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he accuracy of real-world facial recognition operations faces challenges because of the 
difficulties connected to Low-Resolution image quality. This indicates that super-
resolution methods play a vital role in improving recognition outcomes. Currently, 

available SR techniques do not achieve generalization due to their dependence on synthetic 
LR data that uses basic down sampling processes. The proposed GAN-based approach 
establishes a solution to this challenge through its simulation of actual degradation algorithms 
which combine Gaussian blur with noise addition and color modification and JPEG 
compression. Random application of augmentation parameters allows the GAN model to 
acquire knowledge about diverse and realistic low-resolution data distribution patterns during 
training. A unique unaligned face image pair dataset was made specifically for research using 
Zoom-In and Zoom-Out methods to capture high-resolution and low-resolution images from 
the same individuals. The dataset presents authentic real-life scenarios better than 
conventional paired collection methods. Based on experimental results our method produces 
substantial gains in performance compared to other super-resolution methods across both 
self-created face data as well as established surveillance data. The proposed model achieves 
higher visual quality standards while improving facial recognition accuracy under different 
operational situations. In conclusion, this study implements an effective SR solution for facial 
recognition which tackles problems with standard training datasets while creating authentic 
face image data. The proposed method shows promise for enhancing SR applications which 
need high-quality facial recognition capability in surveillance systems and other security-based 
operations. 
Keywords: Super-Resolution; Generative Adversarial Networks; Face Recognition; 
Surveillance Datasets; and Image Quality Enhancement 

     

 
 

   

    
 

T 

mailto:muhammadfarooq44@gmail.com


                                 International Journal of Innovations in Science & Technology 

April 2025|Vol 07 | Issue 02                                                                Page |676 

Introduction: 
High-resolution (HR) facial images are increasingly in demand for applications in 

surveillance, identification, and medical diagnostics.  However, many existing super-resolution 
(SR) techniques face practical limitations due to fundamental constraints, affecting their real-
world effectiveness.  A large number of SR models require synthetically produced Low-
Resolution (LR) data as their base. However, this approach often fails to accurately replicate 
real-world degradation effects, such as blurring, noise, and compression artifacts, leading to 
potential inaccuracies in model performance [1]. Training based on mismatched data between 
training samples and real-world conditions produces ineffective SR models. Secondly, models 
trained on limited paired High-Resolution (HR) and Low-Resolution (LR) data from a single 
source struggle with generalization, making it challenging to adapt to diverse real-world 
environments. The SR models trained on studio portraits with close-up details often deteriorate 
performance when applied to surveillance footage captured from a distance [2]. Finally, a 
significant performance gap arises when training data does not align with the actual deployment 
environment of the model. The deployment of high-resolution professional images during 
training followed by the application of security camera grainy footage leads to performance 
degradation of the SR model [3]. The identification performance of facial recognition systems 
becomes substantially more challenging due to monitoring issues that lead to diminished image 
quality resolution and disused camera positioning. 

Data degradation impacts images through blurring, downsampling, noise, and 
compression artifacts, all of which significantly reduce facial recognition accuracy in affected 
conditions. The current paper proposes a GAN-based system designed to address the practical 
challenges associated with LR facial images captured in real-world scenarios. The FR-SRGAN 
(Facial Recognition Enhancement Super-Resolution Generative Adversarial Network), built 
upon Wang et al.'s [4] GFP-GAN presents a distinct approach to resolving the current issues of 
super-resolution technologies. 

The FR-SRGAN implements a novel data expansion method for reproducing real-life 
image degradations encountered in natural settings. The model is trained using a diverse range 
of image degradation techniques, including Gaussian blur, downsampling, noise addition, color 
jittering, and JPEG compression, to enhance its robustness in real-world scenarios. The FR-
SRGAN training benefits from diverse realistic LR images when random parameters are added 
to different types of variations during training. This enhanced training technique enables the 
model to achieve superior performance in blind face restoration by effectively handling 
unknown degradation scenarios during the reconstruction process. The FR-SRGAN delivers 
highly detailed and noise-reducing face restoration which enables dependable performance of 
facial recognition systems throughout different operational settings. 
Objectives: 

This study aims to address these limitations by developing more effective SR methods 
for facial recognition. Specifically, our objectives are: 

• To develop a novel unaligned facial dataset using Zoom-In and Zoom-Out capture 
methods, simulating real-world conditions more accurately. 

• To enhance face recognition performance by testing our SR model on both the new 
dataset and existing surveillance datasets. 

• To evaluate the effectiveness of face recognition techniques across varying image 
resolutions in real-world surveillance scenarios. 

• To contribute to the field by providing insights into dataset alignment and model 
performance in low-resolution settings. 

In achieving these objectives, our study makes significant following contributions. 

• We developed a fresh unaligned dataset that contains matching face images from high 
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and low resolutions that were taken through the Zoom-In and Zoom-Out methods.  

• We obtain exceptional results that apply to our developed facial test dataset together 
with present-day surveillance image datasets. 
Related Work: 

Computer vision relies heavily on image restoration for various applications. Super-
resolution is a key task within image restoration, alongside noise and blur removal and the 
elimination of compression artifacts.  These restoration methods enhance image quality, making 
them valuable for applications in facial recognition, medical imaging, and surveillance. Through 
deep learning technology, the field of image restoration has achieved major experimental 
development. It has witnessed significant growth through three main techniques commenting 
Variational Autoencoders (VAEs), Generative Adversarial Networks (GANs), Transformers, as 
well as Diffusion-based models. These diverse approaches enhance image restoration research 
by offering unique advantages, contributing to its overall progress and innovation.  
Variational Autoencoders (VAEs): 

The Variational Autoencoder (VAE) model generates large images from compressed 
lower-resolution data that resides in its latent space segment. While Variational Autoencoders 
(VAEs) exhibit a strong ability to analyze and model noise, their effectiveness in super-
resolution tasks remains limited. Recent research advancements indicate that incorporating 
downscaled image information [5] alongside adversarial training of VAEs [6] significantly 
enhances image quality in super-resolution tasks. The data distribution focus of VAEs results in 
smooth image outputs, but it often overlooks fine image details, potentially resulting in issues 
such as posterior collapse in complex model architectures.  High-resolution image generation 
benefits from models including SR-VAE [6] and VDVAE-SR [7] despite their performance 
limitations. 
Generative Adversarial Networks (GANs): 

GANs have revolutionized image restoration by the combination of a generator and a 
discriminator component. The generator synthesizes realistic images, while the discriminator 
evaluates them by comparing them against real photographs, enhancing the overall image quality 
and authenticity. This Research demonstrates that adversarial training reaches successful results 
in super-resolution applications as well as deblurring operations. The significant breakthroughs 
achieved by SRGAN [1] and ESRGN [8] came from their application of perceptual loss for 
improving fine image textures. The relativistic discriminator produces enhanced real-world 
effects in the output. GANs demonstrate exceptional performance in challenging image 
restoration tasks, particularly in blind face restoration. Notable examples in this field include 
GPEN [9] and Real-ESRGAN [10], which effectively enhance facial details in low-quality 
images. GLEAN [11] leverages pre-trained GANs for superior image super-resolution, while 
PSFR-GAN [12] employs a semantic progressive restoration approach enabling high-quality 
facial image recovery through a framework. The VQFR system [13] restores facial details using 
vector-quantized dictionaries while incorporating an information and style loss framework to 
enhance image quality and realism.  However, GANs face challenges such as mode collapse, 
unrealistic artifacts, overfitting, and high computational costs, necessitating ongoing research 
for more stable, efficient, and generalizable super-resolution methods. 
Transformer-Based Models: 

Transformer-based models have emerged as powerful tools for image restoration, 
excelling in tasks like super-resolution and deblurring due to their ability to capture long-range 
dependencies. Models like Uformer [14], SwinIR [15] and DATSR [16] have achieved state-of-
the-art results by incorporating advanced Transformer architectures and attention mechanisms. 
However, challenges such as computational intensity, difficulty in capturing fine details, and 
susceptibility to overfitting persist, necessitating further research to optimize transformer 
models for broader image restoration applications. 
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Diffusion-based models: 
Diffusion models are a generative approach that progressively refines an image through 

iterative noise addition and removal. These models have demonstrated significant potential in 
super-resolution tasks, with approaches like SR3 [17] achieving remarkable results, especially in 
face restoration. However, limitations include computational intensity, the potential imbalance 
between noise removal and detail preservation, and sensitivity to training data quality. Despite 

these challenges, advancements like IDM [18], DiffPIR [19], and SRDiff [20] have addressed 
specific issues, demonstrating the potential of diffusion models in generating high-quality, 
diverse super-resolution images. 

 

Figure 1: Overview of FR-SRGAN model framework. It consists of a degradation removal 
module (U-Net) and a pre-trained face GAN as facial prior. They are bridged by latent code 

mapping and several Channel-Split Spatial Feature Transform (CS-SFT) layers. 
Methodology: 
Our Proposed Model: 

The FR-SRGAN develops an advanced solution that addresses current super-resolution 
technology weaknesses. The combination of GANs and U-Net provides FR-SRGAN with all 
key advantages and helps reduce their weaknesses to achieve enhanced resolution and quality 
enhancement. This model enables users to achieve both improved image resolution and 
enhanced quality while preserving the natural facial features and identity characteristics of the 
photographed individuals.  Real-world testing confirms that FR-SRGAN delivers superior facial 
image quality results than other models in operation. By enhancing unclear or low-resolution 
faces, FR-SRGAN improves facial visibility, leading to greater accuracy and performance in face 
recognition systems. This innovation promises reliable applications especially for automated 
attendance systems because it enhances facial detail recognition to improve the system’s 
performance in real-world scenarios. 

The following sections examine the operational details of the proposed FR-SRGAN 
model. This section provides an in-depth evaluation of its structural configuration.  
Overview of FR-SRGAN: 

Figure 1 illustrates the overall architecture of FR-SRGAN, which combines a U-Net-
based degradation removal module with a pre-trained face GAN, such as StyleGAN2, to 
generate high-quality facial images.  A latent code mapping sequence connects these components 
using several Channel-Split Spatial Feature Transform (CS-SFT) layers for their operation.  

The degradation removal module functions to erase sophisticated degradation while 

obtaining two distinct features which include latent features.  𝐹latent for finding matching 
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StyleGAN2 latent codes in addition to multi-resolution spatial features  𝐹spatial for the 

modification of StyleGAN2 features. The intermediate latent codes (W) emerge after 𝐹latent 
undergo several linear operations. The latent code that matches the input image enables 
StyleGAN2 to create intermediate convolutional features named FmGAN which retrieve 

detailed facial attributes from its pre-trained GAN weights. The  𝐹spatial features are then used 

to modulate the FmGAN features spatially using CS-SFT layers in a step-by-step manner, 
ensuring realistic results while maintaining high fidelity. During the training phase, besides the 
global discriminative loss, a facial component loss is introduced through discriminators to 
enhance the perceptually important face components such as eyes and mouth. Additionally, 
identity-preserving guidance is utilized to retain the person’s original identity throughout the 
enhancement process. 
Cleaning Up Blurry Faces using the Degradation Removal Module: 

In real-world scenarios, the restoration of facial images often encounters complex quality 
challenges, such as low resolution, blurring, noise, and JPEG artifacts. Our degradation removal 

module is specifically crafted to tackle these issues and extract ’clean’ features, denoted as 𝐹latent  

and  𝐹spatial, streamlining the subsequent processes. 

To address the crucial task of degradation removal, we employed the U-Net architecture. 
U-Net serves a dual purpose: 1) it expands its receptive field to effectively handle significant 
blurring and 2) it generates features at multiple resolutions. Mathematically, this operation can 
be represented as: 

𝐹𝑙𝑎𝑡𝑒𝑛𝑡 ,   𝐹𝑠𝑝𝑎𝑡𝑖𝑎𝑙 =  U − Net(𝑥) (1) 

The 𝐹latent latent features direct the input image toward its most compatible feature set 

in StyleGAN2. The multi-resolution spatial features  𝐹spatial guide StyleGAN2 to better refine 

its features at the same time. The L1 restoration loss gets integrated for degradation removal 
during the initial training stage by applying it at each resolution scale. The system produces 
images at different U-Net decoder resolution levels and then enforces them to match 
corresponding levels of the ground-truth image's pyramid. The utilization of L1 restoration loss 
produces a more precise and effective degradation removal process through its deployment as 
an intermediate supervision mechanism. Each resolution output from the U-Net decoder is 
generated as images which enable direct image-by-image comparison against the ground-truth 
image’s pyramid to achieve better alignment with the target results. This verification method 
improves the ultimate quality of degradation removal processing. 
Leveraging a Pre-Trained Face Model for Rich Details (Generative Facial Prior and 
Latent Code Mapping): 

The essential feature of FR-SRGAN involves incorporating a pre-trained face generation 
model known as a Generative Adversarial Network (GAN) typically based on StyleGAN2. The 
models function as "face experts" because they acquired extensive knowledge of facial elements 
from examining huge collections of face images. The model stores its acquired knowledge in 
layers which it refers to as "generative prior." 

Closely related latent codes (Z) are found in the GAN’s latent space by mapping the 
input image by typical methods to generate output images with a pre-trained GAN. The image 
restoration methods need extended optimization periods to maintain image fidelity. 

FR-SRGAN provides an efficient solution to this challenge through its unique approach. 
The model operates through two stages by using U-Net generated "latent features" F_latent 
before proceeding to visualization of the final image (explained in Section 3.2: Cleaning Up 
Blurry Faces using the Degradation Removal Module). The latent features obtained from U-Net 
effectively retain the fundamental elements of blurry input images. FR-SRGAN analyzes latent 
features as input to identify the face from a database of faces contained within the pre-trained 
face generation model.  
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After identifying a suitable match FR-SRGAN starts creating "intermediate features" 
(F_GAN) from that match. The intermediate features in the system contain expanded details 
beyond basic code thus enabling a more precise depiction of the original facial features. FR-
SRGAN adds Multi-Layer Perceptron (MLP) layers to its architecture for fine-tuning as 
displayed below. 

𝑊 = 𝑀𝐿𝑃(𝐹latent).(2) 
 The optimization adjustments maintain the semantic content of image information. New 
features created from W move through multiple convolution stages present in the pre-trained 
GAN to create features at each dimension level as shown below. 

𝐹𝐺𝐴𝑁 = 𝑆𝑡𝑦𝑙𝑒𝐺𝐴𝑁(W).(3) 
This two-step approach, leveraging the pre-trained face generation model’s knowledge 

and then fine-tuning with the U-Net extracted features, allows FR-SRGAN to achieve superior 
image quality with a more efficient computational process compared to traditional methods. 
Refining Details with Channel-Split Spatial Feature Transform (CS-SFT): 

To enhance image quality, the spatial features of the input, denoted as 𝐹spatial (generated 

by U-Net as per Equation 1), were employed to adjust the GAN features 𝐹𝐺𝐴𝑁 As defined in 
Equation 3. Preserving spatial information is crucial for facial image restoration as it involves 
retaining local features and customizing restoration for different facial regions. To accomplish 
this, FR-SRGAN employs the Spatial Feature Transform (SFT) technique, which is renowned 
for its effectiveness in spatial feature modulation across various imaging tasks. At each resolution 

level, a pair of parameters (𝛼, 𝛽) scale and shift the GAN features 𝐹𝐺𝐴𝑁 based on 𝐹spatial 

through several convolution layers. Mathematically, this operation can be expressed as:  

𝛼, 𝛽 = Conv(𝐹spatial), 𝐹output = 𝑆𝐹𝑇(𝐹𝐺𝐴𝑁|𝛼, 𝛽) = 𝛼 ⊙ 𝐹𝐺𝐴𝑁 + 𝛽.(4) 

To maintain a balance between realism and detail preservation, Channel-Split Spatial 
Feature Transform (CS-SFT) layers were incorporated into the model.  These layers selectively 

adjust a subset of the GAN features. 𝐹𝐺𝐴𝑁 using the input features 𝐹spatial, while allowing the 

remaining GAN features to pass through unchanged. Formally, this is represented as:  

𝐹output = CS − SFT(𝐹𝐺𝐴𝑁|𝛼, 𝛽), = Concat[Identity(𝐹GAN
split0

), 𝛼 ⊙ 𝐹GAN
split1

+ 𝛽].(5) 

where 𝐹split0,GAN and 𝐹split1,GAN represent partitioned features from 𝐹𝐺𝐴𝑁. 

The utilization of CS-SFT offers a dual advantage: it effectively integrates prior 
knowledge and enables adaptive image modulation, resulting in a well-balanced output in terms 
of texture and detail. Moreover, CS-SFT reduces computational complexity by requiring fewer 
channels for modulation. 

In summary, these channel-split SFT layers were applied at each resolution level to 

produce the final restored facial image denoted by �̂� . 
Training FR-SRGAN: 

Our FR-SRGAN model is designed with a comprehensive learning objective, 
incorporating four distinct types of losses: reconstruction loss for accuracy, adversarial loss for 
texture realism, facial component loss for enhancing facial features, and identity-preserving loss 
for maintaining facial uniqueness. 
Reconstruction Loss: FR-SRGAN utilizes both L1 loss and perceptual loss as part of its 

reconstruction loss to ensure an accurate reconstruction 𝐿rec:  

𝐿rec = 𝜆𝑙1 ∥ �̂� − 𝑦 ∥1+ 𝜆per ∥ 𝜙(�̂�) − 𝜙(𝑦) ∥1(6) 

where 𝜙 represents a pre-trained VGG-19 network and the weights 𝜆𝑙1 and 𝜆per determine the 

importance of L1 and perceptual losses. 

Adversarial Loss: For realistic textures, FR-SRGAN introduces an adversarial loss. 𝐿adv to 
encourage the model to generate images indistinguishable from real ones. This loss function is 
similar to StyleGAN2 and is defined as:  
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𝐿adv = −𝜆adv𝐸�̂�[softplus(𝐷(�̂�))](7) 

where 𝐷 is the discriminator, 𝐸�̂� Denotes the expectation over the generated images, 

soft plus is a smooth approximation of the rectified linear unit (ReLU) activation function, 

commonly used in adversarial networks, and 𝜆adv is the weight for the adversarial loss, 
controlling its influence in the training process. 
Facial Component Loss: To refine specific facial regions like the eyes and mouth, a specialized 
facial component loss is introduced. This loss involves local discriminators trained on distinct 
facial areas, extracted through ROI alignment. Additionally, a feature style loss is integrated to 
match Gram matrix statistics between real and restored patches, enhancing facial details:  

𝐿comp = ∑ROI (𝜆local𝐸�̂�ROI
[log(1 − 𝐷ROI(�̂�ROI))] +𝜆𝑓𝑠 ∥ Gram(𝜓(�̂�ROI)) −

Gram(𝜓(𝑦ROI)) ∥1)(8) 

where 𝜆local and 𝜆𝑓𝑠 Represent the weights for local discriminative loss and feature style loss, 

respectively. 

Identity-Preserving Loss: The identity-preserving loss (𝐿id) ensures that the restored image 
faithfully preserves the individual’s unique facial identity. Facial feature comparison is performed 
through an ArcFace model (η) operating in its compact feature space to accomplish this process. 

𝐿id = 𝜆id ∥ 𝜂(�̂�) − 𝜂(𝑦) ∥1(9) 
The ArcFace model (η) represents the face feature extraction component while λ_id controls its 
weight when calculating L_id. 
The total objective function combines these individual losses:  

𝐿total = 𝐿rec + 𝐿adv + 𝐿comp + 𝐿id(10) 

The weights assigned to these losses are as follows: 𝜆𝑙1 = 0.1, 𝜆per = 1, 𝜆adv = 0.1,  𝜆𝑓𝑠 =

200, 𝜆𝑖𝑑 = 10. 
Experiments: 
Datasets: 

To build a comprehensive dataset, we employed multiple data acquisition methods to 
collect facial images for training and evaluating restoration models. We implemented the data 
capture methodology described in ”Zoom to Learn, Learn to Zoom” by Zhang et al. [21] using 
a Nikon D3500 camera to obtain high-resolution (HR) and low-resolution (LR) image pairs. A 
combination between zoom-in and zoom-out methods was used to create image pairs as 
illustrated in Figure 2. The dataset achieves greater generalizability by incorporating multiple 
data collection settings across two distinct locations: a controlled indoor environment and an 
outdoor setting with varying lighting conditions. After image acquisition, the next step involved 
a structured data pre-processing procedure. The Haar Cascade model was used for automatic 
face detection within the images as an initial step. The system proceeded to extract the face 
region from the identified areas in the pictures. Finally, to ensure consistency and meet 
computational requirements, we resized the cropped HR images to 512 × 512 pixels and the LR 
images to 128 × 128 pixels. The resulting dataset comprises 1,240 paired HR and LR images for 
training and 160 paired images for testing. Figure 3 shows the sample LR and HR images in our 
dataset. It’s important to note that while the images within each pair are highly similar, they are 
not perfectly aligned, making them ” weakly aligned” data. 
Additional Dataset from Surveillance Scenario: 

In addition to the primary dataset, experiments were also performed on Dataset-IV. 
Originally used in the SR-CGAN study by [2], Dataset-IV is a highly degraded dataset designed 
for super-resolution research.  
Training Details: 

Training is carried out through the Adam optimization algorithm for a cumulative total 
of 80,000 iterations. The initial learning rate is fixed at 2 × 10−3, which is subsequently reduced 
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by half at the 70,000th and 75,000th - operation milestones. All implementations are executed 
using the PyTorch framework and deployed on a computing environment equipped with a 
Single NVIDIA GeForce RTX 3060 GPU. 
Experiments and Results: 

In this section, we evaluated the effectiveness of our proposed model and compared it 
with state-of-the-art methods. The comparison is based on two categories of criteria: 

 
Figure 2: Sample images of low- and high-resolution image pair capturing Using Zoom-In 

and Zoom-Out Techniques. 

 
Figure 3: The first and third columns show sample real low-resolution face images, while the 

second and fourth column shows corresponding high-resolution face images. 
Qualitative evaluation: We visually compared the restored images generated by our model 
with those produced by other leading methods and the original High-Resolution (HR) ground 
truth images. This visual inspection allows us to identify which method generates restorations 
that most accurately resemble the actual high-resolution (HR) images. Quantitative evaluation: 
For quantitative evaluation, we acknowledged that a definitive ground truth for super-resolution 
(SR) reconstruction is unavailable, as the HR-LR pairs in the test set are not perfectly aligned. 
However, their similarity is sufficient to allow comparison using a perceptual similarity measure. 
To quantitatively assess SR reconstructions against their corresponding HR images, we use the 
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Fr´echet  Inception Distance (FID) as an evaluation metric. We employed the implementation 
by Seitzer1, which utilizes an Inception model to extract features from an intermediate layer for 
comparing SR reconstructions with their paired HR images. 

 
Figure 4: Figure showcasing the outcomes of our proposed super-resolution method (FR-

SRGAN). Low-resolution images are displayed in the first and third columns, with their 
enhanced, super-resolved versions depicted in the second and fourth columns.. 
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Figure 5: Comparision of state-of-the-art Super-Resolution methods 

Our proposed model demonstrated remarkable performance. It particularly excelled in 
preserving facial details and identity while minimizing artifacts when applied to real-world, low-
quality images. For optimal detail visualization, zooming in is recommended. 

Figure 4 shows the results of using our proposed method for super-resolution. The 
images in the first and third columns are low-resolution, while those in the second and fourth 
columns are their enhanced, super-resolved versions. 
Comparison with State-of-the-Art Methods: 

We conducted a comprehensive comparison of our proposed model with cutting-edge 
facial restoration and super-resolution techniques both numerically and qualitatively. 
1. Unpaired Image-to-Image Translation using Cycle Consistent Adversarial Networks 
CycleGAN[25] 
2. Blind Face Restoration with Vector-Quantized Dictionary and Parallel Decoder[13] 
(VQFR) 
3. Designing a Practical Degradation Model for Deep Blind Image Super-Resolution [26] 
(BSRGAN) 
4. Deep Unfolding Network for Image Super-Resolution [24] (USENET) 
5. Efficient Mixed Transformer for Single Image Super Resolution [22] (EMT) 
6. Image Restoration Using Swin Transformer [15] (SWNIR) 
7. Efficient Diffusion Model for Image Super-resolution by Residual Shifting[23] (ResShift) 

Additionally, we trained these models using our face-specific training dataset to ensure 
an equitable assessment. The official implementation codes were employed for all models to 
maintain consistency and reliability in the evaluation process. Importantly, following rigorous 
training and testing procedures, it is observed that our proposed model outperformed the 
competing methodologies both visually as well as quantitatively. In terms of FID, our proposed 
method largely outperformed all other methods as shown in Table 1. Moreover, as shown in 
Figure 5, our method yields the most visually compelling results. 
Performance Comparison on Highly Degraded Images: 

To evaluate the effectiveness of our proposed model (FR-SRGAN) on severely degraded 
images, we compared its performance with Farooq et al. [2] proposed model (SRCGAN) using 
its most challenging test set of LR Dataset IV due to its high level of degradation. As illustrated 
in Figure 6, our model demonstrably outperforms SRCGAN on this particularly degraded 
dataset.  
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Table 1: Comparison with state of the art. Lower FID values are better. Our proposed model 
results are superior to those of other methods. 

Method FID 

Our proposed model (FR-SRGAN) 135.02 

CycleGAN [25]  284.7 

VQFR [13]  135.09 

USENET [24]  221.97 

SWNIR [15]  159.38 

EMT [22]  228.98 

ResShift [23]  175.83 

Discussion: 
The core difference between SR-CGAN [2] and our proposed model (FR-SRGAN) lies 

in the training data used. SR-CGAN relies on paired real high-resolution (HR) and real low-
resolution (LR) images. In contrast, our proposed model leverages real HR images from Dataset 
IV and generates its own corresponding LR images. This approach allows our model to learn 
from a wider range of potential LR image degradations compared to the fixed real LR 
counterparts used by SR-CGAN. As a consequence, when tested on real LR images, our 
proposed model outperformed SR-CGAN. This is because our proposed model’s training 
incorporates a more diverse set of realistic LR image variations, potentially better equipping it 
to handle real-world scenarios. The model excels notably in the context of facial super-
resolution, demonstrating an enhanced ability to preserve the. 

 
Figure 6: Outcomes of our proposed super-resolution method. Low-resolution images are 
displayed in the first and third columns, with their enhanced, super-resolved versions depicted 
in the second and fourth columns. 
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Conclusion and Future Work: 
Our proposed model presented in this paper addresses the limitations of existing super-

resolution techniques for facial recognition by leveraging a data augmentation approach that 
simulates real-world image degradation processes. The approach enables the model to perform 
substantially better image restoration of low-resolution images and deliver superior facial 
recognition outcomes beyond current methods. The approach for future development would 
extend data augmentation methods to incorporate multiple types of real-world image 
degradation effects including motion blur and various degrees of lighting change. Additionally, 
future development efforts should both study different discriminator and generator 
architectures in GAN frameworks and create an entire system integration framework for real 
face recognition deployments to improve model functionality. Finally, research must explore 
methods to enhance the scalability of resource-limited environments and to improve efficiency 
along with ethical safeguards for high-quality facial recognition systems implementation. 
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