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lung cancer is one of the most perilous diseases worldwide with high incidence and low 
survival rates due to late diagnosis. Accurate detection and diagnosis of lung nodules is 
important for early-stage detection. Machine learning and deep learning techniques 

have greatly improved the precision of lung nodule segmentation and classification in 
Computed Tomography (CT) images. The study presents a novel approach to segmenting and 
classifying nodules by combining foundational models with deep learning architectures. We 
have used the Segment Anything Model (SAM2) to segment lung nodules and Dense Net to 
classify them as benign and malignant. SAM2 has been tested on the datasets using different 
prompts to achieve better results. Foundational Models and Deep Learning architecture’s 
integration significantly improved Computer-Aided Detection (CADe) and Computer-Aided 
Diagnosis (CADx) in medical images. Experimental results proved the effectiveness of the 
proposed model for early-stage detection and classification of lung nodules from CT scans. 
SAM2 model achieves a Dice Similarity Coefficient (DSC) of 97.87% and an Intersection over 
Union (IoU) of 95.82% for segmentation, and the Dense Net model's classification accuracy 
is 97.34%. The experimental results demonstrate the performance of our model compared to 
existing techniques. 
Keywords: SAM2, Transfer Learning, Vision Transformer Model, Bounding Box Prompts, 
Computed Tomography (CT) scans 
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Introduction: 
Lung cancer is among the most life-threatening diseases globally, characterized by a 

high incidence and low survival rates due to late detection. It accounts for 18% of all cancer 
cases and is responsible for approximately 1.8 million deaths each year. According to the 
Global Cancer Observatory (GLOBOCAN), lung cancer holds the highest rank in both 
incidence and mortality rates worldwide [1]. The situation in Asia is even more severe, with a 
lung cancer incidence rate of 63.1%, a mortality rate of 62.9%, and a 5-year prevalence rate of 
63.9% [1]. 

Medical imaging techniques such as Computed Tomography (CT) and X-rays have 
helped in lung nodule detection and classification [2]. Due to the extensive use of CT scans 
and the complexity of medical images, Computer-Aided Detection (CADe) and Computer-
Aided Diagnosis (CADx) play a crucial role in supporting radiologists by enhancing the 
accuracy of lung nodule detection and diagnosis [3]. Traditional image processing techniques 
such as thresholding, region-based methods, and edge detection face limitations when 
handling the complexity of medical images [4]. 

Deep Learning plays an important role in lung cancer detection and classification for 
better treatment and follow-up procedures [5]. Deep Learning models learn features from 
medical images and precisely segment nodules from medical images such as CT scans and X-
rays. The advancements in Deep Learning Models have significantly enhanced the 
performance of medical images [6]. Convolution Neural Networks (CNNs) can analyze 
complex medical image architectures but have limitations when dealing with 3D data. To 
overcome this issue, 3D CNN architectures [7] have been developed to process the length, 
height, width, and depth of 3D scans, enabling the extraction of meaningful features. 
However, these models demand extensive training to comprehend the intricate structures of 
medical images [8]. For instance, the development of DHEA-Net [9] consists of dual encoder-
based architecture that uses CT scans and coronal views to improve segmentation accuracy. 
The refined UNET architecture was developed by [10] with similar architectural 
improvements [11]. Another systematic review and meta-analysis evaluated the diagnostic 
accuracy of deep learning models with lesion-wise sensitivity [12]. 

Foundational Models [13] have been trained on extensive data, models can generalize 
well on unseen tasks. Meta-AI segmentation models are well known for their zero-shot 
capabilities. Segmentation Anything Model (SAM) has been trained on multiple modalities and 
can segment unseen tasks in a zero-shot manner accurately [14]. A variant of SAM, called 
MedSAM [15] has demonstrated improved accuracy across various medical datasets. SAM2 
offers superior segmentation capabilities compared to SAM and is also capable of segmenting 
videos [16]. SAM2 features a memory bank that tracks objects across frames, enabling 
continuous segmentation even when objects temporarily disappear and reappear on the screen. 

Lung nodule classification is also a challenging task for the diagnosis of lung cancer.  
Computer Vision and Machine Learning models have great contributions to the 

diagnostics of many diseases. In a study, LCP- CNN [17] was trained on CT scans to generate 
malignancy scores and to classify nodules as benign and malignant with less false positive rate. 
This study [18] adopted a self-supervised learning technique by utilizing an adaptive slice 
selection model for pre-processing and then utilizing the self-supervised approach to learn 
features for classification. Progressive Growing Channel Attentive Non-Local (ProCAN) [19] 
network was developed for nodule classification. A channel-wise attention mechanism is 
applied, and the model is trained to improve learning capability.  AlexNet architecture was 
introduced by [20] with modifications in layer ordering and hyperparameter adjustments to 
improve the performance of the model. Pre-processing steps such as zero centering, 
normalization, and segmentation were also implemented.  Ren et al. [21] developed an 
ensemble framework by using LeNEt, GoogleNet, AlexNet, ResNet, VGG16, and DenseNet 
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for lung cancer classification. Dosovitskiy developed CNN and an attention-based model [22]. 
Deep learning approaches have shown significant results in medical image processing systems. 
However, accuracy and high false positive rates have been a challenge in handling medical 
images. To overcome the issue, we presented a fusion of SAM2 with the deep learning 
architecture DenseNet. 
Objectives: 
The objectives of this research are as follows: 

1. Develop an automated framework for nodule detection and classification. 
2. Improve segmentation and classification accuracy using Segment Anything Model 2 

and DenseNet. 
3. Validate the model on diverse datasets and compare the proposed model with existing 

techniques. 
4. Investigate the impact of foundational models on medical images. 

Material and Methods: 
Dataset: 

In this study, the LUNA16 [23] dataset was utilized, it consists of 888 volumetric CT 
scans which is a subset of the Lung Image Database Consortium (LIDC) [24] containing a 
total of 1018 scans. LIDC and LUNA16 are both used in lung cancer detection and diagnosis 
systems. The LUNA16 dataset stores scans in MetaImage (.mhd) format, divided into 10 
subsets, with an annotation file that provides the real-world coordinates and diameters of 
nodules. Figure 1 shows sample images of the LUNA16 dataset. The LIDC dataset consists 
of DICOM files, which are preprocessed to segment a complete lung CT scan into individual 
lung lobes. Four radiologists annotated the nodules and calculated radiomic features for 
calculating malignancy scores which are helpful in the classification of nodules as benign and 
malignant. Figure 2 shows sample images from the LIDC dataset. 

 
Figure 1: Sample images of LUNA16 dataset 
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Figure 2 Sample images of the LIDC-IDRI dataset 

Methodology: 
We utilized SAM2 for the segmentation of lung nodules and DenseNet for lung nodule 

classification as benign and malignant. Figure 3 illustrates the proposed research methodology 
while Figure 4 presents the step-by-step flow diagram for this study. 
Preprocessing: 

CT scans have varying resolutions because of different scanners and protocols used. 
These varying resolutions affect the segmentation accuracy of the model. The two types of 
variabilities that arise in CT scans are Spatial Resolution Variability which is a difference in 
pixel spacing or slice thickness and Intensity Variability which is a difference in voxel intensity 
distribution due to the different protocols of each scanner. To overcome these issues, we have 
applied the following preprocessing techniques. 
Spatial Normalization or Resampling: 

Resampling converts all images to common voxel spacing so that all anatomical 
structures appear the same size across all images. The resampling factor can be calculated using 
Equations 1 and 2. 

𝑟𝑒𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔_𝑓𝑎𝑐𝑡𝑜𝑟_𝑥 =  
𝑜𝑥

𝑑𝑥
            (1) 

𝑟𝑒𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔_𝑓𝑎𝑐𝑡𝑜𝑟_𝑦 =  
𝑜𝑦

𝑑𝑦
             (2) 

Where ox and oy are the original spacing and dx and dy are the desired spacing. 
The new image size can be calculated using equations 3 and 4. 

𝐻′ =  𝐻 × 𝑟𝑒𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔_𝑓𝑎𝑐𝑡𝑜𝑟_𝑦            (3) 

𝑊′ =  𝑊 × 𝑟𝑒𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔_𝑓𝑎𝑐𝑡𝑜𝑟_𝑥          (4) 

The new image size will be (𝐻’, 𝑊’). 
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𝑦 = 255
𝑥 − 𝑚𝑖𝑛𝑥

𝑚𝑎𝑥𝑥 − 𝑚𝑖𝑛𝑥
              (5) 

Intensity Normalization: 
CT scans have intensity variations due to the different scanners used which can 

downgrade the model’s performance. To normalize intensity distributions for better contrast 
of a CT scan, equation 5 is used. Figure 5 shows the sample CT scan before and after applying 
normalization techniques. 

 
Figure 3 Proposed methodology 

 
Figure 4. Flow Diagram for Lung Nodule Segmentation and Classification 
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Figure 5 Sample image before and after preprocessing 

SAM2 for Segmentation of Lung Nodules: 
Segment Anything Model is a Vision Transformer (ViT) [22] based model trained on 

extensive datasets and has great generalization ability on unseen tasks. In this research, we 
have used SAM2 [16] which has better segmentation results than SAM. Before applying SAM2 
to our datasets, the LUNA16 dataset must first undergo preprocessing. The LUNA16 dataset’s 
annotation contains real-world coordinates that need to be converted to voxel coordinates. 
We utilized equation 6 to convert real-world coordinates to voxel coordinates. Figure 6 
presents the code used to convert real-world coordinates into voxel coordinates.  

𝑉𝑜𝑥𝑒𝑙𝐶𝑜𝑜𝑟𝑑[𝑖] =
𝑊𝑜𝑟𝑙𝑑𝐶𝑜𝑜𝑟𝑑[𝑖] − 𝑂𝑟𝑖𝑔𝑖𝑛[𝑖]

𝑆𝑝𝑎𝑐𝑖𝑛𝑔[𝑖]
, 𝑓𝑜𝑟 𝑖 = 0,1,2      (6) 

Where: 

 VoxelCoord[i] is the voxel coordinates along with dimension. 

 WorldCoord[i] is the world coordinates along the dimension, already available in the 
annotation file. 

 Origin[i] is the origin of the CT scan available in image metadata. 

 Spacing[i] is the spacing between voxels in a CT scan, also available in image metadata. 

 
Figure 6 Real-world coordinates to voxel coordinates 
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From a complete volumetric CT scan, we extracted slices containing nodules and fed 
them into SAM2 along with annotations for segmentation purposes. SAM2 is capable of 
segmenting objects in a zero-shot manner. Zero-shot segmentation capability of the SAM2 
model plays an important role in lung nodule segmentation. Unlike traditional models, which 
require a large amount of manually annotated data and complex training, SAM2 eliminates the 
need for extensive annotation and training. Lung nodule variabilities such as size, shape, and 
textures make it even more challenging. SAM2 zero-shot ability allows segmentation without 
specific training which makes it better for clinical applications. SAM2 can generalize across 
diverse medical imaging conditions and nodule variations which allows it to capture details 
that traditional supervised models may miss. Its zero-shot ability also makes it more robust 
and transferable. It follows a promptable segmentation approach and can segment objects 
based on different types of prompts such as boxes, points, and masks. It is a transformer-
based architecture and allows better generalization across various domains. Vision 
transformers can extract various spatial and contextual information at the encoder part. The 
prompts are converted to embeddings at a prompt encoder that helps the segmentation 
process. Lastly, the mask decoder generates a segmentation mask. The features from the image 
encoder and embeddings from the prompt encoder help in generating segmentation masks. 
These masks are refined through the attention mechanism of transformers. 
Data Augmentation: 

Medical image datasets are often imbalanced which can affect the model’s 
performance and cause a bias towards the majority class. To overcome the issue, data 
augmentation techniques such as rotations and flipping have been applied to the dataset to 
make it balanced. Data augmentation techniques increase the diversity of a dataset. Different 
scanners have different orientations. Applying random rotations to the dataset will increase 
the model’s rotational invariance. Slight patient movements can add variations to medical 
images. Applying small angle rotations will help in better generalization of a model. Horizontal 
and vertical flipping can be applied to handle lateral variations when the patient is lying on 
different sides and images are taken from different planes. Figure 7 shows some augmentation 
results. 

 
Figure 7. Sample augmented images 

DenseNet Model for Classification: 
In this study, we also utilized DenseNET-121 for nodule classification as benign and 

malignant. DenseNET-121 is known for its densely connected layers which improve gradient 
flow and encourage feature reuse. DenseNet reduces information loss and improves learning 
by establishing direct connections between each layer and its subsequent layers. This property 
of DenseNet makes it useful in medical imaging tasks where details are critical for 
classification, and we cannot afford to lose any details. DenseNET has high parameter 
efficiency and better feature extraction capabilities which make it capable of solving nodule 
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classification tasks.  The DenseNET architecture consists of four dense blocks where features 
are concatenated. This makes the model learn intricate patterns of lung CT scans. Figure 8 
shows the architecture of the DenseNet-121 model. The model is finetuned on a dataset with 
GPU available on Google Colab which helps in reducing training and inference time. 
DenseNET is designed for multi-classification. Since our research focuses on the binary 
classification of benign and malignant nodules, the final classification layer was modified to 
contain only two neurons. A learning rate of 0.001 was applied, with a learning rate scheduler 
implemented to gradually reduce the rate for improved adjustments during training stages. 
Adam optimizer and Stochastic Gradient Descent (SGD) were utilized, with a batch size of 
32 to balance memory efficiency and training stability. Since this is a binary classification task, 
Cross Entropy loss was used for evaluation. The model was trained for 100 epochs. Table 1 
shows hyperparameters used in model training. 

 
Figure 8 DenseNet-121 Architecture 

Table 1. DenseNet-121 model training hyperparameters 

Parameter Value 

Optimizer Stochastic Gradient 
Descent (SGD) 

Loss Function Cross Entropy 

Epochs 100 

Batch size 32 

Learning rate 0.001 

Evaluation Parameters for Segmentation: 
Dice Score: The Dice Score is also known as the Dice Similarity Coefficient (DSC). The Dice 
score is used to evaluate the similarity between predicted segmentation and ground truth. It is 
calculated by taking twice the TP divided by the total pixel count of the image. The Dice Score 
is calculated using Equation 7. 

𝐷𝑖𝑐𝑒 𝑆𝑐𝑜𝑟𝑒 =
2 × 𝑇𝑃

(2 × 𝑇𝑃) + 𝐹𝑃 + 𝐹𝑁
         (7) 

Intersection over Union: IoU measures the overlapping region between predicted results 
and ground truths. IoU is calculated by taking the overlapping region (intersection) between 
actual and predicted output divided by the total region (union). The IoU is calculated using 
Equation 8. 

𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
                    (8) 

Loss Function for Classification: 
Binary Cross Entropy Loss: To classify nodules as benign and malignant, we have used 
Binary Cross Entropy Loss (BCE) to compute loss. BCE is also known as Binary Log Loss. It 
is a loss function that measures the difference between predicted binary results and the actual 
binary result. BCE is calculated using equation 9. 

𝐵𝐶𝐸 = −
1

𝑁
∑(𝑡𝑖. log(𝑝𝑖) + (1 − 𝑡𝑖) log(1 − 𝑝𝑖))           (9)

𝑁

𝑖=1

 

Where: 
Ti is the true label for instance i. 
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pi is the predicted label for instance i. 
Result and Discussion: 

The segmentation results of the SAM2 model were assessed using standard image 
segmentation evaluation metrics including Dice Similarity Coefficient (DSC), Intersection 
over Union (IoU), and Sensitivity. The model was assessed on two datasets LIDC-IDRI and 
LUNA16 using mask and box prompts to guide the segmentation process.   

On the LUNA16 dataset, which consists of complete CT scans, SAM2 achieved an 
average performance of 95.72% Dice Score, 91.77% Intersection over Union (IoU), and 
96.42% Sensitivity using the box prompt. The LUNA16 dataset consists of full CT scans 
where nodules are present within lung regions. Although SAM2 performed well, the presence 
of irrelevant structures slightly impacted the performance. Figure 9 shows the segmentation 
results on the LUNA16 dataset. 

While, the LIDC-IDRI dataset, which does not have complete CT scans, shows a 
97.87% Dice Score, 95.82% IoU, and 97.9% Sensitivity. Figure 10 shows segmentation results 
on the LIDC-IDRI dataset. Segmentation results on the LIDC-IDRI dataset were better than 
those on the LUNA16 dataset because the LIDC-IDRI dataset provided lung CT scans already 
cropped to lobes, defining the Region of Interest (ROI). This preprocessing removed 
unnecessary details, enabling the model to segment nodules more effectively. 

 
Figure 9. Segmentation results on the LUNA16 dataset 

To further validate the performance of SAM2, its performance was compared with 
other state-of-the-art segmentation techniques. Table 2 shows the comparison of SAM2 with 
different segmentation models. SAM2 has fast inference time compared to other traditional 
segmentation networks which requires extensive task-specific fine-tuning. SAM2 zero-shot 
ability can segment nodules in a very short time making it suitable for clinical applications 
without the need for extensive training on institution-specific data. Prompt base segmentation 
allows flexible user inputs which make it adaptable across various clinical scenarios. Although 
SAM2 achieves better results, it requires GPU memory during inference which adds 
computational cost in resource-constrained systems. 
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Figure 10. Segmentation results on the LIDC-IDRI dataset 
Table 2. Comparison with different segmentation models 

Techniques Dataset Dice Score% IoU% 

Dual Branch Residual 
Network [25] 

LIDC-IDRI 82.74 --- 

RFRVNet [21] LUNA16 95.01 83.00 

EFCM [26] LUNA16 97.10 91.96 

SAM [27] LUNA16 97.08 95.60 

Ours LUNA16 95.72 91.77 

Ours LIDC-IDRI 97.87 95.82 

After segmentation, the detected lung nodules were classified into benign and 
malignant using the DenseNet model. Each radiologist has defined radiomic features for each 
nodule and based on these radiomic features, a malignancy score between 1-5 is calculated. 
The nodules having a malignancy score greater than 3 are considered malignant while those 
with a malignancy score less than 3 are benign. DenseNet model is trained using these 
malignancy scores for 100 epochs. The proposed model achieved an overall classification 
accuracy of 97.34% and a validation accuracy of 95.81%. The proposed classification model 
achieved better results compared to state-of-the-art methods. Table 3 represents the proposed 
model's performance analysis compared to state-of-the-art methods. 

Table 3. Comparison with different classification models 

Classification Method Accuracy % Sensitivity % Specificity % 

CLIP [28] 70.96 86.77 56.33 

GCA+WIRN [29] 94.32 91.49 93.69 

ResNet50 [30] 92.56 93.78 90.14 

Collaborative Deep 
Learning [30] 

93.24 91.92 91.37 

Proposed Model 97.34 98.52 96.15 

Discussion: 
SAM2 has demonstrated superior performance compared to traditional deep learning-

based segmentation models. Unlike traditional segmentation models that require extensive 
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training for downstream tasks, SAM2 foundational model architecture segment nodules 
without retraining.  Traditional models must be trained on specific datasets which limits their 
generalization ability for other datasets. On the other hand, SAM2 can adapt to new datasets 
because it has been trained on diverse modalities during pretraining. SAM2 prompt-based 
segmentation ability provides flexibility in guiding the segmentation process. In contrast, 
traditional models rely on fixed pre-defined features or pixel-wise annotations which require 
radiologists’ expertise and are time-consuming. The prompt-based approach allows the model 
to focus on the Region of Interest (ROI), minimizing segmentation errors. Unlike 
conventional CNN-based segmentation models that extract hierarchical features, SAM2 
utilizes Vision Transformers (ViTs) architecture to capture long-range dependencies to 
recognize nodules' texture, shapes, and sizes which are important for accurate segmentation. 
SAM2 showed a slightly lower Dice Score for the LUNA16 dataset due to challenges in 
detecting nodules from nearby tissues or vessels with slightly similar textures. While SAM2 
provides real-time segmentation, it requires high GPU memory which is a constraint for 
clinical deployment. Traditional deep learning models although slower are computationally 
more efficient. Our DenseNet model also achieved better classification accuracy 
outperforming other state-of-the-art methods. The sensitivity score demonstrates that nodules 
are correctly classified. While our approach significantly improved lung nodule segmentation 
and classification, there are several areas for future improvement. SAM2 works effectively on 
Box and masks prompt but this does not make it fully automated. Therefore, further work can 
be done by introducing text prompts for the SAM2 model to segment lung nodules in a fully 
automated manner. Also, the datasets are collected from specific demographic groups that do 
not represent a diverse global patient population. Also, LUNA16 has nodules with a diameter 

≥3mm which makes the model less sensitive to small or less distinct nodules. 

Conclusion: 

The study presented anautomated framework for lung nodule detection and 
classification using the SAM2 with DenseNet-121 architecture. The combination of SAM2 
with the deep learning model demonstrated better performance in nodule segmentation using 
box and mask prompts and classification tasks. Bounding box and Masks helped in efficient 
segmentation and results demonstrate the effectiveness of this approach. The research 
underscores the Segment Anything Model 2 capabilities to effectively segment nodules which 
can facilitate in Computer Aided Systems. While SAM2 has certain limitations, it can be a 
promising tool for computer-aided lung cancer detection. The proposed DenseNet classifier 
also outperforms existing techniques with higher diagnostics accuracy. Figure 11 shows the 
train and validation loss chart. Future work will focus on improving small nodule 
segmentation, multimodal integration, and computational efficiency for clinical deployment.  

 
Figure 11 Train and validation loss chart 
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