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og computing extends cloud computing services closer to users, improving efficiency and 
reducing latency. Smart contracts play a key role in authentication and resource access 
management within this framework. As the adoption of smart contracts in fog computing 

grows, ensuring their security has become a major challenge. This study enhances smart contract 
attack detection in fog computing using machine learning techniques. A dataset of 818 smart 
contracts was collected from “etherscan.io.” Feature extraction was performed using Word2Vec 
and BERT, while feature selection was done using the information gain method. The Random 
Forest (RF) and Extra Trees Classifier (ETC) achieved the highest accuracy of 0.91 with 
Word2Vec, while the LightGBM (LGBM) classifier attained 0.90 accuracy using BERT. 
These results demonstrate the effectiveness of machine learning models in improving smart 
contract security within fog computing environments. 
Keywords: Fog Computing; Smart Contract; Machine Learning; Security and Feature 
Extraction 
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Introduction: 
Cloud computing allows users to access computing resources such as servers, storage, 

software, databases, and applications over the internet instead of relying on local infrastructure. 
It operates on a pay-as-you-go model, enabling users to scale resources up or down as needed. 
IoT devices frequently use cloud resources, and their numbers are increasing daily [1]. While the 
growth of IoT has created many opportunities for cloud computing, it has also introduced 
challenges, including cost, data management, security, privacy, bandwidth limitations, network 
congestion, and latency issues. To address these challenges, Cisco introduced fog computing in 
2018 as a bridge between cloud computing and edge computing [2]. 

Fog computing is a distributed model that extends cloud computing to the network's 
edge, providing computing, storage, and networking services closer to end users and IoT devices 
[3]. As shown in Figure 1, it creates an intermediate layer between the cloud and edge computing. 
This fog layer offers computing and networking resources to edge devices, reducing latency 
compared to traditional cloud computing. Fog computing is essentially an extension of cloud 
computing [3] and helps mitigate several cloud-related issues. Additionally, blockchain 
technology [4] is integrated into the fog layer to enhance security and privacy. 

 
Figure 1. Architecture of fog computing. 

Blockchain ensures secure data sharing among fog nodes, IoT devices, and cloud 
providers while   requests, and verification. During user registration, the system assigns a pair of 
public and private keys, storing the public key within the blockchain. Resource registration lists 
available fog computing resources and the users who can access them. 

To authenticate, a user sends a request using a nonce (a unique identifier) and their public 
key. The smart contract then follows a challenge-response protocol, sending back the nonce as 
a challenge. The user signs it with their private key and returns it. The smart contract verifies the 
signature using the user's public key. If valid, access to fog computing resources is granted [8][9]. 
Since smart contracts operate independently of external networks, a security breach can affect 
organizations, miners, and even the entire blockchain network [5][10]. Therefore, researchers 
must focus on identifying attacks that could compromise smart contract security. In this study, 
machine learning is applied to detect attacks in smart contracts used for resource access in fog 
computing. 
Framework 
Registration Phase  
Figure 2 illustrates the user registration process required before accessing resources. 
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Figure 2. Registration Phase of User. 

User Registration:  
Users must register through a smart contract to access fog computing resources. Before 

creating an account, the blockchain-based smart contract verifies and confirms the registration 
details. 
Send Key Pair:  

After successful registration, the blockchain generates a cryptographic key pair (public 
and private keys) for secure authentication. The public key is stored on the blockchain, while 
the private key is securely sent to the user [11]. 
Resource Access Granting Phase  

Figure 3 illustrates the resource access granting phase, which enables users to access the 
resources of the fog node. 

 
Figure 3. Resource Access Granting Phase. 

Store Lease Contract:  
In this step, the fog node submits its lease contract to the blockchain, defining the terms 

and conditions for resource access. This ensures secure and transparent resource allocation [11], 
[12]. 
Request Access Resources:  

A registered user requests access to the fog node's resources. The smart contract verifies 
the request by matching the user's public key with the registered keys [12] and ensuring 
compliance with access policies. 
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Contract Execution and Send “Access key”:  
At this stage, after verification, the smart contract retrieves the access contract and 

securely sends the access key to the user [12]. 
Access resource via “Access Key”:  

After receiving the access key, the user can access the fog node's resources. 
User’s Verification:  

The fog node verifies the user's identity by matching it with the blockchain ledger [12]. 
Grants Access to Resources:  

After successful verification, access is granted, and a blockchain-based transaction 
system manages payments for the utilized resources [12]. 
Unlike previous research, which primarily focused on identifying smart contract vulnerabilities 
using conventional feature extraction techniques, this study introduces an improved approach 
by combining Word2Vec and BERT for opcode-based feature extraction. This method 
enhances the accuracy and efficiency of attack detection in fog computing smart contracts used 
for resource access and registration. Additionally, the paper evaluates various machine learning 
classifiers, demonstrating that Random Forest, Extra Trees Classifier, and LightGBM 
significantly improve security. Compared to previous studies, the proposed framework offers a 
more reliable, scalable, and precise attack detection technique. 
The paper is organized as follows: 

• Section II reviews related literature on fog computing, blockchain integration, and 
smart contract security. 

• Section III outlines the research methodology, including data collection, feature 
extraction, and model selection. 

• Section IV presents the experimental results and analysis. 
• Section V concludes the study and discusses future research directions. 

Objectives: 
The objectives of this research are: 

• To analyze attacks on smart contracts used in fog computing for resource access. 
• To identify the most effective machine learning algorithms for detecting and preventing 

these threats. 
• To evaluate the performance of machine learning models using F1 score, accuracy, 

precision, and recall. 
• To improve smart contract attack detection by applying opcode-based feature extraction 

and selection techniques. 
Literature Review: 

Fog computing extends cloud computing but also inherits some of its challenges. Due 
to its proximity to IoT devices, it faces several security and privacy issues. Researchers have 
explored various solutions, including authorization, access control, and authentication, to ensure 
secure data transmission in fog computing. In [10], the author introduced a deep learning-based 
detection method to classify smart contracts as either malicious or safe. Techniques such as 
Long Short-Term Memory (LSTM), Gated Recurrent Units (GRU), and Artificial Neural 
Networks (ANN) were used for classification. The author utilized the BigQuery dataset for 
binary classification, achieving a maximum accuracy of 99.03%. Additionally, the Receiver 
Operating Characteristic (ROC) curve was provided to compare the performance of these 
models. 

In [13], the author proposed a system for user registration and authentication in fog 
computing. This system uses smart contracts for registration and securely stores user 
information in a ledger. Compared to existing systems, it reduces registration and authentication 
costs. Additionally, it supports multiple user accounts and compares their costs, also known as 
gas values. In [6], the author analyzes 49,502 real-time smart contracts for various vulnerabilities, 
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including Callstack, integer overflow, timestamp, Time of Day (TOD), and re-entrancy, 
achieving a high accuracy rate of 99%. The research converts contract code into bytecode and 
opcodes. Then, n-gram features are extracted from the opcodes, and machine learning 
algorithms such as XGBoost, K-Nearest Neighbors (KNN), and Support Vector Machine 
(SVM) are applied. This approach enhances the speed and accuracy of vulnerability detection. 

In [14], the author introduces a framework for identifying and classifying vulnerabilities 
in smart contracts, such as excessive gas consumption, unfixed compiler versions, implicit 
visibility levels, inappropriate use of pure functions, unchecked low-level calls, and frozen ether. 
These vulnerabilities are detected using publicly available datasets, including AutoMESC, which 
reports a 5.2% occurrence of high-severity vulnerabilities and suggests solutions for addressing 
them. In [12], the author explains how blockchain technology is used to manage resource access. 
Smart contracts facilitate this process by eliminating third-party dependencies within the 
network. These contracts are self-executing lines of code created by organizations, institutions, 
or other entities. In resource access scenarios, both buyers and sellers rely on smart contracts to 
define terms and conditions. If any condition is violated, the contract becomes invalid or is 
terminated. 

In [15], the author identifies multiple vulnerabilities in smart contracts, including 
timestamp issues, re-entrancy, Time of Day (TOD) attacks, integer underflow, and overflow. 
Using the Bi-LSTM model, the author achieves an accuracy of 88.12%. A total of 5,450 smart 
contracts were collected from the Etherscan website to detect these vulnerabilities. First, the 
contract code is converted into opcodes, then a feature matrix is generated, and Bi-LSTM is 
applied for analysis. In [16], the author classifies smart contracts as normal or abnormal using 
an ensemble model. A dataset of 1,904 smart contracts was gathered from the Etherscan website. 
Features were extracted from the source code using TF-IDF, while opcode features were derived 
using the n-gram technique. Applying the ensemble model, the author achieved an accuracy of 
89.67%. 

In [17], the author analyzed 5,735 smart contracts, generating semantic trees based on 
their code and utilizing Graph Neural Networks (GNN) and Graph Matching Networks. The 
model achieved a 92.63% accuracy in detecting block info dependency vulnerabilities. Other 
vulnerabilities identified include re-entrancy, block info dependency, timestamp dependency, 
and TX.Origin issues. In [18], the author detects DDoS attacks in smart contracts using an IoT-
based dataset [19]. The BotIoT dataset was used for this purpose. Features extracted from IoT 
sensors were stored in fog nodes before being transferred to the blockchain via smart contracts. 
Different classifiers, including Random Forest, Decision Tree, and Support Vector Machine, 
were applied, achieving an accuracy of 99.9%. 

In [15], the author enhances smart contract security through machine learning. A total 
of 835 smart contracts were analyzed, with 455 classified as safe and 380 as malicious. A binary 
classification approach was used. The contract source code was first converted into opcodes, 
and a feature matrix was created. Various machine learning models, including KNN, Random 
Forest (RF), Decision Tree (DT), Logistic Regression (LR), Support Vector Machine (SVM), 
and Naïve Bayes (NB), were applied. The RF classifier achieved the highest accuracy at 85%. 

In [20], the author presents a comprehensive approach to detecting vulnerabilities in 
smart contracts using machine learning, automated auditing tools, and reduced manual effort 
and execution time. The proposed model outperformed traditional methods, achieving an 
effectiveness rate of 80%. In [15], the author applies a machine-learning approach to detect 
abnormal smart contracts. A total of 835 smart contracts were collected from the Etherscan 
website, with 455 classified as normal and 380 as abnormal. Among the abnormal contracts, 327 
were identified as scams, while 53 were found to be vulnerable. The dataset was preprocessed 
before applying various machine learning models for evaluation. The Random Forest (RF) 
model achieved an accuracy of 0.85, Logistic Regression (LR) reached 0.81, while K-Nearest 
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Neighbors (KNN) and Decision Trees (DT) scored 0.77. The Support Vector Machine (SVM) 
and Naïve Bayes (NB) models obtained accuracy results of 0.75 and 0.71, respectively. In [21], 
the author focuses on identifying Ponzi schemes, a type of fraud that lures new investors with 
false promises of high returns. A dataset of 3,786 smart contracts was sourced from the Kaggle 
website, containing four key features: address, opcode, label, and creator. After preprocessing 
the dataset and extracting relevant features, the author evaluated hybrid classifiers. By combining 
the strengths of XGBoost and GRU models, the study achieved an impressive accuracy of 
96.8%. 

The following are the research questions: 
• How can machine learning be applied to detect attacks on smart contracts used for 

registration and resource access in fog computing environments? 
• What methods can be used to protect smart contracts from attackers in a fog computing 

environment? 
• How can opcode analysis serve as an efficient and effective feature extraction technique 

for detecting attacks in smart contracts? 
• Which algorithms and models are best suited for detecting attacks on smart contracts 

used for registration and resource access in fog computing environments? 
Material and Methods 

This research focuses on attack detection using machine learning with a three-labeled 
dataset. The methodology is illustrated in Figure 4. 

 
Figure 4. Proposed Methodology 

Dataset:  
In this research, 818 smart contracts were collected from Ethereum's official website, 

“etherscan.io,” along with their Solidity code, bytecode, and opcode. The dataset is categorized 
into three labels: Ponzi (using Forta [22]), Phish-hack [9], and Gambling [23]. It includes 300 
smart contracts under the Phish-hack label, 298 under Ponzi, and 220 under Gambling. 

Table 1. Composition of Dataset 

Label Number of Smart Contract Source 

Ponzi 298 Forta [22] 

Phish-hack 300 [9] 
Gambling 220 [23] 
Total 818 Etherscan.io 

Data Preparation:  
The opcode of a smart contract contains various hexadecimal values, starting with '0x'. 

These values are replaced with their corresponding mnemonic representations using [15]. Next, 
null records are verified, and the labels are encoded as follows: Ponzi ('0'), Phish-hack ('1'), and 
Gambling ('2'). 
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Feature Extraction: 
This research utilizes Word2Vec and BERT techniques to extract features from the 

opcode of smart contracts. 
Feature Selection: 

In this research, the information gain technique is used for feature selection, extracting 
features with a threshold above 0.03. 
Classifiers:  

Various machine learning classifiers are used, including Logistic Regression (LR), 
Decision Tree (DT), Random Forest (RF), K-Nearest Neighbors (KNN), Gradient Boost (GB), 
Bagging Classifier (BC), Naïve Bayes (NB), Extra Trees Classifier (ETC), Light Gradient Boost 
Machine (LGBM), and Extreme Gradient Boost (XGB). 
Result and Discussions: 

Various techniques can be used for feature extraction; however, this research employs 
two methods: Word2Vec and BERT. The results of both are discussed below. 
Word2Vec Technique:  

In this research, the Word2Vec technique is applied for feature extraction, with the 
results presented in Table 1. 

Table 2. Results Using the Word2Vec Technique 

Algorithm Accuracy Precision Recall F1-Score CV Accuracy Execution 
Time(s) 

LR 0.84 0.85 0.84 0.84 0.79 1.67 
DT 0.80 0.80 0.80 0.80 0.82 0.09 
RF 0.91 0.92 0.91 0.91 0.88 8.78 
KNN 0.88 0.91 0.88 0.89 0.85 0.02 
GB 0.87 0.88 0.87 0.87 0.87 114.90 
BC 0.86 0.87 0.86 0.86 0.86 0.29 
NB 0.65 0.67 0.65 0.65 0.69 0.01 
ETC 0.91 0.92 0.91 0.91 0.88 2.17 
LGBM 0.87 0.87 0.87 0.87 0.87 3.21 
XGB 0.85 0.85 0.85 0.85 0.87 7.00 

The RF and ETC classifiers delivered the best performance with execution times of 8s 
and 2s, respectively. The NB classifier achieved an accuracy score of 0.88, while the GB and 
LGBM classifiers both attained 0.87 accuracy. The BC classifier followed with an accuracy of 
0.86, and the XGB classifier reached 0.85 accuracy. The DT and NB classifiers produced lower 
results, with accuracy scores of 0.80 and 0.65, respectively. Figure 5 illustrates the comparison 
of all models based on Accuracy, Precision, Recall, and F1-score. According to this figure, the 
RF and ETC classifiers demonstrated the best performance. 
BERT Technique:  

In this research, the BERT technique is also used for feature extraction, and its results 
are presented in Table 2. The LGBM classifier achieved the highest accuracy score of 0.90 with 
an execution time of 24s. The GB, BC, and ETC classifiers followed closely, each attaining an 
accuracy of 0.88. The XGB classifier achieved an accuracy of 0.87, while the DT and RF 
classifiers both reached 0.85. The KNN and LR classifiers obtained accuracy scores of 0.84 and 
0.79, respectively. The NB classifier recorded the lowest accuracy, scoring 0.66. 

Figure 6 presents a comparison of all models based on Accuracy, Precision, Recall, and 
F1-score. According to this figure, the LGBM classifier delivers the best performance. 
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Figure 5. ML algorithms result using the Word2Vec technique. 

Table 3. Results Using the Bert Technique 

Algorithm Accuracy Precision Recall F1-Score CV 
Accuracy 

Execution 
Time(s) 

LR 0.79 0.80 0.79 0.78 0.80 3.41 
DT 0.85 0.86 0.85 0.85 0.83 0.52 
RF 0.85 0.85 0.85 0.85 0.89 17.54 
KNN 0.84 0.88 0.84 0.84 0.86 0.03 
GB 0.88 0.88 0.88 0.88 0.87 744.09 
BC 0.88 0.89 0.88 0.88 0.86 1.33 
NB 0.66 0.68 0.66 0.63 0.70 0.03 
ETC 0.88 0.89 0.88 0.88 0.90 10.47 
LGBM 0.90 0.91 0.90 0.90 0.89 24.08 
XGB 0.87 0.87 0.87 0.87 0.89 46.78 

 
Figure 6. ML algorithms results using the BERT technique. 
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Fog computing faces several challenges in user registration and resource access, 
including resource management, security, and privacy concerns within the fog layer. Although 
smart contracts are used to manage these processes, they remain vulnerable to various attacks. 
This research enhances security by integrating machine learning for attack detection in smart 
contracts. Using the Word2Vec feature extraction technique, the Random Forest (RF) and Extra 
Trees Classifier (ETC) achieved an accuracy of 0.91. Meanwhile, the LightGBM (LGBM) 
classifier delivered the best performance with an accuracy of 0.90 using the BERT technique. 
These results highlight the effectiveness of combining machine learning with smart contracts to 
improve security, scalability, and real-time attack detection. The proposed methodology is highly 
scalable, enabling it to handle larger systems and diverse datasets, making it ideal for expanding 
fog computing networks. 
Discussion: 

The findings of this study demonstrate that machine learning-based security analysis 
using Word2Vec and BERT for opcode feature extraction significantly enhances smart contract 
vulnerability detection in fog computing environments. The results show that Random Forest 
(RF) and Extra Trees Classifier (ETC) achieved the highest accuracy (91%) with Word2Vec, 
while LightGBM (LGBM) performed best with BERT (90%). This highlights the importance of 
feature representation in improving attack detection. Compared to traditional methods using n-
grams or TF-IDF for feature extraction, the proposed model achieves higher classification 
accuracy and fewer false positives, making it more effective for large-scale smart contract 
security monitoring. One key observation is the varying performance of different classifiers in 
detecting Ponzi schemes, phishing attacks, and gambling-related vulnerabilities. While ensemble 
models like RF and ETC demonstrated high accuracy and stability, models such as XGBoost 
and SVM had lower detection rates for specific attack types, indicating that classifier selection 
plays a crucial role in optimizing smart contract security. BERT-based feature extraction 
improved the contextual understanding of opcode sequences, making it easier to identify 
malicious patterns. However, the study did not analyze per-class accuracy, precision, or recall, 
which could provide deeper insights into each classifier’s strengths and weaknesses in detecting 
different attack types. 

Despite promising results, the study focuses solely on opcode-based detection, which, 
while effective, does not analyze code-level vulnerabilities. Issues such as reentrancy, unchecked 
external calls, and integer overflow in Solidity-based smart contracts cannot always be identified 
through opcode analysis alone. Existing research suggests that integrating opcode-based 
classification with static analysis tools (e.g., Slither, Mythril) could enhance security by detecting 
both pattern-based and logic-based vulnerabilities. Future research should explore hybrid 
detection models that combine opcode and code-level analysis to create a more comprehensive 
security framework. 

Another limitation is the model’s robustness against adversarial attacks. Machine 
learning-based security systems are susceptible to adversarial opcode perturbations, where small 
changes in opcode sequences can mislead classifiers into wrongly identifying malicious contracts 
as benign. To address this, future work should consider adversarial training techniques or 
anomaly detection methods to improve resilience against evasion attacks. Additionally, model 
explainability remains a challenge—techniques such as SHAP or LIME could be used to analyze 
feature importance and identify opcode sequences that contribute most to classification 
decisions, increasing trust in the system. 

Lastly, the study does not evaluate computational efficiency in real-world fog computing 
environments. While the proposed model achieves high accuracy, practical deployment requires 
assessing memory usage, processing latency, and scalability for real-time attack detection. Given 
the resource constraints of fog computing nodes, lightweight models or edge-optimized ML 
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architectures should be considered to ensure efficient, low-latency security monitoring in 
decentralized networks. 

Table 4. Comparison with Existing studies 

Reference Vulnerabilities Addressed 
Techniques 
Used 

Key Contributions 

[24] 
Arbitrary memory access, integer 
underflow/overflow, transaction 
dependency 

BERT-ATT-
BiLSTM (pre-
trained language 
model) 

Enhances accuracy across 
multiple datasets, 
outperforming earlier 
methods that struggle with 
diverse contract designs. 

[25] 

Transaction dependency, arbitrary 
memory access, block dependency, 
assertion failure, integer 
underflow, ether block, integer 
overflow 

LSTM, Support 
Vector Machine 
(SVM) 

Effectively detects 
vulnerabilities in smart 
contracts. 

[20] Complex vulnerabilities 
Conventional 
techniques 

Improves blockchain 
application reliability and 
enables rapid vulnerability 
identification. 

[26] Ponzi and non-Ponzi attacks Random Forest 
Uses binary-labeled data for 
detecting smart contract 
attacks. 

[27] Ponzi and non-Ponzi attacks 
AdaBoost 
Classifier 

Detects fraudulent 
contracts to enhance smart 
contract security. 

[28] 

Integer overflow, timestamp, 
integer underflow, reentrancy, call 
stack depth, transaction order 
dependency (TOD) 

Naïve Bayes 

Speeds up weak contract 
identification, addressing 
challenges in analyzing 
large-scale smart contracts. 

 
Our 

 
Ponzi, Phish Hack, Gambling,  

LR, DT, RF, XGB, 
ETC, GB, KNN, 
NB, BC, and 
LGBM. 

Detect the different attacks 
of smart contracts using the 
machine learning classifiers 

Conclusion:  
Integrating machine learning with smart contracts can significantly enhance attack 

detection and prevention in fog computing systems. This integration strengthens security, 
reducing the risk of data breaches and other threats. Machine learning algorithms, trained on 
large datasets, can identify behavioral patterns and detect anomalies. This research utilized a 
binary-labeled dataset to detect attacks in smart contracts. The Word2Vec and BERT techniques 
were applied for opcode feature extraction, followed by the implementation of various machine 
learning classifiers. The results show that Random Forest (RF) and Extra Trees Classifier (ETC) 
achieved the highest accuracy (0.91) using Word2Vec, while LightGBM (LGBM) reached 0.90 
accuracy with BERT. Other classifiers also performed well in attack detection. This approach 
helps mitigate attacks, minimizing data loss and system downtime. Future research could explore 
hybrid techniques to further improve detection accuracy and address emerging security 
challenges in smart contracts within fog computing environments. 
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