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 robot designed to identify and remove weeds from crops is known as a weed control 
robot. Weeds compete with primary crops for moisture, hinder their growth, and may 
harm both human and animal health, leading to reduced crop yields. Traditionally, 

herbicides and other chemicals have been used to eliminate weeds, but these methods can 
damage crops and pollute the environment. In this work, we propose a new semantic weed 
detection method based on the PC/BC-DIM network, which demonstrates superior 
performance and classification accuracy compared to existing approaches. We developed an 
autonomous weed control robot incorporating Ackermann Architecture and a delta robot. 
The delta robot is equipped with a camera at its base to detect weeds in real-time. First, the 
robot captures images using the camera, and through image processing techniques, it 
differentiates weeds from crops. Detected weeds are then eliminated using an electrical 
discharge method, where electrodes attached to the robot’s end effector burn the targeted 
weeds. Additionally, we developed a path-planning and obstacle-avoidance system to help the 
mobile robot navigate the field. This system uses stereo vision to capture stereo images of the 
environment and calculate their disparity. By extracting depth information, the robot can 
detect obstacles, avoid them, and follow the shortest path using the A* algorithm. The results 
from this work are simulation-based, demonstrating effective weed detection in field images 
and efficient robot navigation using stereo images. The system achieved an overall accuracy 
of 81.25%. Although the system performs moderately well, the relatively high False Positive 
Rate and Root Mean Square (RMS) Error indicate the need for further improvements to 
reduce errors and false positives. 
Future work will focus on enhancing weed removal and implementing the simulated results 
on hardware. 
Keywords: Ackermann Steering, Weed Detection, Mobile Robots, Path Planning, Stereo 
Vision, Image Processing. 
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Introduction: 
A robot designed to identify and eliminate weeds from crops is known as a weed 

control robot. Weeds are unwanted plants that compete with crops for nutrients, moisture, 
and space, which hinders crop growth and reduces yields. They can also harm human and 
animal health, contributing to significant crop losses [1]. Due to these negative impacts, 
farmers must remove weeds, a task that is both time-consuming and labor-intensive. For many 
years, herbicides and chemicals have been used to eliminate weeds, but these substances can 
harm crops and pollute the environment. To speed up farming operations and reduce manual 
labor, farmers often use equipment such as tractors, weeders, and harvesters. While some 
farmers can afford such machinery, others cannot, especially since these machines require 
expensive fuel and contribute to environmental pollution. For these reasons, relying solely on 
heavy equipment may not be the best solution [2]. Farmers also use fertilizer sprayers to boost 
crop growth and yield, but this process requires time and effort. To address these challenges, 
robotic weed control offers a promising solution by preventing weeds from disrupting crops 
and improving farming efficiency. 

Many weed control robots can perform tasks like electrical discharge, mechanical 
weeding (using hoe tools), and targeted chemical spraying [3]. This project will focus on the 
electrical discharge method, which can eliminate weeds in two ways: continuous contact and 
spark discharge. The first method uses short bursts of high-voltage electricity to kill weeds, 
speed up fruit ripening, and thin plant growth. The second method delivers energy in brief 
pulses (e.g., one microsecond) using two electrodes positioned on opposite sides of the plant. 
This pulse thins plant rows, kills weeds, cuts plant sections, and dries out the leaves of root 
crops. The plant tissue is damaged either by the sudden electrical surge or the heat generated 
by the electricity. 

This project will also implement Ackermann architecture, which is based on a four-
wheel independent steering system. It includes several steering modes: 
• Ackermann steering: Allows the inner and outer wheels to rotate at different radii. 
• Active front and rear steering: Turns the front wheels in the opposite direction of 
the rear wheels. 
• Crab steering: Moves all wheels in the same direction to allow diagonal movement. 
• Spinning: Rotates the vehicle around a central point. 

This system allows the robot to switch between steering modes depending on the 
situation, making movement more efficient. The Ackermann steering structure solves the issue 
of different steering angles caused by varying radii of the left and right wheels. According to 
Ackermann’s steering geometry [4], by adjusting the crank of the four-link structure, the robot 
can increase the inner wheel’s steering angle by 2-4° more than the outer wheel when turning 
along a curve. This adjustment helps position the robot’s steering center, allowing smooth 
turns by aligning the four-wheel paths with the rear axle’s extension line. 

Ackermann steering is known for supporting high payloads and improving movement 
efficiency. It is commonly used in cars, although the structure tends to be too large for narrow 
spaces. This project will enhance the robot’s functionality using image processing and machine 
vision techniques. Cameras installed on the robot will capture images of the farmland. These 
images will be processed using algorithms that identify weeds based on their unique 
characteristics. Additionally, a stereo camera will capture images from two angles to analyze 
the environment, detect free spaces, plan the robot’s path, and guide its movement. 
Once weeds are detected, the robot’s control system will instruct its mechanical arm or tool 
to remove them from the ground. A previous group worked on an autonomous weed control 
robot but left several limitations: 
1. The robot detected weeds in a virtual environment rather than a real one. 
2. A weed removal mechanism was not developed. 
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3. There was no navigation system for the mobile robot. 
The main aims of this research are: 
• To develop a system that can distinguish between weeds and crops in cotton fields 
using image processing techniques. 
• To build a system for weed removal in cotton fields using electrical discharge. 
• To create a navigation mechanism for the weed control mobile robot. 
Literature Review: 

The development of autonomous agricultural robots for weed management has gained 
significant attention in recent years, particularly as a means to reduce chemical herbicide 
dependence and enhance precision farming efficiency. Traditional weed control methods rely 
heavily on manual labor or herbicide spraying, both of which present economic and 
environmental drawbacks [1]. Autonomous robotic systems equipped with computer vision, 
deep learning, and mechanical weed removal mechanisms offer a sustainable alternative, 
allowing for precise identification and targeted elimination of weeds without harming crops. 
This literature review explores previous advancements in weed detection, robotic navigation, 
and path planning to establish the significance of the proposed study.  

With precision farming, autonomous robotic weeding systems have proven to be 
effective in reducing the use of agrochemicals like pesticides and herbicides. A study [5] 
proposes a multi-camera, non-overlapping approach to enhance the weed control system's 
flexibility in managing unknown classification delays. Consequently, an advanced weed-
control technique [6]becomes necessary. In this approach, images of plantation rows are 
captured at regular intervals using image processing methods. 

In [7], the author developed a low-cost delta robot arm equipped with a vision system, 
capable of gripping objects of various sizes. This economical design uses stepper motors 
instead of AC servo motors. In [1], an autonomous agricultural mobile robot for outdoor 
mechanical weed control is introduced. This robot operates with two vision systems: a color-
based system to distinguish between weeds and crops, and a gray-level system to detect the 
row structure created by crops, guiding the robot along the rows. In [8], Kulkarni et al. 
designed a robotic vehicle with four wheels, steered by a DC motor and equipped with an IR 
sensor system to manage weed growth in fields. In [9], the authors developed a new technology 
for weed control called "crop signaling." This method enables plants and weeds to be machine-
readable, allowing them to be automatically distinguished based on their unique features. 

The effectiveness of robotic weed management heavily relies on accurate weed 
classification using image processing and machine learning techniques. Early studies employed 
handcrafted feature extraction methods, such as color thresholding and edge detection, to 
differentiate between crops and weeds. However, these methods were often limited by 
variations in lighting, soil conditions, and plant morphology. Recent advancements in deep 
learning, particularly Convolutional Neural Networks (CNNs) and Transformer-based 
architectures, have significantly improved weed detection accuracy. Most modern approaches 
rely on pre-trained deep learning models (e.g., ResNet, YOLO, EfficientNet) trained on large-
scale agricultural datasets for real-time weed identification (Lin et al., 2023) [4] . However, 
deep learning models require high computational power and extensive datasets, which may 
limit their usability in field-deployable robots with constrained hardware. This study explores 
Predictive Coding-Biased Competitive Divisive Input Modulation (PC/BC-DIM) neural 
networks for weed classification, a less common approach in precision agriculture. While 
previous studies have demonstrated the effectiveness of CNNs in weed classification, the 
proposed study seeks to evaluate whether PC/BC-DIM can offer a computationally efficient 
alternative while maintaining high classification accuracy. 

In this study, we present an autonomous weed control mobile robot that integrates 
Ackermann steering architecture with Delta robot-based weed removal. Unlike previous 
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approaches, our system uses real-time stereo vision-based disparity mapping, followed by A* 
algorithm-based path planning for effective obstacle avoidance. Additionally, a PC/BC-DIM 
neural network is employed to enhance the accuracy of weed detection. The proposed system 
achieves an accuracy rate of 81.25%, making it a promising solution for precision agriculture. 
This work bridges the gap between simulation-based weed classification and real-world 
navigation, paving the way for autonomous and efficient weed management. 
Material and Methods: 

Weed detection using an autonomous mobile robot is a complex challenge. This study 
focuses on designing a system for weed detection and removal in agricultural fields. The 
project leverages computer vision techniques, including image processing, to achieve this goal. 
The mobile robot is equipped with two cameras: one dedicated to weed detection through 
specialized image processing, and a stereo camera that facilitates efficient path planning. 
The Delta robot, mounted on the Ackermann architecture of the mobile robot, navigates 
through the field and removes weeds after detection using an electrical discharge technique 
via electrodes attached to its end-effector. The system's overall functionality is illustrated in 
the block diagram shown in Figure 1. 

 
Figure 1. Block diagram of weed control robot 

Path Planning: 
Path planning for robot navigation follows several key steps. The process starts by 

capturing stereo images of the environment using a stereo camera. After capturing, the images 
are rectified to align both on a common plane. A disparity map is then created, showing the 
difference in the object's position between the two images. This is followed by calculating the 
depth map using the SGBM algorithm. Based on the depth map, the robot detects and avoids 
obstacles and plans a clear path using the A* algorithm. Finally, motion control based on an 
Ackermann steering architecture helps the robot follow the planned path accurately. 

A stereo camera setup is placed at the front to capture images for navigation. It takes 
two images of the same scene from slightly different angles, mimicking human binocular 



                              International Journal of Innovations in Science & Technology 

March 2025|Special Issue UOG                                                                         Page |137 

vision. These images are processed further. Image rectification simplifies the matching process 
by aligning corresponding points along the same row. First, camera calibration parameters 
(intrinsic and extrinsic) are calculated. Using these parameters, geometric transformations 
adjust the images so that corresponding points in both images align horizontally. For example, 
if a tree appears slightly to the right in the left image and slightly to the left in the right image, 
rectification aligns the tree in both images on the same horizontal axis. 

The disparity map shows the difference in the object's location between the left and 
right images. Each color in the disparity map represents how near or far an object is—the 
brighter areas indicate closer objects, while darker areas show objects farther away. The depth 
map is calculated using the Semi-Global Block Matching (SGBM) algorithm. This algorithm 
compares small pixel blocks in one image with corresponding blocks in the other image to 
find the best match by trying different disparities. Small disparities indicate close matches, 
while large disparities show mismatches. 

Path planning and obstacle avoidance are done using the A* algorithm and an 
occupancy grid based on the depth map. The grid represents obstacles as occupied cells and 
open space as unoccupied cells. A path from the starting point to the target position is 
generated using the A* algorithm, which finds the best route by minimizing both the current 
travel cost and the estimated remaining cost. Additionally, points from the depth map are 
transformed into a 3D point cloud and projected back onto the 2D image to visualize and 
detect obstacles. Motion control ensures the robot moves along the designated path. This 
robot uses the Ackermann steering design, which controls vehicles with differential steering, 
such as wheeled robots. It calculates precise steering angles and velocities, helping the robot 
remain stable and maneuverable. The steering angles are determined using depth map data to 
guide how much the robot should turn to follow the planned path, considering the vehicle’s 
geometry and point coordinates. 
Weed Detection: 

The semantic weed detection method used in this project is based on our earlier work 
[10]. The process starts with capturing an image using a secondary camera mounted on the 
base of a delta robot, above its end effector. This image is then used for further processing to 
detect weeds. The input image is first converted to grayscale to simplify processing. Next, the 
grayscale image is converted into a binary image by applying an optimal threshold value, which 
minimizes the variance between background and foreground (crop-weed areas). Pixels are 
classified as either background or crop-weed regions. To reduce noise, small objects are 
removed from the binary image, and a mean filter is applied to smooth the image by averaging 
pixel values in a specific window size. This filtering highlights the regions of interest and 
enhances image clarity. 
Image segmentation is the next step, dividing the digital image into segments or pixel sets to 
make the image easier to analyze. Segmentation helps identify objects and boundaries (e.g., 
lines and curves) within the image. In this case, segmentation labels each pixel to group those 
with similar attributes. 

The segmentation process starts by generating a saliency map using different 
algorithms. The saliency map highlights key areas that stand out from the background, such 
as weed regions. An error map is also computed to assess segmentation accuracy. Several 
saliency maps are generated, combined, and refined to create a comprehensive map that 
highlights the most important areas (i.e., weeds). A PC/BC-DIM neural network (Predictive 
Coding-Biased Competitive Divisive Input Modulation) and Gabor filters are used to calculate 
the saliency map. The PC/BC-DIM network mimics how the human brain processes visual 
images and consists of three types of neurons: 
1. Reconstruction Neurons (R): These neurons use prior information to reconstruct 
the input image, acting as filters by calculating their activity using synaptic weights. 
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2. Error Neurons (E): These neurons compute the difference between the original input 
image and the reconstructed image. A large error suggests that the reconstruction is inaccurate. 
Element-wise division is used to calculate the error and improve accuracy. 
3. Prediction Neurons (Y): These neurons adjust their predictions based on the error 
data, updating their activity to improve the image reconstruction. 

The network generates feature maps by applying Gabor filters at different phases and 
orientations to capture distinct image features. Through iterative reconstruction and 
prediction, the network produces a refined saliency map that emphasizes key image areas. The 
saliency values from the final map help distinguish crops from the background, and a predicted 
crop region is extracted from the binary image. This predicted crop region is then subtracted 
from the extracted region of interest (ROI) to isolate the weed region. Finally, the detected 
weed region is compared with ground truth images to evaluate detection accuracy. 
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The predicted crop region is labeled in green to make it easily identifiable. The primary 
objective of feature extraction is to detect and analyze the key areas of the image. This involves 
isolating the region of interest (ROI), which includes the parts of the image containing crops 
and weeds while eliminating the background. In the next step, the predicted crop region is 
subtracted from the ROI image (containing both crops and weeds) to isolate the predicted 
weed region. The extracted weed region is then labeled for easy visualization, with the weed 
region highlighted in red. Finally, the labeled predicted crop and weed regions are combined 
to display the detected weed region, as shown in the results section. 

To evaluate the accuracy of weed detection, statistical measures and error calculations 
are performed by comparing the predicted images with the ground truth images. The term 
"ground truth" refers to data collected directly from the field, which is essential for verifying 
image data against actual ground-based characteristics and conditions. 
Results and Discussion: 
Path Planning Results: 

The input image was captured using stereo cameras, as shown in Figure 2. This image 
includes the left and right stereo views of the garden and ground. 

 
Figure 2. Stereo input images 



                              International Journal of Innovations in Science & Technology 

March 2025|Special Issue UOG                                                                         Page |139 

 
Figure 3. Rectified stereo input images 

Secondly, the rectification of the image mentioned above is performed, as shown in 
Figure 3. Disparity, which measures the difference in the object's position between the left 
and right images, is calculated and displayed in Figure 4. 

 
Figure 4. Disparity map 

In Figure 5, the robot detects the tree as an obstacle in its path. The colorful line 
represents the path planned by the robot to avoid the obstacle and navigate through the garden 
using the A* algorithm. 

 
Figure 5. Planned path 
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Weed Detection Results: 
The image captured by the secondary camera is used as the input image, which is then 

converted to grayscale, as shown in Figure 6. 

 
Figure 6. Input and grayscale image 

 
Figure 7. Binary image and saliency map 

The grayscale image is then converted into a binary image. In the next step, the saliency 
map and error map are calculated to highlight the weed region, as shown in Figure 7. Using 
the saliency maps, the predicted crop region is extracted from the binary image. Once the crop 
region is detected, it is labeled in green, as shown in Figure 8. 

 
Figure 8. Predicted crop and labelled 



                              International Journal of Innovations in Science & Technology 

March 2025|Special Issue UOG                                                                         Page |141 

In the next step, the ROI (Region of Interest) is extracted from the input RGB image. 
The predicted crop region is then subtracted from the crop-weed image to separate the weeds 
from the crops, as shown in Figure 9. 

 
Figure 9. Predicted crop and labelled 

After detecting the weed region, it is labeled in red to highlight the extracted area. Both 
the crop and weed regions are then combined to clearly differentiate between them. The results 
are shown in Figure 10. The errors are calculated by comparing the predicted image with the 
ground truth (GT) image, as shown in Figure 11. 
The calculations of the false positive rate (FPR) and true negative rate (TNR) help to 
understand the trade-off between sensitivity (the ability to detect weeds accurately) and 
specificity (the ability to correctly identify non-weeds). 
Three types of errors are computed: 
1. Type 1 (False Positives): Non-weeds are incorrectly detected as weeds. 
2. Type 2 (False Negatives): Weeds are overlooked or not detected. 
3. Type 3 (Total Error): The combined error, accounting for both false positives and 
false negatives.  
The efficacy of the weed detection model is demonstrated in Figure 12. 

 
Figure 10. Predicted weed region and labelled 
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Figure 11. Ground truth weed image 

 
Figure 12. ROC curve 

The accuracy analysis of the weed detection model is presented in Table 1.  
Table 1. Accuracy analysis 

Error % 
Type 1 22.22 

Type 2 14.2857 

Mean error overall 18.75 

Mean accuracy overall 81.25 

RMS error 43.30 

Mean square error overall 18.75 

False positive rate 0.22 

True negative rate 0.77 

The results show the percentage accuracy and classification errors for weed detection. 
In cases of dense vegetation, misclassifications are more likely to occur because weeds and 
crops may overlap, making it harder to distinguish between them and leading to higher error 
rates. 
Discussion: 

The primary objective of this research was to design a weed detection mechanism in 
real-world environments and enable the robot to navigate fields while avoiding obstacles. 
Various techniques exist for robot navigation, including machine learning methods like 
Convolutional Neural Networks (CNN), Deep Neural Networks (DNN), Artificial Neural 
Networks (ANN), and Region-based Convolutional Neural Networks (RCNN). Although 
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these approaches are effective in detecting objects in a given environment, we opted for the 
A* algorithm due to its robustness and efficiency in path planning. 

Additionally, there are recent advancements in navigation based on LIDAR data, 
Monocular Vision, and Stereo Vision. Each of these methods has its advantages and 
limitations. For example, LIDAR offers accurate detection but is costly and has a limited 
perception range, while Monocular Vision may not guarantee reliable accuracy. For weed 
detection, we employed an image-processing technique that effectively works in natural 
environments. This method involves several steps: image pre-processing, image segmentation, 
and feature extraction. By integrating the information obtained from these steps, we 
successfully enhanced the detection and classification of weeds. 

One of the key advantages of this study is the integration of stereo vision with the A 
path planning algorithm*, enabling the mobile robot to navigate agricultural fields with higher 
accuracy and adaptability. Unlike conventional GPS-based navigation, which may struggle 
with occlusions caused by dense vegetation, stereo vision allows for real-time depth perception 
and object avoidance. Previous research (Lin et al., 2023) has demonstrated that vision-based 
navigation improves localization accuracy in unstructured environments, making it a suitable 
approach for row-crop farming applications. However, the computational demands of real-
time stereo vision processing remain a challenge. Future work should explore edge AI 
processing techniques to reduce latency and optimize real-time decision-making in embedded 
robotic systems. 

Furthermore, while this study successfully employs PC/BC-DIM neural networks for 
weed classification, additional comparisons with CNNs and Transformer-based models would 
provide a more comprehensive analysis of model efficiency and accuracy. Prior research 
(Naveed et al., 2023) [10] indicates that pre-trained deep learning models such as YOLOv5 
and EfficientNet achieve state-of-the-art weed detection performance, suggesting that a hybrid 
approach combining PC/BC-DIM with CNN-based feature extraction could enhance 
classification robustness. Additionally, incorporating data augmentation techniques could help 
address dataset limitations and improve model generalization across diverse agricultural 
conditions. 

Finally, the electrical discharge-based weed removal mechanism presents a promising 
alternative to conventional mechanical or chemical-based weeding methods, but its long-term 
energy efficiency, operational safety, and impact on soil health require further evaluation. 
While previous studies (Diprose et al., 1984) [3] suggest that high-voltage weed removal is 
effective in disrupting plant cellular structure, excessive energy consumption may limit 
scalability in large farming applications. Future research should investigate energy-efficient 
discharge optimization techniques and evaluate potential side effects on surrounding crops, 
soil microorganisms, and long-term field productivity. Additionally, exploring hybrid weed 
removal methods, such as combining electrical discharge with robotic precision cutting or 
thermal weeding, could further improve the system’s effectiveness and sustainability in 
precision agriculture. 
Conclusion: 

We discussed the primary objective of our project, which is to design the steering 
control for an Ackermann architecture-based weed-managing mobile robot. To achieve this, 
we developed a system capable of detecting weeds in real-world environments and navigating 
the robot while avoiding obstacles. We also outlined the methodology used to implement the 
project. In the first stage, we focused on path planning by capturing stereo images of the 
environment and rectifying them. Next, we calculated the depth map using the SGBM 
algorithm. With the help of the A* algorithm, the robot was then able to navigate the field 
while avoiding obstacles. 
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In the second stage, we addressed the weed detection task. For this, we first captured 
images using a secondary camera mounted on the base of the delta robot, positioned above 
its end effector. The captured image was then processed to detect weeds. This process 
involved converting the image to grayscale and then to a binary format by applying a threshold 
to emphasize key regions while minimizing the background. From the binary image, the crop 
region was identified using a saliency map and ROI (Region of Interest), which highlighted 
the crop area. The weeds were then detected by subtracting the identified crop region from 
the thresholder image. In the future, extensive field testing and validation will be conducted 
to assess how the dynamic field environment affects the performance of the proposed 
approach. 
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