
 International Journal of Innovations in Science & Technology

March 2025|Special Issue UOG Page |79

Machine Learning-Based Improvement of Smart Contract
Security in Fog Computing Using Word2vec and Bert

Tahmina Ehsan1, Muhammad Usman Sana1*, Tayybah Kiren2*, Alvena Ehsan1, Mustabeen
Aziz1, Fateha Minahil1
1University of Gujrat, Pakistan
2University of Engineering and Technology Lahore, Pakistan
*Correspondence: m.usman@uog.edu.pk; tayybah@uet.edu.pk
Citation|Ehsan. T, Sana. M. U, Kiren. T, Ehsan. A, Aziz. M, Minahil. F, “Machine Learning-
Based Improvement of Smart Contract Security in Fog Computing Using Word2vec and Bert”,
IJIST, Special Issue. pp 79-90, March 2025
Received| Feb 14, 2025 Revised| Feb 27, 2025 Accepted| March 04, 2025 Published|
March 07, 2025.

og computing extends cloud computing services closer to users, improving efficiency and
reducing latency. Smart contracts play a key role in authentication and resource access
management within this framework. As the adoption of smart contracts in fog computing

grows, ensuring their security has become a major challenge. This study enhances smart contract
attack detection in fog computing using machine learning techniques. A dataset of 818 smart
contracts was collected from “etherscan.io.” Feature extraction was performed using Word2Vec
and BERT, while feature selection was done using the information gain method. The Random
Forest (RF) and Extra Trees Classifier (ETC) achieved the highest accuracy of 0.91 with
Word2Vec, while the LightGBM (LGBM) classifier attained 0.90 accuracy using BERT.
These results demonstrate the effectiveness of machine learning models in improving smart
contract security within fog computing environments.
Keywords: Fog Computing; Smart Contract; Machine Learning; Security and Feature
Extraction

F

mailto:m.usman@uog.edu.pk
mailto:tayybah@uet.edu.pk

 International Journal of Innovations in Science & Technology

March 2025|Special Issue UOG Page |80

Introduction:
Cloud computing allows users to access computing resources such as servers, storage,

software, databases, and applications over the internet instead of relying on local infrastructure.
It operates on a pay-as-you-go model, enabling users to scale resources up or down as needed.
IoT devices frequently use cloud resources, and their numbers are increasing daily [1]. While the
growth of IoT has created many opportunities for cloud computing, it has also introduced
challenges, including cost, data management, security, privacy, bandwidth limitations, network
congestion, and latency issues. To address these challenges, Cisco introduced fog computing in
2018 as a bridge between cloud computing and edge computing [2].

Fog computing is a distributed model that extends cloud computing to the network's
edge, providing computing, storage, and networking services closer to end users and IoT devices
[3]. As shown in Figure 1, it creates an intermediate layer between the cloud and edge computing.
This fog layer offers computing and networking resources to edge devices, reducing latency
compared to traditional cloud computing. Fog computing is essentially an extension of cloud
computing [3] and helps mitigate several cloud-related issues. Additionally, blockchain
technology [4] is integrated into the fog layer to enhance security and privacy.

Figure 1. Architecture of fog computing.

Blockchain ensures secure data sharing among fog nodes, IoT devices, and cloud
providers while requests, and verification. During user registration, the system assigns a pair of
public and private keys, storing the public key within the blockchain. Resource registration lists
available fog computing resources and the users who can access them.

To authenticate, a user sends a request using a nonce (a unique identifier) and their public
key. The smart contract then follows a challenge-response protocol, sending back the nonce as
a challenge. The user signs it with their private key and returns it. The smart contract verifies the
signature using the user's public key. If valid, access to fog computing resources is granted [8][9].
Since smart contracts operate independently of external networks, a security breach can affect
organizations, miners, and even the entire blockchain network [5][10]. Therefore, researchers
must focus on identifying attacks that could compromise smart contract security. In this study,
machine learning is applied to detect attacks in smart contracts used for resource access in fog
computing.
Framework
Registration Phase
Figure 2 illustrates the user registration process required before accessing resources.

 International Journal of Innovations in Science & Technology

March 2025|Special Issue UOG Page |81

Figure 2. Registration Phase of User.

User Registration:
Users must register through a smart contract to access fog computing resources. Before

creating an account, the blockchain-based smart contract verifies and confirms the registration
details.
Send Key Pair:

After successful registration, the blockchain generates a cryptographic key pair (public
and private keys) for secure authentication. The public key is stored on the blockchain, while
the private key is securely sent to the user [11].
Resource Access Granting Phase

Figure 3 illustrates the resource access granting phase, which enables users to access the
resources of the fog node.

Figure 3. Resource Access Granting Phase.

Store Lease Contract:
In this step, the fog node submits its lease contract to the blockchain, defining the terms

and conditions for resource access. This ensures secure and transparent resource allocation [11],
[12].
Request Access Resources:

A registered user requests access to the fog node's resources. The smart contract verifies
the request by matching the user's public key with the registered keys [12] and ensuring
compliance with access policies.

 International Journal of Innovations in Science & Technology

March 2025|Special Issue UOG Page |82

Contract Execution and Send “Access key”:
At this stage, after verification, the smart contract retrieves the access contract and

securely sends the access key to the user [12].
Access resource via “Access Key”:

After receiving the access key, the user can access the fog node's resources.
User’s Verification:

The fog node verifies the user's identity by matching it with the blockchain ledger [12].
Grants Access to Resources:

After successful verification, access is granted, and a blockchain-based transaction
system manages payments for the utilized resources [12].
Unlike previous research, which primarily focused on identifying smart contract vulnerabilities
using conventional feature extraction techniques, this study introduces an improved approach
by combining Word2Vec and BERT for opcode-based feature extraction. This method
enhances the accuracy and efficiency of attack detection in fog computing smart contracts used
for resource access and registration. Additionally, the paper evaluates various machine learning
classifiers, demonstrating that Random Forest, Extra Trees Classifier, and LightGBM
significantly improve security. Compared to previous studies, the proposed framework offers a
more reliable, scalable, and precise attack detection technique.
The paper is organized as follows:

• Section II reviews related literature on fog computing, blockchain integration, and
smart contract security.

• Section III outlines the research methodology, including data collection, feature
extraction, and model selection.

• Section IV presents the experimental results and analysis.
• Section V concludes the study and discusses future research directions.

Objectives:
The objectives of this research are:

• To analyze attacks on smart contracts used in fog computing for resource access.
• To identify the most effective machine learning algorithms for detecting and preventing

these threats.
• To evaluate the performance of machine learning models using F1 score, accuracy,

precision, and recall.
• To improve smart contract attack detection by applying opcode-based feature extraction

and selection techniques.
Literature Review:

Fog computing extends cloud computing but also inherits some of its challenges. Due
to its proximity to IoT devices, it faces several security and privacy issues. Researchers have
explored various solutions, including authorization, access control, and authentication, to ensure
secure data transmission in fog computing. In [10], the author introduced a deep learning-based
detection method to classify smart contracts as either malicious or safe. Techniques such as
Long Short-Term Memory (LSTM), Gated Recurrent Units (GRU), and Artificial Neural
Networks (ANN) were used for classification. The author utilized the BigQuery dataset for
binary classification, achieving a maximum accuracy of 99.03%. Additionally, the Receiver
Operating Characteristic (ROC) curve was provided to compare the performance of these
models.

In [13], the author proposed a system for user registration and authentication in fog
computing. This system uses smart contracts for registration and securely stores user
information in a ledger. Compared to existing systems, it reduces registration and authentication
costs. Additionally, it supports multiple user accounts and compares their costs, also known as
gas values. In [6], the author analyzes 49,502 real-time smart contracts for various vulnerabilities,

 International Journal of Innovations in Science & Technology

March 2025|Special Issue UOG Page |83

including Callstack, integer overflow, timestamp, Time of Day (TOD), and re-entrancy,
achieving a high accuracy rate of 99%. The research converts contract code into bytecode and
opcodes. Then, n-gram features are extracted from the opcodes, and machine learning
algorithms such as XGBoost, K-Nearest Neighbors (KNN), and Support Vector Machine
(SVM) are applied. This approach enhances the speed and accuracy of vulnerability detection.

In [14], the author introduces a framework for identifying and classifying vulnerabilities
in smart contracts, such as excessive gas consumption, unfixed compiler versions, implicit
visibility levels, inappropriate use of pure functions, unchecked low-level calls, and frozen ether.
These vulnerabilities are detected using publicly available datasets, including AutoMESC, which
reports a 5.2% occurrence of high-severity vulnerabilities and suggests solutions for addressing
them. In [12], the author explains how blockchain technology is used to manage resource access.
Smart contracts facilitate this process by eliminating third-party dependencies within the
network. These contracts are self-executing lines of code created by organizations, institutions,
or other entities. In resource access scenarios, both buyers and sellers rely on smart contracts to
define terms and conditions. If any condition is violated, the contract becomes invalid or is
terminated.

In [15], the author identifies multiple vulnerabilities in smart contracts, including
timestamp issues, re-entrancy, Time of Day (TOD) attacks, integer underflow, and overflow.
Using the Bi-LSTM model, the author achieves an accuracy of 88.12%. A total of 5,450 smart
contracts were collected from the Etherscan website to detect these vulnerabilities. First, the
contract code is converted into opcodes, then a feature matrix is generated, and Bi-LSTM is
applied for analysis. In [16], the author classifies smart contracts as normal or abnormal using
an ensemble model. A dataset of 1,904 smart contracts was gathered from the Etherscan website.
Features were extracted from the source code using TF-IDF, while opcode features were derived
using the n-gram technique. Applying the ensemble model, the author achieved an accuracy of
89.67%.

In [17], the author analyzed 5,735 smart contracts, generating semantic trees based on
their code and utilizing Graph Neural Networks (GNN) and Graph Matching Networks. The
model achieved a 92.63% accuracy in detecting block info dependency vulnerabilities. Other
vulnerabilities identified include re-entrancy, block info dependency, timestamp dependency,
and TX.Origin issues. In [18], the author detects DDoS attacks in smart contracts using an IoT-
based dataset [19]. The BotIoT dataset was used for this purpose. Features extracted from IoT
sensors were stored in fog nodes before being transferred to the blockchain via smart contracts.
Different classifiers, including Random Forest, Decision Tree, and Support Vector Machine,
were applied, achieving an accuracy of 99.9%.

In [15], the author enhances smart contract security through machine learning. A total
of 835 smart contracts were analyzed, with 455 classified as safe and 380 as malicious. A binary
classification approach was used. The contract source code was first converted into opcodes,
and a feature matrix was created. Various machine learning models, including KNN, Random
Forest (RF), Decision Tree (DT), Logistic Regression (LR), Support Vector Machine (SVM),
and Naïve Bayes (NB), were applied. The RF classifier achieved the highest accuracy at 85%.

In [20], the author presents a comprehensive approach to detecting vulnerabilities in
smart contracts using machine learning, automated auditing tools, and reduced manual effort
and execution time. The proposed model outperformed traditional methods, achieving an
effectiveness rate of 80%. In [15], the author applies a machine-learning approach to detect
abnormal smart contracts. A total of 835 smart contracts were collected from the Etherscan
website, with 455 classified as normal and 380 as abnormal. Among the abnormal contracts, 327
were identified as scams, while 53 were found to be vulnerable. The dataset was preprocessed
before applying various machine learning models for evaluation. The Random Forest (RF)
model achieved an accuracy of 0.85, Logistic Regression (LR) reached 0.81, while K-Nearest

 International Journal of Innovations in Science & Technology

March 2025|Special Issue UOG Page |84

Neighbors (KNN) and Decision Trees (DT) scored 0.77. The Support Vector Machine (SVM)
and Naïve Bayes (NB) models obtained accuracy results of 0.75 and 0.71, respectively. In [21],
the author focuses on identifying Ponzi schemes, a type of fraud that lures new investors with
false promises of high returns. A dataset of 3,786 smart contracts was sourced from the Kaggle
website, containing four key features: address, opcode, label, and creator. After preprocessing
the dataset and extracting relevant features, the author evaluated hybrid classifiers. By combining
the strengths of XGBoost and GRU models, the study achieved an impressive accuracy of
96.8%.

The following are the research questions:
• How can machine learning be applied to detect attacks on smart contracts used for

registration and resource access in fog computing environments?
• What methods can be used to protect smart contracts from attackers in a fog computing

environment?
• How can opcode analysis serve as an efficient and effective feature extraction technique

for detecting attacks in smart contracts?
• Which algorithms and models are best suited for detecting attacks on smart contracts

used for registration and resource access in fog computing environments?
Material and Methods

This research focuses on attack detection using machine learning with a three-labeled
dataset. The methodology is illustrated in Figure 4.

Figure 4. Proposed Methodology

Dataset:
In this research, 818 smart contracts were collected from Ethereum's official website,

“etherscan.io,” along with their Solidity code, bytecode, and opcode. The dataset is categorized
into three labels: Ponzi (using Forta [22]), Phish-hack [9], and Gambling [23]. It includes 300
smart contracts under the Phish-hack label, 298 under Ponzi, and 220 under Gambling.

Table 1. Composition of Dataset

Label Number of Smart Contract Source

Ponzi 298 Forta [22]

Phish-hack 300 [9]
Gambling 220 [23]
Total 818 Etherscan.io

Data Preparation:
The opcode of a smart contract contains various hexadecimal values, starting with '0x'.

These values are replaced with their corresponding mnemonic representations using [15]. Next,
null records are verified, and the labels are encoded as follows: Ponzi ('0'), Phish-hack ('1'), and
Gambling ('2').

 International Journal of Innovations in Science & Technology

March 2025|Special Issue UOG Page |85

Feature Extraction:
This research utilizes Word2Vec and BERT techniques to extract features from the

opcode of smart contracts.
Feature Selection:

In this research, the information gain technique is used for feature selection, extracting
features with a threshold above 0.03.
Classifiers:

Various machine learning classifiers are used, including Logistic Regression (LR),
Decision Tree (DT), Random Forest (RF), K-Nearest Neighbors (KNN), Gradient Boost (GB),
Bagging Classifier (BC), Naïve Bayes (NB), Extra Trees Classifier (ETC), Light Gradient Boost
Machine (LGBM), and Extreme Gradient Boost (XGB).
Result and Discussions:

Various techniques can be used for feature extraction; however, this research employs
two methods: Word2Vec and BERT. The results of both are discussed below.
Word2Vec Technique:

In this research, the Word2Vec technique is applied for feature extraction, with the
results presented in Table 1.

Table 2. Results Using the Word2Vec Technique

Algorithm Accuracy Precision Recall F1-Score CV Accuracy Execution
Time(s)

LR 0.84 0.85 0.84 0.84 0.79 1.67
DT 0.80 0.80 0.80 0.80 0.82 0.09
RF 0.91 0.92 0.91 0.91 0.88 8.78
KNN 0.88 0.91 0.88 0.89 0.85 0.02
GB 0.87 0.88 0.87 0.87 0.87 114.90
BC 0.86 0.87 0.86 0.86 0.86 0.29
NB 0.65 0.67 0.65 0.65 0.69 0.01
ETC 0.91 0.92 0.91 0.91 0.88 2.17
LGBM 0.87 0.87 0.87 0.87 0.87 3.21
XGB 0.85 0.85 0.85 0.85 0.87 7.00

The RF and ETC classifiers delivered the best performance with execution times of 8s
and 2s, respectively. The NB classifier achieved an accuracy score of 0.88, while the GB and
LGBM classifiers both attained 0.87 accuracy. The BC classifier followed with an accuracy of
0.86, and the XGB classifier reached 0.85 accuracy. The DT and NB classifiers produced lower
results, with accuracy scores of 0.80 and 0.65, respectively. Figure 5 illustrates the comparison
of all models based on Accuracy, Precision, Recall, and F1-score. According to this figure, the
RF and ETC classifiers demonstrated the best performance.
BERT Technique:

In this research, the BERT technique is also used for feature extraction, and its results
are presented in Table 2. The LGBM classifier achieved the highest accuracy score of 0.90 with
an execution time of 24s. The GB, BC, and ETC classifiers followed closely, each attaining an
accuracy of 0.88. The XGB classifier achieved an accuracy of 0.87, while the DT and RF
classifiers both reached 0.85. The KNN and LR classifiers obtained accuracy scores of 0.84 and
0.79, respectively. The NB classifier recorded the lowest accuracy, scoring 0.66.

Figure 6 presents a comparison of all models based on Accuracy, Precision, Recall, and
F1-score. According to this figure, the LGBM classifier delivers the best performance.

 International Journal of Innovations in Science & Technology

March 2025|Special Issue UOG Page |86

Figure 5. ML algorithms result using the Word2Vec technique.

Table 3. Results Using the Bert Technique

Algorithm Accuracy Precision Recall F1-Score CV
Accuracy

Execution
Time(s)

LR 0.79 0.80 0.79 0.78 0.80 3.41
DT 0.85 0.86 0.85 0.85 0.83 0.52
RF 0.85 0.85 0.85 0.85 0.89 17.54
KNN 0.84 0.88 0.84 0.84 0.86 0.03
GB 0.88 0.88 0.88 0.88 0.87 744.09
BC 0.88 0.89 0.88 0.88 0.86 1.33
NB 0.66 0.68 0.66 0.63 0.70 0.03
ETC 0.88 0.89 0.88 0.88 0.90 10.47
LGBM 0.90 0.91 0.90 0.90 0.89 24.08
XGB 0.87 0.87 0.87 0.87 0.89 46.78

Figure 6. ML algorithms results using the BERT technique.

 International Journal of Innovations in Science & Technology

March 2025|Special Issue UOG Page |87

Fog computing faces several challenges in user registration and resource access,
including resource management, security, and privacy concerns within the fog layer. Although
smart contracts are used to manage these processes, they remain vulnerable to various attacks.
This research enhances security by integrating machine learning for attack detection in smart
contracts. Using the Word2Vec feature extraction technique, the Random Forest (RF) and Extra
Trees Classifier (ETC) achieved an accuracy of 0.91. Meanwhile, the LightGBM (LGBM)
classifier delivered the best performance with an accuracy of 0.90 using the BERT technique.
These results highlight the effectiveness of combining machine learning with smart contracts to
improve security, scalability, and real-time attack detection. The proposed methodology is highly
scalable, enabling it to handle larger systems and diverse datasets, making it ideal for expanding
fog computing networks.
Discussion:

The findings of this study demonstrate that machine learning-based security analysis
using Word2Vec and BERT for opcode feature extraction significantly enhances smart contract
vulnerability detection in fog computing environments. The results show that Random Forest
(RF) and Extra Trees Classifier (ETC) achieved the highest accuracy (91%) with Word2Vec,
while LightGBM (LGBM) performed best with BERT (90%). This highlights the importance of
feature representation in improving attack detection. Compared to traditional methods using n-
grams or TF-IDF for feature extraction, the proposed model achieves higher classification
accuracy and fewer false positives, making it more effective for large-scale smart contract
security monitoring. One key observation is the varying performance of different classifiers in
detecting Ponzi schemes, phishing attacks, and gambling-related vulnerabilities. While ensemble
models like RF and ETC demonstrated high accuracy and stability, models such as XGBoost
and SVM had lower detection rates for specific attack types, indicating that classifier selection
plays a crucial role in optimizing smart contract security. BERT-based feature extraction
improved the contextual understanding of opcode sequences, making it easier to identify
malicious patterns. However, the study did not analyze per-class accuracy, precision, or recall,
which could provide deeper insights into each classifier’s strengths and weaknesses in detecting
different attack types.

Despite promising results, the study focuses solely on opcode-based detection, which,
while effective, does not analyze code-level vulnerabilities. Issues such as reentrancy, unchecked
external calls, and integer overflow in Solidity-based smart contracts cannot always be identified
through opcode analysis alone. Existing research suggests that integrating opcode-based
classification with static analysis tools (e.g., Slither, Mythril) could enhance security by detecting
both pattern-based and logic-based vulnerabilities. Future research should explore hybrid
detection models that combine opcode and code-level analysis to create a more comprehensive
security framework.

Another limitation is the model’s robustness against adversarial attacks. Machine
learning-based security systems are susceptible to adversarial opcode perturbations, where small
changes in opcode sequences can mislead classifiers into wrongly identifying malicious contracts
as benign. To address this, future work should consider adversarial training techniques or
anomaly detection methods to improve resilience against evasion attacks. Additionally, model
explainability remains a challenge—techniques such as SHAP or LIME could be used to analyze
feature importance and identify opcode sequences that contribute most to classification
decisions, increasing trust in the system.

Lastly, the study does not evaluate computational efficiency in real-world fog computing
environments. While the proposed model achieves high accuracy, practical deployment requires
assessing memory usage, processing latency, and scalability for real-time attack detection. Given
the resource constraints of fog computing nodes, lightweight models or edge-optimized ML

 International Journal of Innovations in Science & Technology

March 2025|Special Issue UOG Page |88

architectures should be considered to ensure efficient, low-latency security monitoring in
decentralized networks.

Table 4. Comparison with Existing studies

Reference Vulnerabilities Addressed
Techniques
Used

Key Contributions

[24]
Arbitrary memory access, integer
underflow/overflow, transaction
dependency

BERT-ATT-
BiLSTM (pre-
trained language
model)

Enhances accuracy across
multiple datasets,
outperforming earlier
methods that struggle with
diverse contract designs.

[25]

Transaction dependency, arbitrary
memory access, block dependency,
assertion failure, integer
underflow, ether block, integer
overflow

LSTM, Support
Vector Machine
(SVM)

Effectively detects
vulnerabilities in smart
contracts.

[20] Complex vulnerabilities
Conventional
techniques

Improves blockchain
application reliability and
enables rapid vulnerability
identification.

[26] Ponzi and non-Ponzi attacks Random Forest
Uses binary-labeled data for
detecting smart contract
attacks.

[27] Ponzi and non-Ponzi attacks
AdaBoost
Classifier

Detects fraudulent
contracts to enhance smart
contract security.

[28]

Integer overflow, timestamp,
integer underflow, reentrancy, call
stack depth, transaction order
dependency (TOD)

Naïve Bayes

Speeds up weak contract
identification, addressing
challenges in analyzing
large-scale smart contracts.

Our

Ponzi, Phish Hack, Gambling,

LR, DT, RF, XGB,
ETC, GB, KNN,
NB, BC, and
LGBM.

Detect the different attacks
of smart contracts using the
machine learning classifiers

Conclusion:
Integrating machine learning with smart contracts can significantly enhance attack

detection and prevention in fog computing systems. This integration strengthens security,
reducing the risk of data breaches and other threats. Machine learning algorithms, trained on
large datasets, can identify behavioral patterns and detect anomalies. This research utilized a
binary-labeled dataset to detect attacks in smart contracts. The Word2Vec and BERT techniques
were applied for opcode feature extraction, followed by the implementation of various machine
learning classifiers. The results show that Random Forest (RF) and Extra Trees Classifier (ETC)
achieved the highest accuracy (0.91) using Word2Vec, while LightGBM (LGBM) reached 0.90
accuracy with BERT. Other classifiers also performed well in attack detection. This approach
helps mitigate attacks, minimizing data loss and system downtime. Future research could explore
hybrid techniques to further improve detection accuracy and address emerging security
challenges in smart contracts within fog computing environments.

 International Journal of Innovations in Science & Technology

March 2025|Special Issue UOG Page |89

Acknowledgement. Sincere gratitude is expressed to Dr. Muhammad Usman Sana for
invaluable guidance and support throughout this research, which greatly contributed to the
completion of this paper.
Author’s Contribution. Tahmina Ehsan led the research and experiments. Muhammad Usman
Sana supervised and reviewed the work. Tayybah Kiren, Alvena Ehsan, Mustabeen Aziz, and
Fateha Minahil contributed to data analysis, literature review, and manuscript preparation.
Conflict of interest. The authors declare no conflict of interest regarding this publication.
References:
[1] W. M. Anwer, S. M. Khan, M. U. Farooq, “Attack Detection in IoT using Machine

Learning,” Eng. Technol. Appl. Sci. Res., vol. 11, no. 3, pp. 7273–7278, 2021, doi:
https://doi.org/10.48084/etasr.4202.

[2] M. A. A.-F. Zain Ashi, Mohammad Al-Fawa’reh, “Fog computing: security challenges and
countermeasures,” Int. J. Comput. Appl. Technol., vol. 175, no. 15, pp. 30–36, 2020, doi:
10.5120/ijca2020920648.

[3] Y. I. Alzoubi, V. H. Osmanaj, A. Jaradat, and A. Al-Ahmad, “Fog computing security and
privacy for the Internet of Thing applications: State-of-the-art,” Secur. Priv., vol. 4, no. 2, p.
e145, Mar. 2021, doi: 10.1002/SPY2.145.

[4] A. Ehsan et al., “Enhanced Anomaly Detection in Ethereum: Unveiling and Classifying
Threats With Machine Learning,” IEEE Access, vol. 12, pp. 176440–176456, 2024, doi:
10.1109/ACCESS.2024.3504300.

[5] A. G. & A. M. Yehia Ibrahim Alzoubi, “A systematic review of the purposes of Blockchain
and fog computing integration: classification and open issues,” J. Cloud Comput., vol. 11, no.
80, 2022, doi: https://doi.org/10.1186/s13677-022-00353-y.

[6] V. C. M. L. Yao Du, Zehua Wang, “Blockchain-Enabled Edge Intelligence for IoT:
Background, Emerging Trends and Open Issues,” Futur. Internet, vol. 13, no. 2, p. 48, 2021,
doi: https://doi.org/10.3390/fi13020048.

[7] T. Hewa, A. Braeken, M. Liyanage, and M. Ylianttila, “Fog Computing and Blockchain-
Based Security Service Architecture for 5G Industrial IoT-Enabled Cloud Manufacturing,”
IEEE Trans. Ind. Informatics, vol. 18, no. 10, pp. 7174–7185, Oct. 2022, doi:
10.1109/TII.2022.3140792.

[8] S. K. Dwivedi, R. Amin, and S. Vollala, “Smart contract and IPFS-based trustworthy secure
data storage and device authentication scheme in fog computing environment,” Peer-to-Peer
Netw. Appl., vol. 16, no. 1, pp. 1–21, Jan. 2023, doi: 10.1007/S12083-022-01376-
7/METRICS.

[9] H. A. S. F. Alaba, “Smart Contracts Security Application and Challenges: A Review,” Cloud
Comput. Data Sci., 2023, doi: 10.37256/ccds.5120233271.

[10] R. Gupta, M. M. Patel, and S. T. Shukla, Arpit, “Deep learning-based malicious smart
contract detection scheme for internet of things environment,” Comput. Electr. Eng., vol. 97,
p. 107583, 2022, doi: https://doi.org/10.1016/j.compeleceng.2021.107583.

[11] T. Ehsan et al, “Securing Smart Contracts in Fog Computing: Machine Learning-Based
Attack Detection for Registration and Resource Access Granting,” IEEE Access, vol. 12,
pp. 42802–42815, 2024, doi: 10.1109/ACCESS.2024.3378736.

[12] et al Liu C. H., Sun J., Ni W., “Blockchain-enabled secure fog platform: Issues, challenges
and solutions,” IEEE Commun. Surv. Tutorials, vol. 22, no. 4, pp. 2488–2521, 2020.

[13] K. D. Otuekong Umoren, Raman Singh, Zeeshan Pervez, “Securing Fog Computing with a
Decentralised User Authentication Approach Based on Blockchain,” Sensors (Basel), vol. 22,
no. 10, p. 3956, 2022, doi: 10.3390/s22103956.

[14] M. Soud, I. Qasse, G. Liebel, and M. Hamdaqa, “AutoMESC: Automatic Framework for
Mining and Classifying Ethereum Smart Contract Vulnerabilities and Their Fixes,” Proc. -
2023 49th Euromicro Conf. Softw. Eng. Adv. Appl. SEAA 2023, pp. 410–417, 2023, doi:
10.1109/SEAA60479.2023.00068.

 International Journal of Innovations in Science & Technology

March 2025|Special Issue UOG Page |90

[15] V. F. Derek Liu, Francesco Piccoli, “Machine Learning Approach to Identify Malicious
Smart Contract Opcodes: A Preliminary Study,” JPS Conf. Proc., 2024, [Online]. Available:
https://journals.jps.jp/doi/10.7566/JPSCP.43.011002

[16] Q. Q. Ali Aljofey, Abdur Rasool, Qingshan Jiang, “A Feature-Based Robust Method for
Abnormal Contracts Detection in Ethereum Blockchain,” Electronics, vol. 11, no. 18, p.
2937, 2022, doi: https://doi.org/10.3390/electronics11182937.

[17] et al Wang T., Zhang S., Liu Y., “AI-driven detection of malicious smart contracts in
blockchain networks,” Neural Comput. Appl., vol. 34, no. 10, pp. 7945–7962, 2022.

[18] P. Kumar, R. Kumar, G. P. Gupta, and R. Tripathi, “A Distributed framework for
detecting DDoS attacks in smart contract-based Blockchain-IoT Systems by leveraging Fog
computing,” Trans. Emerg. Telecommun. Technol., vol. 32, no. 6, p. e4112, Jun. 2021, doi:
10.1002/ETT.4112.

[19] et al Rehman R., Khan N., Uddin F., “Distributed denial-of-service attack detection using
machine learning in IoT-enabled smart environments,” IEEE Internet Things J., vol. 9, no.
14, pp. 12687–12698, 2022.

[20] S. El Haddouti, M. Khaldoune, M. Ayache, and M. D. Ech-Cherif El Kettani, “Smart
contracts auditing and multi-classification using machine learning algorithms: an efficient
vulnerability detection in ethereum blockchain,” Computing, vol. 106, no. 9, pp. 2971–3003,
Sep. 2024, doi: 10.1007/S00607-024-01314-W/METRICS.

[21] J. U. Fahad Hossain, Mehedi Hasan Shuvo, “A hybrid machine learning approach for
improved ponzi scheme detection using advanced feature engineering,” Int. J. Informatics
Commun. Technol., vol. 14, no. 1, pp. 50–58, 2025, [Online]. Available:
https://ijict.iaescore.com/index.php/IJICT/article/view/21270

[22] Forta Network, “Forta-network/labelled-datasets,” GitHub. Accessed: Mar. 27, 2025.
[Online]. Available: https://github.com/forta-network/labelled-datasets

[23] R. Buyya and S. N. Srirama, “Fog and edge computing : principles and paradigms,” p. 471,
2019.

[24] P. L. Fei He, Fei Li, “Enhancing smart contract security: Leveraging pre-trained language
models for advanced vulnerability detection,” IET Blockchain, 2024, doi:
https://doi.org/10.1049/blc2.12072.

[25] Qusai Omar Mustafa Hasan, “Machine Learning Based Framework for Smart Contract
Vulnerability Detection,” Rochester Institute of Technology. Accessed: Mar. 27, 2025.
[Online]. Available:
https://books.google.com.pk/books/about/Machine_Learning_Based_Framework_for_S
ma.html?id=EvML0AEACAAJ&redir_esc=y

[26] S. Ji, C. Huang, P. Zhang, H. Dong, and Y. Xiao, “Ponzi Scheme Detection Based on
Control Flow Graph Feature Extraction,” Proc. - 2023 IEEE Int. Conf. Web Serv. ICWS
2023, pp. 585–594, 2023, doi: 10.1109/ICWS60048.2023.00077.

[27] M. Wang and J. Huang, “Detecting Ethereum Ponzi Schemes Through Opcode Context
Analysis and Oversampling-Based AdaBoost Algorithm,” Comput. Syst. Sci. Eng., vol. 47, no.
1, pp. 1023–1042, May 2023, doi: 10.32604/CSSE.2023.039569.

[28] T. L. Xueshuo Xie, Haolong Wang, Zhaolong Jian, Yaozheng Fang, Zichun Wang, “Block-
gram: Mining knowledgeable features for efficiently smart contract vulnerability detection,”
Digit. Commun. Networks, vol. 11, no. 1, pp. 1–12, 2025, doi:
https://doi.org/10.1016/j.dcan.2023.07.009.

Copyright © by authors and 50Sea. This work is licensed under
Creative Commons Attribution 4.0 International License.

