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bove-knee amputation remains a significant global issue, leaving many people 
physically disabled due to various natural and man-made causes, such as diseases, wars, 
and disasters. This article presents a novel, non-invasive active prosthesis based on 

electromyography (EMG). The proposed method offers a major advancement by achieving 
higher classification accuracy with minimal hardware requirements. Using EMG input signals, 
the active prosthesis controls three body postures: Sit, Stand, and Walk. These EMG signals 
are classified through two machine learning models: Support Vector Machine (SVM) and Long 
Short-Term Memory (LSTM) networks. Both models are evaluated based on accuracy. The 
results show that SVM outperforms LSTM, achieving a classification accuracy of 82%, while 
LSTM reaches 63%. 
Keywords: Lower Limb Exoskeleton / Prosthesis; Non-Invasive Electromyography; 
Intention Recognition; Support Vector Machine. 
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Introduction: 
Lower limb amputation remains a serious global issue, leaving many people physically 

disabled due to various natural and human-made causes, including diseases, wars, and natural 
disasters. However, diseases are still the leading cause of lower limb amputations. In the United 
States, it is estimated that by 2050, 3.6 million people will be living with amputations, 
compared to 2.2 million in 2021 [1]. In developed countries, diseases are the primary cause of 
trans-femoral amputations, mainly because diabetes mellitus has become more widespread, 
often leading to vascular complications. Peripheral vascular disease is the most common cause 
of lower limb amputations, while trauma is a leading cause in many low- and middle-income 
countries, affecting an estimated 57.7 million people. 

Unlike upper-limb prosthetics, lower-limb prosthetics that integrate neuromuscular 
system signals for control are less widely used. Over time, different types of artificial lower 
limbs have been developed to improve amputee mobility. These include passive, semi-active, 
and active prostheses. Due to various limitations, passive and semi-active prostheses are less 
in demand, while active (or powered) prostheses are increasingly popular and provide better 
support for people with trans-femoral amputations.  

Many researchers have worked to improve powered prostheses and address earlier 
limitations. In paper [2], an active prosthesis controlled by EMG is discussed, along with its 
limitations. Surface electromyography (sEMG) signals sometimes generate errors, which can 
cause amputees to fall. This prosthesis uses a machine learning model with a support vector 
machine (SVM) to classify signals. Another study [3] used a pattern recognition algorithm to 
translate EMG signals and combine sensor data from the prosthesis to interpret the user’s 
intended movements. A study [4] compared three classifiers—LDA, SVM, and LM-BP—to 
identify the best solution, finding that LDA performed the best with an accuracy of 92.46%, 
enabling continuous recognition of limb movement intentions. 

In paper [5], prosthesis control is achieved directly through neural signals activated by 
muscle contractions using EMG. Another experiment [6] analyzed modes using a finite-state 
approach and highlighted challenges in controlling the prosthesis using EMG signals. Study 
[7] proposed an automatic system for detecting and analyzing muscle defects by evaluating 
different leg movements with sEMG sensors and advanced machine learning algorithms, using 
SVM to classify muscle movements. 

A study [8] focused on intelligent lower-limb prostheses, emphasizing the importance 
of segmenting locomotion modes. Researchers analyzed five states—ramp descent (RD), level 
walking (LW), stair ascent (SA), stair descent, and ramp ascent—and achieved 99.16% ± 
0.38% accuracy with an ANN-based adaptive online learning algorithm. In paper [9], classifiers 
like linear discriminant analysis, Naive Bayes, k-nearest neighbor, and SVM were used to 
predict knee angles based on EMG data recorded while sitting and standing. Fifteen features 
were used to improve prediction accuracy, and principal component analysis helped address 
dimensionality issues, with the SVM classifier (quadratic kernel) performing the best. 

In study [10], the focus was on using electromyography and mechanical sensors to 
detect movement intentions in trans-femoral amputees using powered prostheses. The 
combination of mechanical sensor data and EMG signals reduced transitional error by 18% 
and steady-state error from 3.85% to 1.05%. Another study [11] developed an EMG-
controlled trans-femoral prosthesis using four machine learning models (LDA, SVM, KNN, 
and Decision Tree) to classify extension and flexion movements by analyzing signals from two 
muscle channels with six features each. Two models achieved accuracy below 80%, while the 
other two reached 80% and 81%. 

The main objectives of this study are to design and develop an EMG-controlled active 
prosthetic leg, create a muscle signal classification algorithm, and develop a prosthetic leg 
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control system. This research builds upon previous work [11] and offers the following key 
contributions: 
• Reduced Hardware Complexity: The proposed approach uses a single-channel 
setup instead of the two-channel system in the previous study, reducing complexity while 
maintaining high classification performance. 

• Higher Classification Accuracy: The classification accuracy of SVM has improved 
to 82%, compared to 70% in earlier work. 

• Enhanced Feature Extraction: This study extracted 22 features (21 time-domain 
and 1 frequency-domain), compared to just 6 time-domain features in the previous 
approach. 

• Dimensionality Reduction: Principal component analysis was applied to optimize 
classification performance, a technique missing in the earlier study. 

• Deep Learning Integration: Unlike the previous study, which relied solely on 
machine learning, this research incorporates long short-term memory (LSTM) to 
explore the potential of deep learning in prosthetic control. 

Objectives of the Study: 
The primary objective of this study is to design and evaluate a non-invasive 

electromyography (EMG)-based active prosthesis for above-knee amputees, enhancing 
intention recognition accuracy, classification efficiency, and real-time applicability. The 
specific objectives of this study are: 

• To develop a low-complexity, single-channel EMG acquisition system that reduces 
hardware requirements while maintaining high classification accuracy. 

• To compare the performance of traditional machine learning (SVM) and deep 
learning (LSTM) models for intention recognition in lower limb prosthetic control. 

• To optimize feature extraction and dimensionality reduction techniques by 
incorporating time-domain and frequency-domain features, enhancing 
computational efficiency. 

• To evaluate real-time feasibility and processing latency of the proposed system for 
potential integration into wearable prosthetic devices. 

• To assess the impact of dataset size, signal variability, and electrode displacement on 
classification accuracy, ensuring robustness across diverse user conditions. 

Novelty Statement: 
This study introduces a low-complexity, single-channel EMG-based prosthetic control 

system, which significantly reduces hardware requirements compared to conventional multi-
channel setups while maintaining high classification accuracy. Unlike previous works that 
primarily rely on linear classifiers or feature-limited datasets, this study integrates a 
comprehensive feature extraction framework with 22 extracted features and applies 
dimensionality reduction (PCA) to optimize classification performance. Additionally, the 
research provides a comparative analysis between SVM and LSTM classifiers, highlighting the 
advantages of traditional machine learning for small datasets and real-time applications. The 
findings demonstrate the potential for deploying EMG-based prosthetic control in real-world 
scenarios, bridging the gap between biomedical signal processing and practical assistive device 
development. 
Materials and Methods: 

EMG signals are acquired using non-invasive electrodes. These signals are then sent 
to the pre-processing module, where they are amplified, rectified, and filtered. Next, the 
feature extraction module processes the pre-processed data and extracts 21 time-domain 
features and 1 frequency-domain feature using a specific algorithm. A dimension reduction 
technique is then applied to optimize the data. 
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After this step, 10 principal components are provided to both classification modules 
for signal classification. The classifier with the best performance is selected. Based on the 
recognized motion intention, the accepted classifier sends commands to the control system, 
which then activates the prosthetic limb’s actuators accordingly. Figure 1 illustrates the block 
diagram of the lower limb exoskeleton. 

 
Figure 1. Block diagram of lower limb prostheses. 

Figure shows that EMG signal is acquired and then preprocessed to extract useful 
features for the brain intention of muscular actuation and classification task. With the classified 
intention the proposed system generates appropriate motor commands to generate required 
posture of active limb. 
Signal Acquisition: 

The signal is acquired using non-invasive electrodes, which are attached to the relevant 
muscles. The terminals of these electrodes are connected to an Arduino, which collects the 
data from the electrodes. This data is then transmitted and displayed on a monitor via a 
Raspberry Pi. This entire process constitutes signal acquisition. The electrodes used in this 
setup are shown in Figure 2. 

 
Figure 2. EMG Surface Electrodes 

Preprocessing: 

Preprocessing involves several steps, including amplification, rectification, filtering, 
normalization, and feature engineering. Signal preprocessing can be carried out using two 
methods: 
• Using an EMG Muscle Sensor Kit (this excludes normalization and feature 
engineering). 
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Using programming. 
In this study, both methods are applied for specific reasons, which are explained later. 

The EMG kit is used to preprocess the signal. It amplifies the raw muscle signal from millivolts 
(mV) to thousands of volts, depending on the gain setting, which is adjusted to 10,350 volts 
in this case. After amplification, rectification is performed to remove negative voltages from 
the signal, helping preserve the useful information within it. 

Since the effective frequency range of EMG signals is between 0 and 500 Hz, the 
sensor kit filters out frequencies below 0 Hz and above 500 Hz, ensuring that the output signal 
has a bandwidth of 0 to 500 Hz. These steps are handled by the sensor kit. The signal is then 
acquired and partially preprocessed through this combination of processes, as shown below. 

 
Figure 3. Muscle signal acquisition and partially preprocessing framework 

Now, all the remaining steps are carried out using programming. The signal undergoes 
filtration to remove motion artifacts and power interference while staying within the effective 
frequency range. To achieve a noise-free signal, a 4th-order Butterworth stop-band filter is 
applied, blocking the 20 Hz frequency associated with motion artifacts. Then, another stop-
band filter is used to block the 50 Hz frequency, which represents power line interference. 
After filtration, normalization is performed to limit the signal voltage to a range between 0 
and 1 volt, which improves the classifier's accuracy. 

At the final stage of preprocessing, feature engineering is applied to extract 21 time-
domain features and 1 frequency-domain feature from the signal. To prevent the issue of high-
dimensional data (also known as the "curse of dimensionality") and to enhance model 
efficiency, Principal Component Analysis (PCA) is used. In this study, features are first 
extracted and then reduced using PCA to select the most important principal components, 
which helps the classifier make better predictions. 

Feature extraction is the process of obtaining key characteristics or features from the 
signal. In biomedical signal processing, feature extraction is categorized into three types: time-
domain features, frequency-domain features, and combined time-frequency features. Here, 21 
time-domain features and 1 frequency-domain feature, as mentioned earlier, are extracted 
using a rolling window of 50 data points, with an increment of 1 data point at each step. These 
features include the following: Minimum, Maximum, Mean, Root Mean Square, Variance, 
Standard Deviation, Signal Power, Peak, Peak-to-Peak, Crest Factor, Skewness, Kurtosis, 
Form Factor, Pulse Indicator, Average Absolute Value, Signal Similarity Index, Integrated 
EMG, Waveform Length, Logarithmic, Willison Amplitude, Mean Frequency, and Mean 
Absolute Value. The formulas and explanations for how these features are calculated are 
provided below. 
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Willison Amplitude: 
The Willison Amplitude feature, in the context of EMG signal analysis, measures the 

peak-to-peak amplitude of the EMG waveform to estimate the overall amplitude of the EMG 
signal. A threshold of 0.002 V is set, which indicates the strength of muscle contractions. 

A =  ∑ 𝑓 (|𝑥𝑛 − 𝑥𝑛−1|𝑁−1
𝑖=1 ) (1) 

𝑓(𝑥) = {
1, 𝑖𝑓 𝑥 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

0,                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Where, xn is the EMG value of n index and xn-1 is the   previous value of the current 

value. 

Root Mean Square: 

Root Mean Square (RMS) is a widely used technique in electromyography (EMG) 

signal analysis to quantify the amplitude or magnitude of the EMG signal. It provides a signal 

strength or level indication for the entire signal over a given time period. 

RMS =  √
1

𝑁
∑ 𝑥𝑖

2𝑁
𝑖=1  (2) 

Where, xi is the EMG value of i index and N is the total samples of EMG value in a 
window. 
Mean Absolute Value: 

Mean absolute value (MAV) is defined as mean of total positive value of EMG signal. 

It also tells about muscle contraction power. It is mathematically represented as 

MAV =  
1

𝑁
∑ |𝑥𝑖|

𝑁
𝑖=1  (3) 

Where, xi is the EMG value of i index and N is the total sample of EMG value in a window. 

Average absolute value: 

The average of the absolute changes between successive EMG signal levels is 

measured by Average absolute change (AAC). It specifies fluctuating in muscle movement. 

Mathematically, 

AAC = 
1

𝑁−1
∑ |𝑥𝑖+1 − 𝑥𝑖|

𝑁−1
𝑖=1  (4) 

Where, xi is the EMG value of i index and xi+1 is the upcoming value of the current 

value. N indicates the total samples in a window.  

Variance: 

Variance is a technique which provide information about spread of EMG data points 

around the mean. It tells about the fluctuations of EMG signal over time. Mathematically,  

Variance =
1

𝑁−1
∑ 𝑥𝑖

2𝑁
𝑖=1  (5) 

Where, xi is the EMG value of i index and N indicates the total samples in a window. 

Log detector: 

Log detector (LD) in case of EMG signal used to transform the EMG signal from 

linear scale to logarithmic scale. This scale down the large variations in the signal amplitude. 

LD =  𝑒
1

𝑁
∑ ln (|𝑥𝑖|𝑁

𝑖=1  (6) 

Where, xi is the EMG value of i index and N indicates the total samples in a window.  

Simple Square Integral: 

The EMG signal's sum of squared values is known as the simple square integral (SSI). 

It displays the strength of the signal throughout a chosen window. Higher SSI means high 

level of contraction. Mathematically, 

SSI = ∑ 𝑥𝑖
2𝑁

𝑖=1  (7) 

Where, xi is the EMG value of i index and N indicates the total samples in a window. 



                              International Journal of Innovations in Science & Technology 

March 2025|Special Issue UOG                                                                         Page |152 

Integrated EMG: 

The EMG signal's absolute levels are added together to form IEMG. It measures all 

of the muscle activity in a certain amount of time. IEMG indicates the overall muscle 

movements. It is mathematically represented as    

IEMG =  ∑ |𝑥𝑖|
𝑁
𝑖=1  (8) 

Where, xi is the EMG value of i index and N indicates the total samples in a window. 

Waveform Length: 

The cumulative length of the EMG signal waveform over a specified time is measured by 

Waveform Length (WL). It displays the signal's dynamic muscle contraction. Mathematically, 

WL = ∑ |𝑥𝑖+1 − 𝑥𝑖|𝑁−1
𝑖=1  (9) 

Where, xi is the EMG value of i index and xi+1 is the upcoming value of the current value. N 

indicates the total samples in a window. 

Standard Deviation: 

The EMG signal's degree of fluctuation or dispersion is measured by standard deviation. It 

displays the signal’s variability that helps the model to identify different muscle activities. 

STD = √
1

𝑁
∑ (𝑥𝑖 − �̅�)2𝑁

𝑖=1  (10) 

Where, xi is the EMG value of i index and �̅� is mean of all values in a window. N indicates the 

total samples in a window. 

Maximum: 

The maximum EMG value of muscle over specific period of time. 

Minimum: 

The minimum EMG value of muscle over specific period of time 

Mean: 

The average value of the muscle signal. Mathematically, 

Mean =
1

𝑁
∑ 𝑥[𝑖]𝑁

𝑛=1  (11) 

Where x is the signal amplitude, and N is the total number of EMG samples. 

Signal Power: 

The average power of EMG signal is called signal power (SP). Mathematically, 

SP = 
1

𝑁
∑ 𝑥[𝑖]2𝑁

𝑛=1  (12) 

Where x is the signal amplitude, and N is the total number of EMG samples. 

Peak: 

The highest value of signal amplitude. 

Peak-to-Peak (P2P): 

The difference of highest and lowest value of signal 

Peak-to-Peak = Maximum−Minimum 

Crest factor: 

The ratio of the signal's peak amplitude to its RMS value. It indicates how extreme the peaks 

are relative to the RMS. 

Crest Factor = 
𝑃𝑒𝑎𝑘

𝑅𝑀𝑆
 (13) 

Skewness: 

Measures the asymmetry of the signal’s amplitude distribution. 

Skewness = 

1

𝑁
∑ (𝑥[𝑖]−𝑀𝑒𝑎𝑛)3𝑁

𝑛=1

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
 (14) 
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Positive skewness indicates more values above the mean, while negative skewness indicates 

more values below it. 

Kurtosis: 

Indicates the sharpness or flatness of the amplitude distribution A high kurtosis value suggests 

sharp peaks. 

Kurtosis = 

1

𝑁
∑ (𝑥[𝑖]−𝑀𝑒𝑎𝑛)4𝑁

𝑛=1

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛4 (15) 

Form Factor: 

The ratio of RMS to the mean absolute value (MAV) of the signal 

Form factor = 
𝑅𝑀𝑆

𝑀𝐴𝑉
 (16) 

Pulse Indicator: 

The ratio of the peak amplitude to the mean absolute value 

Pulse Indicator = 
𝑃𝑒𝑎𝑘

𝑀𝐴𝑉
 (17) 

Mean Frequency: 

The average frequency of the signal in the frequency domain, often obtained via a   Fourier 

transform 

Mean frequency =  
∑ 𝑓.𝑝(𝑓)𝐹

𝑓=0

∑ 𝑝(𝑓)𝐹
𝑓=0

 (18) 

The algorithm for extracting the 22 features is explained above. Here, "rolling" refers 
to an array of 50 EMG data samples. Initially, all these features are extracted from the dataset 
and standardized. After standardization, they are passed to Principal Component Analysis 
(PCA) to reduce the dimensionality of the data. 

PCA is a crucial step in machine learning model training because it helps prevent the 

curse of dimensionality and reduces computational complexity. While other techniques, such 

as feature selection or feature elimination, are available, they come with certain limitations. 

Initially, the Exhaustive Feature Selection (EFS) approach was considered, but it follows the 

formula (2^n - 1), which makes the computation highly complex and time-consuming. To 

address this issue and save time, PCA was chosen. 

PCA works by transforming a set of correlated variables into a smaller set of 

uncorrelated variables. In this study, PCA reduces the 22 extracted features to 10 principal 

components, which are then sent to both classifiers for further analysis. 

 

1.Initialize Parameters: 

• Define the input emg data and the rolling window_size. 

• Create 22 empty lists (MIN, MAX, MEAN, RMS, etc.) to store calculated feature 

values for each window. 

2.Iterate Through the EMG Data: 

• Use a for loop to slide the rolling window across the EMG signal: 

• The loop runs from index 0 to len(emg) - window_size + 1. 

• For each iteration: 

• Extract a segment of emg corresponding to the current rolling window (rolling = 

emg [i:i + window_size]). 

3.Compute Features for Each Window: 

• For the current rolling window, calculate all these features. 

• Append each calculated feature to its corresponding list. 
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Support Vector Machine: 

Support Vector Machine (SVM) is a supervised learning model that classifies data by 

creating a separating boundary between different classes. It does this by finding the optimal 

hyperplane and maximizing the margin (the distance between the hyperplane and the nearest 

data points). In this work, the Radial Basis Function (RBF) kernel is used to enhance SVM's 

performance. 

K(X1,X2) = exp (−
‖𝑿𝟏−𝑿𝟐‖𝟐

𝟐𝝏𝟐
) (19) 

Here, ||X1 - X2||² represents the Squared Euclidean Distance, and σ is a free parameter used 
to fine-tune the equation. 

In this study, Grid Search CV is applied to optimize the classifier by selecting the best 
parameters, which enhances the model's accuracy and efficiency. This technique systematically 
explores a predefined range of parameter values to identify the optimal hyperparameters for a 
machine learning model. The model is trained using various values of C and Gamma, followed 
by an evaluation of its accuracy. In SVM, C acts as the regularization parameter, while Gamma 
determines the influence of individual training examples. 

Table 1. Hyper parameter values and purpose of SVM 

Hyper parameter Value in code Purpose 

Regularization (C) 100 Reduce classification error 

Gamma 1 Model learn meaningful 
decision boundaries 

Kernel RBF Good for nonlinear data 

Long Short-Term Memory: 

Long Short-Term Memory (LSTM) is an advanced type of Recurrent Neural Network 
(RNN) designed to manage long-range dependencies in sequential data. LSTM consists of 
three gates: input, forget, and output, which control the flow of information. It can process 
sequential data in both forward and backward directions and store information over extended 
periods. The block diagram of the LSTM is shown below in Figure 4. 

 
Figure 4. LSTM block diagram. 

A Sequential model will be used, meaning the layers will be added one after another. 

The model includes 50 LSTM neurons in the layer, along with dropout layers to prevent 

overfitting and improve regularization. Since there are three classes, a dense layer is added for 

multi-class classification, utilizing the SoftMax activation function.  
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Table 2. Hyper parameter values and purpose of LSTM 

Hyper parameter Value in my code Purpose 

Dropout rate 0.2 (twice) Reduces overfitting 

Learning rate 0.001(fixed) Controls weight update 

Batch size 32 Define training step size 

The classifier categorizes the signal into three classes: sit, stand, and walk, based on 
the extracted features. Initially, both classifiers will be trained on a labeled leg dataset. Once 
the training phase is complete, the testing phase will begin, and the accuracy will be monitored. 
The classifier with the highest accuracy will be selected. In this study, a Support Vector 
Machine (SVM) classifier will be used due to its superior accuracy, as explained in the next 
section. The extracted features are sent to the classifier, which categorizes them accordingly 
and assigns appropriate labels. For example, when a walking signal is generated by the muscles, 
the features are extracted and passed through PCA, followed by classification. The classifier 
then identifies the signal as walking and labels it accordingly. This command is then 
transmitted to the control system. 
Sit Posture:  

When a person sits on a chair, the knee angle is usually around 90 degrees, although it 

may vary based on posture. In this sitting position, the stepper motor should rotate 90 degrees 

in the anticlockwise direction. Assuming the stepper motor starts at a 0° position, it will move 

accordingly. The formula is to calculate how many steps stepper motor revolves to go to 

desired degree is given below: 

Steps = ( 
0

1.8
−

90

1.8 
) = − 50 = 90o (anticlockwise direction) 

Here 1.8o means that the stepper motor used in this project is designed in such a way that it 

covers 1.8o per step and negative sign indicates the direction of stepper motor. 

Stand Posture: 

When a person stands up from the chai, the knee angle transforms from 90o to nearly 

0o. In stand posture, according to given formula result, the stepper motor takes 50 steps in 

clockwise direction. 

Steps = 
90

1.8 
−

0

1.8
= 50 = 90o (clockwise direction) 

Stand Posture: 

For walking of a robotic leg, stepper motor should work in to and fro motion. The 

angle of normal human knee while walking is 0 to 20 degrees. In walking posture, the stepper 

motor goes from 0o to 20o and then from 20o to 0o. Now to calculate the steps, formula will be 

used; 

Steps = 
0

1.8 
= 0  & Steps = 

20

1.8 
= 12 

The stepper motor first takes 12 steps in the anticlockwise direction, followed by steps 

in the clockwise direction to form the walking pose. In this study, the NEMA 17 stepper 

motor is used, controlled by the A4988 module, which serves as the motor driver. The 

connections between the stepper motor and its driver are somewhat complex. 

Results: 

The dataset [12] was recorded from 10 able-bodied individuals, and details about the 

dataset are provided in Table 2 below. Only three classes of data are selected, amounting to 

approximately 171,000 samples. The unprocessed dataset is used for model training and then 

processed according to the steps outlined in the methodology. First, the dataset is balanced 

using the under-sampling technique. After balancing, the data undergoes detrending, or mean 

removal. The correlation heatmap is shown in Figure 5. 
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Table 3. Dataset Information 

Gender Age Weight Height 

7 Males 24±2 years 77±10 kg 183±9cm 

3 Females 24±2 years 77±10 kg 183±9cm 

The correlation heatmap shows the variance of features in relation to each other and 
the target variable. A value closer to 1 indicates a strong positive correlation, while a value near 
-1 reflects a strong negative correlation. Values close to or equal to 0 suggest no correlation. 
In this case, most features show little to no correlation with the target, indicating a lack of 
linear relationships. Considering this, the Radial Basis Function (RBF) kernel is used, as it is 
more effective in handling nonlinear data relationships. Next, the standardized features are 
sent for dimensionality reduction using Principal Component Analysis (PCA), where 10 
principal components are selected. Both models are then trained and tested. The SVM, a 
supervised machine learning model, is trained on these principal components. Figure 6 
illustrates the accuracy and loss across each epoch for the SVM model. 

 
Figure 5. Correlation heat map of features extracted employed for brain intention 

classification. 

 
Figure 6. Accuracy and loss over epochs of SVM classifier. 
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Nearly 90% of the data was used to train the model, while the remaining 10% was 
reserved for testing. The performance of the trained model is presented in Table 3, and the 
confusion matrix is displayed in Figure 7. The model achieved an accuracy of 82.14%, as 
shown below. 

Table 4. Classification report of SVM 

Class Precision Recall F1 score 

0 0.78 0.84 0.81 

1 0.91 0.79 0.85 

2 0.79 0.84 0.81 

 
Figure 7. Confusion matrix of SVM model 

The 95% confidence interval for the SVM model is 80.20% to 82.09%, indicating that 

the model's performance is stable. The reported accuracy of 82.14% represents the average 

accuracy obtained after performing 5-fold cross-validation.  

 
Figure 8. Accuracy and loss over epochs of LSTM 

After training the model, real-time signal classification is conducted. The muscle signal is 
obtained from the rectus femoris using electrodes. This raw signal is processed and sent from 
Arduino to Visual Studio Code through serial communication. The muscle signal, as shown in 
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Figure 10, is amplified, rectified, and filtered. The normalized EMG signal is shown in figure 
11. 

 
(a) 

 
(b) 

 
(c) 

Figure 10. Input muscle signal for various lower limb postures. (a) Sit posture EMG signal, 

(b) Stand posture EMG signal, (c) Walk posture EMG signal. 
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(a) 

 
(b) 

 
(c) 

Figure 11. Preprocessed muscular signals for (a) Sit (b) Stand (c) Walk posture. 
Subsequently, features are extracted, and standardization is performed. All 22 features 

are then passed to PCA, which reduces them to 10 principal components (PC). These 
components are fed into the SVM model for intention recognition, with the results presented 
in Table 4. 
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Table 5. Prediction on unknown muscle signal data 

PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 PC 7 PC 8 PC 9 PC 10 Class 

1.451 -0.258 0.107 0.018 -0.225 -0.455 -0.172 -0.258 -0.445 -1.593 0 

3.082 3.020 3.350 3.351 2.346 3.311 2.715 3.020 2.799 0.326 1 

-0.564 -0.508 -0.573 -0.553 -0.224 -0.431 -0.271 -0.508 -0.466 -0.266 2 

After the intention is recognized, a message is sent to the control system, which reads 
the message and instructs the actuators to perform the desired motion. Figure 12 illustrates 
the three positions of the prosthetic leg. 

 
(a) 

 
(b) 

 
(c) 

Figure 12. Prosthesis knee postures, (a) Sit, (b) Stand, (c) Walk. 
Discussion: 

This study presents a low-complexity, single-channel electromyography (EMG)-based 

active prosthesis designed for above-knee amputees, addressing key challenges in intention 

recognition, classification accuracy, and real-time feasibility. The results demonstrate that 

Support Vector Machine (SVM) achieves the highest classification accuracy (82.14%), 

outperforming Long Short-Term Memory (LSTM) networks (63.25%). The superior 

performance of SVM aligns with previous research emphasizing the effectiveness of 

traditional machine learning models for small biomedical datasets [2], [3]. On the other hand, 

while deep learning models such as LSTM are often expected to perform well in time-series 

signal classification, the results in this study indicate that LSTM does not prove to be the best 

model for EMG-based intention recognition. 

The LSTM model was trained on 90% of the dataset and tested on 10%, similar to the 

SVM training approach, but the results were not satisfactory. As shown in Figure 8, the 

accuracy and loss plots indicate that the model is learning step by step over each epoch, and 

the loss consistently decreases after every iteration. Importantly, there is no sign of overfitting, 

as the loss and validation loss remain close to each other throughout training. However, 

despite this, LSTM achieves only 63.25% accuracy, which is significantly lower than the 

82.14% obtained using SVM. The accuracy plot for LSTM, as shown in Figure 9, further 

confirms that while the model gradually improves with training, it does not reach a 

performance level sufficient for real-world prosthetic applications. Due to these findings, SVM 

is selected as the final model for implementation in this project. 

A key contribution of this study is the reduction of hardware complexity through the 

implementation of a single-channel EMG acquisition system, compared to traditional multi-

channel EMG setups [5], [8]. This reduction in sensor count simplifies the integration of the 

prosthetic control system into wearable devices, making it more cost-effective and practical 

for real-world applications. Furthermore, the use of 22 extracted features (21 time-domain, 1 

frequency-domain) combined with Principal Component Analysis (PCA) improves the 

efficiency of the classification model. Unlike previous approaches that relied on a limited 
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number of features, this study demonstrates that a diverse feature set enhances classification 

performance without significantly increasing computational load. 

Despite achieving high classification accuracy, several challenges remain for real-time 

implementation and practical deployment. The study does not address processing latency, 

power consumption, and wireless communication feasibility, which are crucial factors for 

wearable prosthetic devices [9]. Future research should evaluate the real-time response of the 

system, investigating potential delays in muscle signal processing and the computational 

efficiency of embedded hardware components. Additionally, exploring deep learning models 

such as CNNs and hybrid CNN-LSTM architectures may provide further improvements in 

classification robustness, feature extraction, and adaptation to muscle fatigue-induced 

variations. 

Furthermore, robustness against signal variability due to muscle fatigue, electrode 

displacement, or noise artifacts is an important consideration for real-world usability.  

Previous research [6] has shown that EMG signals fluctuate due to physiological 

conditions, leading to inconsistencies in prosthetic control. Future work should incorporate 

adaptive filtering techniques, transfer learning approaches, and real-time signal correction 

methods to enhance system stability. Additionally, while the study provides a comparative 

analysis of classification models, increasing the dataset size and participant diversity will further 

improve model generalization and performance across different user demographics. 

 
Figure 9. Accuracy graph of SVM and LSTM 

The primary objective of this study is to develop an improved and reliable above-knee 
prosthesis that can efficiently assist amputees. The proposed study incorporates several 
advancements compared to previous research [11]. 

Table 6. Comparing results with previous study 

Factor Previous Approach [11] Our Approach 

Muscle classification 2 muscles (Femoris & 
Vastus) 

1 muscle (Rectus 
Femoris0 

Features used 6 features for each muscle 22 features 

Dimensionality 
reduction 

Not used PCA 

Model type 4 ML 1 ML and 1 DL 

Common model type 
used 

SVM, linear kernel 
(70% accuracy) 

SVM, RBF kernel 
(82% accuracy) 

Total movement 
recognition 

2 (Extension & Flexion) 3 movement 
recognition 
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Conclusion: 
We discussed that the main goal of our project is to design a lower limb 

exoskeleton/prosthetic device for rehabilitation. To achieve this, we have developed and 
designed a mechanical model of a robotic leg, which can be attached to an amputee to enhance 
efficiency. The core objective of this project is to create lower limb prostheses that improve 
human health, provide comfort, and remain financially affordable. We also examined different 
methods to enhance the efficiency of conventional prosthetic devices, which are often 
uncomfortable and less effective. 

Our project is implemented in two stages. In the first stage, we focused on signal 
acquisition and processing to accurately capture muscle signals. Signal processing includes 
several operations, such as amplifying the acquired signal, filtering out unwanted noise, 
rectifying the signal, and normalizing it to scale the output between 0 and 1. This improves 
signal quality, enabling more accurate feature extraction and enhancing the prediction 
efficiency of the machine learning model. 

In the second stage, we worked on the control system of the robotic leg to execute the 
intended actions. The machine learning model predicts the required signal, which is then sent 
to the control system to trigger the actuator and perform the corresponding action. By 
integrating this device into real-world prosthetic applications, it can assist individuals with 
above-knee amputations. Due to effective signal processing and modeling, the device has 
demonstrated promising results when tested on new participants. The test outcomes, shown 
in the above section, highlight its performance. Additionally, the model's classification 
accuracy could be further improved by employing more advanced deep learning models, such 
as CNN-based architectures. 
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