinct nodules.

Conclusion:

The study presented anautomated framework for lung nodule detection and
classification using the SAM2 with DenseNet-121 architecture. The combination of SAM2
with the deep learning model demonstrated better performance in nodule segmentation using
box and mask prompts and classification tasks. Bounding box and Masks helped in efficient
segmentation and results demonstrate the effectiveness of this approach. The research
underscores the Segment Anything Model 2 capabilities to effectively segment nodules which
can facilitate in Computer Aided Systems. While SAM2 has certain limitations, it can be a
promising tool for computer-aided lung cancer detection. The proposed DenseNet classifier
also outperforms existing techniques with higher diagnostics accuracy. Figure 11 shows the
train and validation loss chart. Future work will focus on improving small nodule

segmentation, multimodal integration, and computational efficiency for clinical deployment.
Loss per Epoch

Train Loss
Validation Loss

0.04 1

o 20 40 60 80 100
Epochs

Figure 11 Train and validation loss chart
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