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Introduction:

Pharmaceutical drugs are produced on a large scale to meet industry demands, with
certain disease treatments requiring precise formulations and rigorous quality control in tablet
manufacturing. Throughout the production process, drug manufacturers must ensure that the
correct dosage, chemical composition, and weight are accurately maintained and propetly
packaged [1]. However, drug quality can be compromised due to contamination, degradation,
or defects during the production process. The consumption of substandard medications can
lead to severe adverse effects in patients. Currently, most tablet and blister pack inspections
are performed manually, which is a labor-intensive process prone to errors [2]. Human
inspectors, despite their meticulous efforts, are susceptible to fatigue and subjectivity, leading
to the oversight of defects and inconsistencies in medication packaging. Common concerns
include counting errors, labeling mistakes, and variations in tablet weight, all of which can
potentially jeopardize patient safety [3].

The pharmaceutical sector has faced challenges in meeting stringent regulatory
requirements, and the limitations of manual inspection raised concerns about the reliability
and efficiency of quality control. A load cell, as the name implies, is a device mainly a
transducer that generates an electrical signal proportionate to the force being measured. This
instrument detects strain and subsequently turns force into energy, serving as a standard for
researchers and professionals. [4]. A load cell can be utilized to automatically detect changes
in the weight of a defective blister strip. Image processing plays a crucial role in visual
inspection automation. Al and Machine Learning technologies have revolutionized
pharmaceutical quality assurance, providing advanced tools for defect detection and anomaly
identification in blister packaging [5]-[6]. Machine Learning models, particularly those based
on Convolutional Neural Networks (CNNs), enable the analysis of vast image datasets,
identifying subtle variations and irregularities in tablet appearance and packaging with high
precision.

Literature Review:

Several studies on defect detection in blister strips have been reported in the literature,
some of which are discussed below. In [7], the authors have utilized various techniques
including sectorization of Discrete Fourier Transform images for feature extraction, counting
method, density distribution, Gray-level co-occurrence matrix, and area-based identification
of capsule boundary. Using each of these computer vision techniques, Kekra et al. presented
and compared the detection of defects and their types in images of curative tablet strips having
multiple kinds of capsules. Another defect detection algorithm has been proposed in [8], which
includes an image preprocessing process combining median filtering and threshold
segmentation. However, since the system is based on predefined rules and features, it may face
challenges in identifying novel or unexpected defects that fall outside its programmed
parameters. Additionally, real-time applicability is not mentioned. In [9], the authors have
proposed a method based on machine vision and deep learning for defect identification.
However, they have utilized ResNet, which is mainly designed for image classification, not
object detection. If defects occur in varying locations, YOLO or Faster R-CNN may be more
effective. The design of a deep learning system that identifies faulty tablets during the
manufacturing process is presented in [10]. This system does not classify or address various
defect types but rather compares different detection techniques. Another paper presents the
sorting of pills as tablets and capsules. They further classify tablets based on their shapes and
capsules based on their colors [11]. Moreover, they have also focused on the detection of
defects in count, cracks, and variations in size and shape. However, since template matching
and morphological operations are used, the system might be highly sensitive to lighting
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conditions, shadows, and noise and they also do not incorporate real-time inspection. In [12],
R-CNN is used for the detection of a certain pill among different pills. However, R-CNN is
an older and slower deep-learning approach that involves multiple steps. Additionally, the
study does not address complex tablet defects. Another work that presents the detection of
tablets is carried out using a capsule neural network [13]. This method is slow due to the
overhead introduced by the routing protocol algorithm. Most of the reported studies rely on
machine learning and deep learning techniques for automating pill inspection. However, many
of these studies utilize older deep-learning techniques, resulting in slower processing speeds.
Additionally, some studies did not implement a real-time system but instead relied on static
images for their experiments. The current study, on the other hand, utilizes the latest deep
learning method, YOLOVS, for identifying defects in tablet strips. It also shows real-time
monitoring of the subject over a conveyor belt which further proves its efficacy for automated
industries.

Obijective:

The proposed project “Tablet Guard System” involves the design of an image
processing system to find the defects in tablets. A camera system was arranged that captures
high-resolution images of each tablet, and a sophisticated image processing algorithm to
analyze these images in real-time. A load cell mechanism is integrated with the microcontroller
to test the weight of the blister strips and alert on LCD when an undefined weight occurs. The
blister strips move on a self-designed simple mechanical system including a conveyor belt.
Defective pieces will be removed by an automatic system. This project significantly enhances
the accuracy of quality control by improving product quality while reducing production cost
as manual labor needs to be paid while this system will be implemented only once. The idea
aims to modernize quality assurance practices and reduce human interference in the
manufacturing and production industries.

Novelty:

The novelty of the proposed Tablet-Guard project stems from its innovative
integration of cutting-edge technologies. It combines load cell technology for precise weight
measurement, artificial intelligence for intelligent decision-making, and a servo motor-driven
mechanism for efficient tablet removal, all working together to enhance pharmaceutical quality
assurance.

WebCam

Arduino board

Removing
mechanism
checkif
defected

Yes

Signal sent to
remove blister

} Processing unit l
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Blister approved
and packed
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d\ - %
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Figure 1. Block diagram of the Tablet Guard System
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Simplified Working of the Tablet-Guard system:

The block diagram in Figure 1 illustrates the workflow of the Tablet Guard quality
assurance system. The blister strips are initially placed on a conveyor belt system equipped
with a mounted camera. As the belt moves, they pass through the inspection system for
analysis. The load cell weighs each strip and sends the data to the processing unit, which
determines whether any tablets are missing or wrongly weighed. Simultaneously, the camera
captures images of the blister strips, which are evaluated by an algorithm running on the
processing unit to detect broken or cracked tablets.

The Arduino board acts as the controller, receiving signals from the processing unit
based on analysis results. If the algorithm finds a defect or if the microcontroller identifies
inaccurate weight measurement, the microcontroller sends a signal to the Arduino, which then
activates the servo motor-based removal mechanism. This ensures faulty blister strips are
automatically rejected from the conveyor belt.

If no faults are found, the blister strips continue along the conveyor belt to the packing
stage, where they are authorized and packaged for distribution. This automated procedure
ensures that only high-quality pills reach the final packing stage, adhering to strict quality
control criteria.

Methodology:
Arduino Connections:

For the proposed project, the Arduino Uno R3 was selected as the required
microcontroller. The Uno has 14 input output digital pins and 6 input output analog pins.
The HX711 load cell amplifiet's excitation and output lines are connected to the Zemic Load
Cell, while the supply and ground lines are connected to the Arduino's 5V and GND pins,
respectively. The HX711's data and clock pins are wired to Arduino pins D4 and D5 as shown
in Figure 2. A standard 16 x 2, I2C LCD (HD44780) is connected to the Arduino. The Arduino
powers the I2C LCD using its 5V pin. The operating voltage of this display is 5V and it draws
around 20-30 mA of current, which is well within the Arduino Uno’s 5V pin capacity. The
LCD’s SDA and SCL pins draw around 100 puA - 1 mA each and consume very low power
and thus are suitably connected to the A4 and A5 pins of Arduino respectively. An external
regulator regulates the speed of the conveyor belt, which is driven by a DC gear motor and a
DC adaptor.
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Figure 2. Load cell connections with HX711 & Arduino
A servo motor (SG90 9g), utilized for a removal mechanism, is controlled by an Arduino
PWM pin (for example, D9). The Arduino integrates all components, including the load cell,
servo motor, and 12C LED, and establishes power and ground connections to ensure correct
performance. This arrangement ensures a well-organized system for monitoring and operating
the conveyor belt and accompanying mechanisms as shown in Figure 3.

March 2025 | Vol 7 | Issuel Page | 584




OPEN ACCESS . . . .
a International Journal of Innovations in Science & Technology

Figure 3. Overall Arduino connections
The Conveyor Belt System:

A conveyor belt system is a mechanical setup typically used in industrial settings for
automated and systematic movement of items, from one point to another. As shown in Figure
4, our system uses two pulleys: the head pulley, which drives the belt and connects to the
motor shaft via the head bearing, and the tail pulley, which redirects the belt, maintains tension,
and houses internal tail bearings. Both pulleys feature lagging to prevent slippage. The belt,
made of leather, measures 90cm long and 20cm wide, is driven by a 12V DC gear motor,
whose shaft is coupled with the head pulley. A Mini PWM DC speed controller module having
DC-DC voltage = 4.5V-35V, 5A current with 90W power consumption is used to regulate the
gear motor at a constant speed (shown in Figure 5). The PWM speed controller is powered
via a 12 V, 1A adaptor as its operating voltage (12 V) and current requirements (5A) are well
beyond the limits of Arduino. The output terminals of the controller connect to the DC gear
motor powering it up and operating it at the desired constant speed. The speed is adjusted
using a knob (potentiometer). This constant speed is carefully determined by noting the
processing time of load cell measurement, image processing, and servo motor response. A
potentiometer in the motor control circuit allows for manual speed adjustments. By matching
the speed to the slowest processing stage, we ensured smooth operation without any
bottlenecks. The system’s frame has a height of 20cm, a length of 100cm, and a width of 30cm.
A 12V- 1A DC adaptor supplies power. A C270 HD Logitech HD Webcam provides sharp
and smooth video quality of 720p/30fps. The camera captures real-time video of blister strips
moving on the conveyor belt.

Working of Loadcell with HX-711 Module and Arduino:

The HX711 module employs a built-in PGA, which amplifies the small analog signal
received from the load cell. The amplified signal is then converted into a 24-bit digital value
using its ADC [14]. In our project, nuts and bolts were used to secure the load cell to the base,
accounting for the slight bending that could occur when weight was applied. The setup was
part of an Arduino Weighing Machine utilizing the HX711 Load Cell. For the circuit assembly,
refer to Figure 2, which provides the interfacing details of the HX711 Load Cell with the
Arduino Uno microcontroller. To make the entire path operational, it is essential to
standardize the load cell with the HX-711 ADC and Arduino. Calibration involves placing a
100g weight when prompted on the LCD during setup. Once the 100g weight was applied,
the calibration was completed, enabling accurate weight measurements with 99.9% precision.
The load cell detects the load and transmits an analog voltage to the HX711 Module, which
then converts it into a digital signal. This value is sent to the microcontroller, where the ADC
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result is translated into load terms. The final output is displayed on a 16x2 LCD screen,
providing an accurate measurement of the applied weight. Additionally, the load cell detects
weight inconsistencies, while the object detection algorithm identifies and counts defective
pieces.

The HX711 needs 5 V and approximately 1.5 mA to operate. Thus, it is easily powered
by Arduino. The load cell is then powered up by HX711. Thus, the load cell is also indirectly
powered by Arduino via HX711.

Figure 5. DC gear motor and speed controller
Servo-Motor Connections:

Since our removal mechanism is a simple plastic bag and not a heavy load, the required
torque is low. Therefore, the simplest and most common SG90 servo is used. It operates at
4.8-6V and draws around 100-500 mA of current. However, Arduino Uno’s 5 V pin (powered
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via USB or onboard regulator) can provide around 400-500 mA in total. If the servo motor
takes too much current, it may reset the Arduino or can even damage it. Therefore, the power
supply setup of the project includes a 5V battery dedicated to the servo motor. This leads to
a stable connection for both the servo motor and the Arduino board. The VCC connection
of the servo is connected to the 5V battery and its ground is connected to the power supply
ground as well as to the Arduino ground to make a common ground. The servo signal pin is
connected to an appropriate PWM pin on the Arduino, such as D9, as mentioned earlier.
Selection of Algorithm and Tool:

A Comparison of YOLOVS, SSD, Faster R-CNN and RetinaNet:

There are several advanced object detection models available today including YOLO,
SSD, RetinaNet, and Faster R-CNN each with different strengths in speed, accuracy, and
complexity. This section provides an overview of these models highlighting their key features
and differences to understand their suitability for various applications.

YOLO has emerged as an important model for object detection [15]. It is a single-stage object
detection model in which class probabilities and bounding boxes are predicted in a single step.
Their outstanding speed allows these models to work for real-time inference; however, they
sometimes sacrifice accuracy in comparison to other models [16].

Another single-stage object detection model is SSD which performs detection at multiple
scales within a single network. It is an intermediate option between the high speed of YOLO
and the high accuracy of Faster R-CNNs, which makes it a reasonable choice for several
applications [16].

Faster R-CNN is a two-stage object detection model that identifies the regions of interest
first and then classifies them. Although the accuracy of Faster R-CNNss is high, the two-stage
process limits their speed [16].

RetinaNet is also a single-stage object detection model that offers high accuracy and
efficiency. Its primary novelty is the use of Focal Loss with FPN which is a type of architecture
used in object detection models to handle objects of different sizes more effectively.
Moreover, it uses two subnetworks to address the issues of class imbalances [17]. Similar to
YOLOWVS, it has fast inference time [17][18]. A modified version of RetinaNet with a ResNet-
50 backbone achieved 24 frames per second (FPS) on an NVIDIA RTX 2080 Ti GPU. It's
important to note that actual FPS can differ depending on specific configurations and
computational resources [19].

A more detailed comparison of the above models can be found in [16]. A comparison
of the above models including their FPS values is provided in Table 1 [16]. The latest YOLOv8
model, with its capability to process 40-155 frames per second, enhanced accuracy, high speed,
reduced background errors, ability to analyze the entire image at once, user-friendly interface,
and streamlined usability via a command-line interface, perfectly aligns with our project's
requirements.

Thus, this model was employed for real-time defect detection in our case. The model's
efficient grid-based approach, which predicts class probabilities and bounding boxes within
each cell, further enhances its overall performance.

Table 1. Performance comparison of different object detection models [16][19]

Model Frames Per Second (FPS)
YOLOv8 40-155
SSD 22-46
Faster R-CNN 5-7
RetinaNet 24
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Object detection:
Creating a Yaml File:

A YAML (Yet Another Markup Language) file contains details such as the dataset's
path, classes, and other relevant information. In our case, the YAML file was created by the
name “data_custom”.

As shown in Figure 6, the “train” and “val” sections specify the paths to the training
and validation datasets, respectively. The “nc” section lists the number of classes in the model,
which in our case is set to three. The “names” section represents the labels of the classes
displayed in the model’s output. We have used “broken”, “cracked” and “missing” as our
class names.

As speed is significant in real-world applications, therefore, we have selected the
YOLOvV8 model, which offers a balance between speed and accuracy. The Ultralytics library,
commonly linked with YOLO models for object identification, uses these dependencies to
perform a variety of computer vision and machine learning tasks. Figure 7, shows its
installation. For labeling our images, we selected the Roboflow software. Ultralytics and
Roboflow are used together in the machine learning workflow as shown in [20]. Therefore,
Roboflow was installed simultaneously. Its successful installation ensures that the required
libraries and dependencies are available, enabling users to perform tasks such as data
annotation, model training, and deployment within the notebook. The installation process is
shown in Figure 8.

Dataset:

Collecting datasets is a crucial step in training AI models because these models learn
patterns and make predictions based on the information they are exposed to during training.
In our scenario, various blister strips were collected, including damaged pieces (such as empty
pockets and irregular shapes) as well as undamaged ones. The dataset was generated by
capturing snapshots of these strips. A total of approximately 800 images were captured and
randomly divided into two data sets: one for defect detection and the other for strip detection.
For defect detection, the training set included 736 images, the validation set included 38
images, and the remaining images were used for testing. Similarly, for strip detection, 640
images were used for training, 28 for validation, and the remaining images were reserved for
testing.

data_custom.yaml X

1 names:

2 ['broken' , 'cracked' , 'missing']

3nc: 3

4 roboflow:

5 license: CC BY 4.0

6 project: blister_strip_detect

url: https://universe.roboflow.com/blister-strips/blister=strip=detect/dataset/1
version: 1

9 workspace: blister-strips

10 test: /content/blister_strip_detect-1/test/images
11 train: /content/blister_strip_detect-1/train/images
12 val: /content/blister_strip_detect-1/valid/images

Figure 6. YAML File
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Annotating Data Set on Roboflow:

Figure 9(a) shows the process of labeling defects which includes a yellow box for
broken, a red box for cracked, and a purple box for a missing tablet. Figure 9(b) illustrates the
labeling process for detecting blister strips by drawing a bounding box around the strip.

o £ Biister_defect FYP.ipynb

File Edit View Insert Runtime Tools Help Allchanges saved

B Comment &, Share

o+ Code + Text Reconnect 4 v @ Cc

Q ° Ipip install ultralytics

E) Collecting ultralytics
Downloading ultralytics-8.1.42-py3-none-any.whl (749 kB)

O

19}

Requirement already satisfied:
Requirement already satisfied:
Requirement already satisfied:
Requirement already satisfied:
Requirement already satisfied:
Requirement already satisfied:
Requirement already satisfied:
Requirement already satisfied:
Requirement already satisfied:
Requirement already satisfied:
Requirement already satisfied:

749.1/749.1 kB 17.1 MB/s eta 6:00:00

matplotlib>=3.3.0 in /usr/local/lib/python3.10/dist-packages (from ultralytics) (3.7.1)
opencv-python>=4.6.8 in /usr/local/lib/python3.18/dist-packages (from ultralytics) (4.8.0.76)
pillow»=7.1.2 in /usr/local/lib/python3.10/dist-packages (from ultralytics) (9.4.8)
pyyaml>=5.3.1 in /usr/local/lib/python3.10/dist-packages (from ultralytics) (6.0.1)
requests»>=2.23.0 in /usr/local/lib/python3.10/dist-packages (from ultralytics) (2.31.8)
scipy>=1.4.1 in /usr/local/lib/python3.18/dist-packages (from ultralytics) (1.11.4)
torch>=1.8.0 in /usr/local/lib/python3.10/dist-packages (from ultralytics) (2.2.1+cul2l)
torchvision>=8.9.0 in /usr/local/lib/python3.10/dist-packages (from ultralytics) (@.17.1+cul2l)
tqdm>=4.64.0 in /usr/local/lib/python3.18/dist-packages (from ultralytics) (4.66.2)

psutil in /usr/local/lib/python3.18/dist-packages (from ultralytics) (5.9.5)

py-cpuinfo in /usr/local/lib/python3.10/dist-packages (from ultralytics) (9.8.8)

Collecting thop>=0.1.1 (from ultralytics)
Downloading thop-0.1.1.post2209072238-py3-none-any.whl (15 kB)

Requirement already satisfied:
Requirement already satisfied:
Requirement already satisfied:
Requirement already satisfied:
Requirement already satisfied:
Requirement already satisfied:
Requirement already satisfied:
Renninremant alreadv caticfied:

pandas>=1.1.4 in /usr/local/lib/python3.10/dist-packages (from ultralytics) (2.6.3)

seaborn>=0.11.9 in /usr/local/lib/python3.10/dist-packages (from ultralytics) (.13.1)

contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotliby=3.3.e->ultralytics) (1.2.0)
cycler>=0.10 in /usr/local/lib/python3.18/dist-packages (from matplotlib>=3.3.0->ultralytics) (@.12.1)
fonttools>=4.22.0 in /usr/local/lib/python3.18/dist-packages (from matplotlib>=3.3.8->ultralytics) (4.50.8)
kiwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.3.8->ultralytics) (1.4.5)
numpy>=1.20 in /usr/local/lib/python3.18/dist-packages (from matplotliby=3.3.8-jultralytics) (1.25.2)
narkagingy=74 A in /usr/laral/1ih/nvthan3 18/dict-nackacas (from matnlatlihs=3 3 A-sultralvtics) (24 A)

Figure 7. Installation of Ultralytics library

& Blister defect FYPipynh v

B Comment &,

File Edit View Insert Runtime Tools Help Allchanges saved

+ Code  + Text

Reconnect 14 v

Installing collected packages: nvidia-nvtx-cul2, nvidia-nvjitlink-cul2, nvidia-ncel-cul?, nvidia-curand-cul2, nvidia-cufft-cul?, nvic
Successfully installed nvidia-cublas-cul2-12.1.3.1 nvidia-cuda-cupti-cul2-12.1,165 nvidia-cuda-nvrte-cul2-12.1,105 nvidia-cuda-runtin

i

o Ipip install roboflow

[B collecting reoflon

Donnloading roboflow-1.1.26-py3-none-any.uhl (71 kB)

72.8/72.8 k8 2.7 MB/s eta 8:04:08

Collecting certifi==2023.7.22 (from roboflow)
Downloading certifi-2023.7.22-py3-none-any.whl (158 k8)

158.3/158.3 kB 16.0 MB/s eta 0:08:20

Collecting chardet==4.8.8 (from roboflow)
Downloading chardet-4.8.8-py2.py3-none-any.ihl (178 kB)

178.7/178.7 kB 25.8 MB/s eta :02:00

Collecting cycler==6.10.8 (from roboflow)

Downloading cycler-8.10.8-py2.py3-none-any.whl (6.5 kB)
Collecting idna==2.18 (from roboflew)

Dounloading idna-2.18-py2.py3-none-any.uhl (58 k8)

58.8/58.8 k3 8.3 MB/s eta 0:00:08

Requirement already satisfied: kiwisolver»=1.3,1 in fusr/local/lib/pythen3,19/dist-packages (from roboflow) (1.4.5)
Requirement already satisfied: matplotlib in fusr/local/lib/python3.16/dist-packages (from roboflou) (3.7.1)
Requirement already satisfied: numpy»=1.18.5 in fusrflocal/lib/python3.18/dist-packages (from roboflow) (1.25.2)
Collecting opency-python-headless==4.8.8.74 (from roboflow)

Downloading opencv_python_headless-4.8.8,74-cp37-abi3-manylinux_2_17_x86_64.manylinux2814_xB6_64.whl (49,1 MB)

Figure 8. Roboflow installation for data training

March 2025 | Vol 7 | Issuel

Page | 589



International Journal of Innovations in Science & Technology

| I I I

No Tags Apphed

)

Figure 9. (a) Annotating images for defects (b) Annotating images for strip detection
Training Process for Defect Detection:

Figure 10 depicts the training process for a YOLOv8 model on the defect dataset. We
utilized  the command  “lyolo  task=detect = mode=train = model=yolov8m.pt
data=/content/blister_strip_detect/data_custom .yaml epochs=70 imgsz=640 plots=True”
for training process.

Following are the descriptions of all the parameters in the above command:

. task=detect: Designates the task type as object detection.

. mode=train: Changes the mode to training.

. model=yolov8m.pt: This is the medium version of the YOLOv8 model.

. data=/content/Blister-Strips-defect-detections/data.yaml": Defines the
location of the dataset configuration file.

. epochs=70: This sets the number of training epochs to 70.

. imgsz=0640: Restricts the image size for training to 640 pixels.

. plots=True: Allows graphing of training outcomes.
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Figure 10. Training of defect detection model
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Figure 11. Summary of defect detection model training
As shown in Figure 11, the machine learning model training session using YOLOv8
for defect detection was completed in around 2.031 hours over 70 epochs, with a GPU
memory consumption of 9.846 GB. The model was evaluated on 38 images, achieving a mean
average precision (mAP) of 0.995 at an IoU threshold of 0.5 (mAP50) and 0.9 across multiple
thresholds from 0.5 to 0.95 (mAP50-95). The dataset was trained to detect three classes
broken, missing, and cracked, the model demonstrated high accuracy across all categories.
Additionally, the processing times were efficient, with a preprocessing speed of 0.3 ms, an
inference time of 15.6 ms, and a postprocessing time of 1.4 ms per image.
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Figure 13. Summary of strip detection model training
Training Process for Strip Detection:

Figure 12 depicts the training process for a YOLOvV8 model on the dataset of blister
strips. The initial setup, configuration for training a YOLOVS object detection model, and
initialization of training were done by the following command:

“lyolo task=detect mode=train model=yolov8m.pt
data=content/blister_strip_detect/data.yaml epochs=70 imgsz=640 plots=True”.

The yolov8m model and dataset mentioned in "data.yaml” were used, with 70 epochs
and an image size of 640 pixels. Plotting is enabled. This setup enabled the model for training
on the specified dataset with detailed configuration logging.
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Figure 13 presents the summary of the training and validation results for a YOLOvVS
model for strip detection. A different data set was used for the training of strip detection. The
model completed 70 epochs in 0.532 hours, using around 7.39 GB of GPU memory in the
final epoch. Validation results indicated that the model was evaluated on 26 images, achieving
a mean average precision of 0.995 at a threshold of 0.5 and 0.951 at thresholds from 0.5 to
0.95 of IoU. The training summary shows 218 layers, 258.4 million parameters, and 78.7
GFLOPs. The processing speeds are 0.2 ms for preprocessing, 11.6 ms for inference, and 0.8
ms for post-processing per image.

Overtfitting Prevention Techniques:

In this study, three overfitting prevention techniques were utilized to ensure
robustness. Firstly, overfitting was prevented by changing the direction and tilt of tablet strips
in the dataset. This enabled the model to recognize tablets in various orientations rather than
memorizing specific locations, allowing it to identify tablets even when their orientation
changes. This approach aligns with real-life scenarios where the direction of the tablet strip
may not always be the same. Secondly, the model was trained on images captured under
different indoor lighting conditions. This helped the model to focus on key features such as
defect detection, rather than being biased by light variations. Lastly, the training was stopped
when the validation loss ceased to improve, ensuring that the model simply did not memorize
the training data, including noise, which could lead to poor performance on unseen data.
Results and Discussion:

Figures 14 and 15 display graphs illustrating various metrics during the training and
validation phases of our two trained models. It was observed that training losses for box,
classification, and dfl decrease over epochs, while recall and precision increase with time,
stabilizing at around 50 epochs. These results indicated that the model is efficiently learning
from the training of data, adjusting its parameters, and refining its predictions, leading to better
performance across several metrics.

Testing:

Various blister strips were tested after completing the training process. As shown in
Figure 106, the system successfully identified both a single missing tablet and four missing
tablets. Similarly, several blister strips with varying defects were tested. Identification of
missing, broken, and cracked defects is presented in Figure 17.

Real-Time Testing of the Blister Strips:

The system fully integrated is shown in Figure 18. To assess the effectiveness of the
designed system, faulty tablets were detected in real-time by inspecting them as they moved
along the conveyor belt. The camera mounted on the stand above the conveyor belt took real-
time images of the strips. The data was processed on the spot, and defects were identified.
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Figure 16. (a) Results show a missing tablet with a Rectangular Red Box. (b) Results
showing four missing Tablets in the Blister Strip
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Figure 18. Real-time detection of defects by the Tablet Guard System

The defect in weight was identified by the load cell as shown in Figure 19. The webcam
feed results shown in Figures 20 and 21 are the final detected outcome of the project. These
figures indicate how the strip is manipulated under the camera, and the algorithm works
efficiently to detect broken, cracked, or missing tablets in a single strip.
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Production day: 12/07/2024
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Strip ID: 10

Production day: 12/07/2024
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Figure 20. (a)Detection result and its strip ID (b) Detection result showing the missing and
broken defect
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Figure 21. (a)Result showing the cracked and broken defect (b) Result showing all the

defects
The employment of YOLOVS allows for real-time defect identification with an
accuracy of up to 90%, thereby improving efficiency and reducing manufacturing line
disorders. The significance of the proposed system lies in its ability to modernize the quality
control practice, decreasing the possibility of defective products reaching customers, and
ensuring safety while also strengthening the reputation of manufacturing companies.
Finally, the defective piece was removed with the help of removing mechanism
connected to a servo motor as shown in Figure 22.
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Figure 22. Servo Motor with a removing bar
Error Handling and Accuracy Improvement:

In our proposed system, handling false positives and error correction is essential for
reliable defect detection. The combination of load cell-based weight analysis and the deep
learning technique allows the system to cross-check for defective tablets. If a tablet is
misidentified due to noise or lighting conditions, the dual check approach helps to reduce
errors. In addition, the defect detection algorithm has been fine-tuned to minimize
misclassifications. During the process, the errors were manually reviewed and logged for
further model improvement.

Comparison of Results with Existing Studies:

In this section, a detailed comparison of our work with existing studies reported in the
literature is presented. Table 2 summarizes this comparison. Although several studies on tablet
defect detection exist, only a few focus on deep learning. Therefore, the comparison includes
not only papers on blister defect detection but also those applying deep learning techniques
to other related applications.

As shown in Table 2, the proposed Tablet-Guard project achieves an impressive mAP
of 0.995 using YOLOVS for real-time defect detection in blister strips. Its integration of a load
cell ensures both physical and visual inspection, enhancing reliability.

While the design in [21] achieved an impressive 99.7% classification accuracy, it
requires manual placement of tablets in a 3D-printed tray. In addition, its reliance on
structured placement introduces segmentation challenges such as a shift in the tablets,
misalignment in the tray, or the camera angle, which can mess up the segmentation, leading to
inaccurate defect detection. Our proposed Tablet-Guard’s conveyor system and deep learning-
based defect detection eliminate such limitations by enabling continuous, high-speed
inspection without positional constraints.

An extended model of Faster R-CNN, known as Mask R-CNN has been used by the
authors in [12]. This approach shows potential for small-scale pill detection with a 0.916 mAP
but struggles with efficiency due to its two-step processing and limited dataset adaptability,
which is a disadvantage for high-speed pharmaceutical production lines.

Another notable comparison is with the design in [22], which uses a YOLOv5-based
defect detection system and achieved 99.2% accuracy while incorporating additional quality
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parameters like crushing strength and disintegration time. While this approach enhances tablet
integrity assessment, it lacks a physical removal mechanism like the one in our proposed Tablet
Guard, which is crucial for automated production lines. Additionally, Tablet-Guard’s
YOLOVS implementation surpasses YOLOV5 in accuracy and speed, making it a more
efficient solution.

In the realm of blister package inspection, the YOLOv7-based system presented in
[23], focused on detecting broken pills, cracks, foreign objects, and color mismatches,
achieving an mAP of 0.962. However, its reliance on image uploads for defect identification
makes it less effective for real-time inline production monitoring compared to Tablet-Guard's
conveyor-based automation.

Comparing broader applications, the paper in [24] tackled steel surface defects with
Faster R-CNN, SSD512, and improved YOLOvV7, achieving 0.711, 0.724, and 0.812 mAP
respectively. Though the methods enhance speed and feature extraction, their lower accuracy
highlights challenges in adapting these approaches to pharmaceutical-grade precision.

Other applications, [25] (YOLOVS for tomato leaf disease detection, 98.9% mAP) and
[26] (YOLOWVS for Bangus freshness assessment, 98.5% mAP), demonstrate the versatility of
deep learning in quality assurance across different domains. While these systems showcase
high accuracy, they work well mostly in controlled, predictable setups. In contrast, in Tablet-
Guard, defects must be detected while everything is in motion. This makes Tablet-Guard more
flexible and adaptable to real-world manufacturing environments.

In summary, the proposed Tablet-Guard achieves high accuracy with a practical
implementation that combines deep learning, load cell technology, and a removal mechanism,
making it a robust, real-world solution for pharmaceutical quality assurance.

Conclusion:

Throughout this study, the particulars of the proposed Tablet-Guard project were
thoroughly examined, with a prime focus on automating quality control in pharmaceutical
tablet manufacturing. This is necessary for the safety and well-being of the patients. The
workflow involves capturing images of blister strips moving on a conveyor belt, creating a
dataset for training machine learning models, and employing CNN for defect detection. The
system effectively detects broken, missing, and cracked tablets within blister strips. The load
cell accurately measures the weight of each blister strip, while the camera, in conjunction with
Al algorithms, identifies any visible defects. Upon detection of a fault, the Arduino board
sends a signal to activate the servo motor, which removes the damaged blister strip from the
production line. The training of a machine-learning model for defect detection and the design
of a conveyor belt system for moving blister strips have been presented in detail. The results
demonstrate that the proposed Tablet Guard System is both effective and reliable in
maintaining high-quality control standards, significantly reducing the risk of defective products
reaching consumers.

Future Improvement:

In our current scenario, the conveyor belt operates at a constant speed, which was
carefully determined by noting the processing time of load cell measurement, image
processing, and servo motor response. The speed was synchronized to ensure that defect
detection and tablet removal occurred without delays. A potential future improvement could
be the integration of a feedback-based speed control mechanism, allowing the conveyor belt
to adjust its speed based on real-time processing delays. By doing this, the system will ensure
that defect detection remains reliable and does not degrade in accuracy due to changes in
processing time. Future work will explore this approach to improve adaptability and
responsiveness to real-life scenarios.

March 2025 | Vol 7 | Issue 1 Page | 599



A
OPEN () ACCESS . . . .
International Journal of Innovations in Science & Technology

Table 2. Summary of comparison of the proposed design with existing studies

Application | Model used | Epoch | mAP@0.5 | Year
This Defect YOLOv8 70 0.995 2025
work | detection in
blister strips
[21] Defect CNN 17 0.997 2025
detection in (VGG106) accuracy
film-coated
tablets.
[12] Medicine Mask R- 300 0.916* 2022
inspection CNN
[22] | Tablet defect | YOLOV5 200 0.992 2024
detection accuracy
[23] Defect YOLOv7 50 0.962 2024
detection in
blister
packages
[24] Steel strip Faster R- NA 0.711 2022
defect CNN
detection SSD512 0.724
YOLOv7 0.812
[25] Tomato leaf | YOLOvS 200 NA 2023
disease
detection
[26] | Freshness of | YOLOVS ~272 0.985 2023
Bangus
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