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he rise of credit card fraud is a global concern, demanding reliable detection methods 
that can overcome challenges with imbalanced datasets and limited exploration of 
hybrid modeling approaches. This study introduces a hybrid deep learning architecture 

combining Gated Recurrent Unit (GRU) and Long Short-Term Memory (LSTM) layers 
alongside SMOTE-TOMEK preprocessing to address imbalanced data issues in credit card 
fraud detection. The research analyzes a substantial dataset containing both legitimate and 
fraudulent transactions, evaluating the performance of GRU, LSTM, and the novel Hybrid 
model through comprehensive data exploration, preprocessing, and feature selection. 
Performance evaluation uses metrics including accuracy, precision, recall, F1 Score, AUROC, 
and AUPRC. The experimental results demonstrate the effectiveness of deep learning 
architectures, with AUROC values of 0.974551 for LSTM, 0.958174 for GRU, and 0.976205 
for the Hybrid model. The Hybrid model showed particularly promising results with a 
precision of 0.9121 and AUPRC of 0.886068, outperforming the individual models. These 
findings indicate that combining complementary deep learning architectures enhances fraud 
detection by leveraging their respective strengths in capturing both long-term dependencies 
and transaction patterns. These insights offer valuable guidance to financial institutions in 
implementing effective fraud detection systems while emphasizing the importance of 
continuous improvement of deep learning algorithms to address evolving cyber threats. 
Keywords: Credit card fraud detection; Deep Learning; GRU; LSTM; Smote-Tomek.   
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Introduction: 
Credit card fraud has emerged as a critical concern, imperiling the financial security of a 

vast array of personal and corporate stakeholders worldwide. In 2021, the United States alone 
witnessed staggering losses of around $11.91 billion due to this issue. However, according to the 
Nilson Report published in December 2022, there is a slight decline in credit card fraud trends. 
The report projects that global losses from card fraud for retailers, acquirers, and issuers will 
amount to approximately $397.40 billion over the next decade, causing a notable reduction from 
the previous estimates of $408.50 billion [1]. 

Recently, there has been a growing interest in utilizing machine learning methods for 
identifying and preventing credit card fraud [2]. As credit card usage continues to grow, the need 
for reliable fraud detection methods becomes increasingly important. Machine learning 
techniques have emerged as a promising solution for addressing credit card fraud [3]. These 
techniques are capable of examining large volumes of transaction data to detect potentially 
suspicious patterns. Several approaches have been employed to effectively mitigate these frauds, 
with the prevalence of machine learning strategies due to their effectiveness in the quick 
identification of fraudulent transactions [4]. Decision Trees, Regression, Random Forests, 
Hidden Markov Models, and Genetic Algorithms lie among algorithms that have demonstrated 
high efficacy in detecting fraudulent transactions [5]. With the help of these techniques, financial 
institutions can have the ability to substantially reduce the probability of fraudulent credit card 
activities and provide a safe and secure transaction environment for their customers. 

The current study focuses on employing the Smote-Tomek technique, notable for its 
efficacy in managing imbalanced datasets, to enhance fraud detection accuracy. Utilizing a 
comprehensive dataset comprising legitimate and fraudulent transactions, the primary goal is to 
develop hybrid deep learning models. These models aim to leverage diverse deep learning 
algorithms and integrate the Smote-Tomek technique for balancing the dataset, thereby 
enhancing model performance.  

Research suggests that Smote-Tomek outperforms other techniques within the SMOTE 
family [6]. This underscores its suitability for applications requiring robust handling of class 
imbalance, particularly in fraud detection. 
Objectives: 

The main aim of this study is to enhance current approaches for detecting credit card 
fraud by utilizing an integrated approach encompassing sophisticated deep learning algorithms. 
This research seeks to evaluate the effectiveness of modern deep learning techniques combined 
with the Smote-Tomek method in detecting fraudulent activities.  The researchers aim to 
provide crucial and in-depth insights that will be invaluable to financial institutions, guiding them 
in selecting the most accurate and efficient algorithms for fraud detection. The key contribution 
of the present research is as follows: 

• A feature selection pipeline was developed, utilizing Random Forest importance scores 
and Logistic Regression, to determine the most identifying variables for identifying fraud with 
credit cards. 

• The class imbalance challenge was addressed through a combined approach of Random 
sampling and SMOTE-Tomek, creating a more balanced dataset for model training. 

• Three distinct recurrent neural network architectures were implemented and compared: 
an LSTM network, a GRU network, and a novel hybrid LSTM-GRU model. 

• Model effectiveness was rigorously analyzed using an extensive set of parameters, 
including precision, recall, F1 score, and area under the ROC and Precision-Recall curves. 

• A sophisticated hybrid model was designed, incorporating bidirectional LSTM and GRU 
layers with dropout regularization, demonstrating enhanced fraud detection capabilities 
compared to single-architecture models. 
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• Performance visualization techniques, including ROC and Precision-Recall curves, were 
employed to conduct a nuanced analysis of model behavior across various classification 
thresholds. 
Literature Review: 

This literature review examines existing research that explores the application of deep 
learning and machine learning methods in detecting credit card fraud. E.F. Malik et al. [7] have 
recently proposed new hybrid machine-learning approaches that aim to identify instances of 
credit card fraud. These approaches utilized advanced machine learning techniques in two 
phases. During the first phase, multiple machine-learning algorithms were utilized to detect cases 
of fraudulent activity involving credit cards. In the second phase, a combination of approaches 
was developed, using the top-performing algorithm from the previous phase as a foundation. 
The researchers investigated more than five hybrid machine-learning models using a real-world 
dataset. The findings indicated that the combined LightGBM and Adaboost approach exhibited 
the most superior performance with ROC 0.82. This model was able to detect unauthorized 
credit card transactions with remarkable accuracy, improving recall and precision scores of the 
previously used models. The results of this research could aid in the creation of improved 
approaches for identifying credit card fraud and stopping monetary loss. 

S. K. Hashemi et al. proposed a novel method to detect fraudulent activities in banking 
data. To tackle the problem of unequal class distribution, they assessed how class weight-
adjusting hyperparameters could be used to equalize the weight between genuine and fraudulent 
transactions. They also explored the application of Bayesian optimization to fine-tune the hyper-
parameters, considering real-world factors like imbalanced data. The proposed approach has 
shown promising results in detecting fraudulent activities with an AUC of 0.952 and the 
proposed LightGBM with an AUC of 0.947 and can potentially be used in real-world banking 
systems to combat financial crimes [8].  

In a study recently conducted by A. N. Ahmed et al., various machine learning algorithms 
were evaluated for their ability to detect fraud in credit cards. The tested algorithms included 
Extreme Gradient Boosting (XGBoost), and K-Nearest Neighbors (KNN), among others. The 
study revealed that ensemble-based methods such as XGBoost and Random Forest 
outperformed other algorithms in the detection of credit card fraud. This is significant as the 
proliferation of credit card-related fraudulent activities presents a persistent challenge, 
precipitating pecuniary losses that impact both private individuals and corporate entities. A. N. 
Ahmed et al. investigated a range of machine learning approaches like KNN, XGBoost, Naive 
Bayes, SVM, Logistic Regression, and Random Forest for the identification of fraud in credit 
cards. They found ensemble methods like XGBoost (AUC: 97.89%) and Random Forest (AUC: 
97.89%) to be the most effective [9]. 

The increasing volume of sensitive data stored online has elevated cybersecurity to a 
critical concern in recent times. E. Jayanthi et al. conducted an investigation that utilized novel 
machine learning methods to enhance cybersecurity, to address these challenges [10]. The 
performance of these methods was compared with others using metrics comparison, and CCRF 
(Cluster and Classifier-based Random Forest) and CCLR (Cluster and Classifier-based Logistic 
Regression) methods were found to outperform other methods with accuracy rates of 99.95% 
and 99.97%. In today’s digital economy, the use of credit cards is rapidly increasing, but 
unfortunately, so is credit card fraud. Traditional machine learning methods for fraud detection 
often fail due to evolving user behaviors and class imbalance. To tackle this problem, Mienye 
and Sun proposed recent deep-learning strategies specifically designed to overcome these 
limitations [11]. These strategies seek to enhance fraud detection by integrating deep learning 
techniques, which are more adept at managing evolving user behavior and addressing the class 
imbalance issues that traditional methods often struggle to overcome. 
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Vesta dataset and deep learning system is utilized to identify fraudulent credit card 
transactions. Their method achieved an impressive 99.1% ROC curve score, exhibiting its 
efficacy in detecting fraudulent activities [12]. Additionally, S. Kumar et al. proposed an 
intelligent system employing machine learning to uncover credit card fraud, which utilized an 
SVM classification method. Their method showed promising results in terms of accuracy, 
outperforming other existing techniques for detecting fraudulent transactions [13]. K. 
Jegadeesan et al. proposed an ensemble ML strategy for the detection of credit card fraud. They 
used SMOTE, Recursive Feature Elimination, and Ensemble Classifiers to tackle imbalanced 
data and identify optimal prediction features [14]. 

The field of credit card fraud analysis is being progressively transformed by 
incorporating cutting-edge deep learning models, notably, CNNs possess the capacity to 
automatically recognize and gather key characteristics from unprocessed data. Moreover, CNNs 
are adept at handling considerable amounts of data and can effectively adapt to new data. The 
robustness of deep learning frameworks is inherently linked to the comprehensiveness and 
veracity of the training data, along with the hyperparameters used during model training. To 
improve the efficiency of deep learning models in detecting fraudulent transactions, researchers 
have proposed various techniques for optimizing hyperparameters and pre-processing 
imbalanced data [15]. To effectively mitigate the effects of skewed class representation in credit 
card fraud analysis, Strelcenia and Prakoonwit (2023) introduced a novel GAN-based data 
augmentation method. Their approach, known as the K-CGAN method, outperformed 
traditional techniques like SMOTE and ADASYN by generating high-quality test datasets, which 
improved parameters like recall, F1-score, accuracy, and precision [16].  

Similarly, Alabrah (2023) developed an improved credit card fraud detection system that 
incorporates outlier normalization utilizing IQR methodology for outlier detection and 
implementing SMOTEN-based oversampling. This approach resulted in a significant 
enhancement in the model's AUC score, achieving an AUC of 1. 00 [17]. Additionally, Mahajan 
and Baghel (2023) explored the use of logistic regression combined with under and oversampling 
strategies for addressing the challenge of class imbalance, achieving a 94% detection accuracy 
rate for fraudulent transactions [18]. Feldman et al. further contributed by employing the Tomek 
links, which significantly improved the reliability of fraud detection models [19]. 

The rise of credit card fraud has encouraged researchers to examine different machine 
learning (ML) techniques to improve detection. Hybrid models that combine approaches like 
Adaboost and LGBM have achieved high accuracy. Methods such as class weight-tuning and 
Bayesian optimization have been used to tackle imbalanced data. Deep learning strategies have 
addressed the limitations of traditional methods, and some have achieved high ROC scores. 
However, techniques like SMOTE and ensemble classifiers, useful for feature selection, may 
introduce noise or bias, which can compromise model performance. Deep learning models, 
particularly Convolutional Neural Networks (CNNs), hold significant potential but are highly 
dependent on data quality and effective hyperparameter optimization. This review underscores 
the significant potential of advanced ML techniques and artificial neural networks for mitigating 
credit card fraudulent activities. It also emphasizes the necessity for improved methods to handle 
imbalanced datasets without introducing bias, which is the focus of the proposed research. 
Material and Methods: 
Data Acquisition and Exploration: For this study, we utilized a dataset of credit card 
transactions obtained from Kaggle's "Credit Card Fraud Detection" dataset [20]. The data 
consists of financial transactions carried out by cardholders in Europe using credit cards 
throughout a two-day interval in September 2013. A structured approach was adopted for the 
analysis, following the process outlined in Figure 1, which guided through the stages of dataset 
acquisition, preprocessing, model training, evaluation, and comparative analysis. The dataset 
comprises 284,807 transactions, with about 0.172% identified as fraudulent. This extreme class 
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imbalance represents a significant potential bias that reflects real-world fraud patterns but 
requires explicit mitigation strategies to prevent models from developing systematic bias toward 
the majority class. It includes 30 numeric attributes (V1 to V28), Time, and Amount. The last 
column of the dataset denotes the transaction type (1 for fraudulent transactions and 0 for 
others), while attributes V1 through V28 remain anonymous for security purposes [21]. The 
dataset ensures data privacy through PCA transformation of most features (V1-V28), with 
original transaction details anonymized due to confidentiality requirements, thereby protecting 
cardholder identities while still enabling effective fraud detection analysis. This dataset has been 
previously utilized in [21][22].  

The initial exploration of the dataset involved loading it and performing a detailed 
analysis to obtain a thorough comprehension of its attributes. To achieve this, we computed 
descriptive statistics to analyze the distribution of transaction classes and amounts. To visualize 
the distribution of transaction classes, we created a bar plot as in Figure 2. Figure 2 displays the 
transaction class distribution, highlighting the significant imbalance between normal and 
fraudulent transactions. Normal transactions dominate with approximately 284,000 cases, while 
fraudulent transactions are barely visible on the chart, representing only about 0.172% of the 
dataset.  

To further investigate the distribution of transaction amounts, histograms were 
developed as in Figure 3 to create visual representations illustrating the distribution of 
transaction amounts. These histograms provided a clear understanding of the range of 
transaction amounts and the frequency of transactions within each range. Finally, the 
relationship between time and transaction amount for fraudulent transactions was analyzed by 
creating a scatter plot, as shown in Figure 4. This plot was used to identify trends in the data and 
determine whether a correlation existed between transaction time and amount. 
Data Preprocessing: 

Before initiating model training, the dataset underwent preprocessing, including 
normalization of the 'Amount' feature using the Robust Scaler to reduce the impact of outliers. 
This normalization technique is robust to outliers, ensuring that extreme values in the 'Amount' 
feature do not unduly influence the model training process. Robust scaling transforms the data 
through a process of median removal followed by rescaling following the interquartile range. 
Additionally, random under-sampling was performed to address class imbalance. To ensure that 
the models could efficiently learn from the data and generate reliable outputs, these 
preprocessing steps were crucial. 
Robust Scalar: 

Machine learning and statistics professionals frequently employ the Robust Scaler data 
preparation approach to scale numerical features in a dataset. It is particularly advantageous for 
utilizing datasets that contain outliers or are not normally distributed. By using the Robust Scaler, 
the scale of the features becomes more consistent, enhancing the effectiveness of some machine 
learning algorithms particularly those sensitive to feature scaling, as in equation 1 [23]. Equation 
1 scales features while minimizing the impact of outliers, ensuring more stable model 
performance. 

𝑆𝑐𝑎𝑙𝑒𝑑 𝑉𝑎𝑙𝑢𝑒 =
𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑉𝑎𝑙𝑢𝑒−𝐼𝑛𝑝𝑢𝑡 𝑀𝑒𝑑𝑖𝑎𝑛

𝐼𝑛𝑝𝑢𝑡 𝐼𝑄𝑅
 (1) 

Random Under Sampling: 
Class imbalance is a frequent problem in datasets, predominantly in applications like 

fraud analysis, where deceptive financial activities constitute a statistically minor subset within 
the broader spectrum of transactions. To tackle this issue, random under-sampling was used to 
utilize random removal of elements from the preponderant class (non-fraudulent transactions) 
to foster a more equilibrated representation across classes.  
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In this study, we employed Random Under sampling to create a more balanced dataset. 
This process involves the use of a sampling function that randomly selects a specified number 
of instances from the initial dataset. The focus is primarily on the Majority Class (MC), which 
contains the majority of samples in the initial dataset. The Number of Samples (NS) parameter 
is crucial in this method since it outlines the volume of data points included in the resulting 
undersampled set. Proper adjustment of NS can result in a more balanced representation of 
classes, vital for constructing machine learning models capable of effectively distinguishing 
between different classes without bias towards the majority class. 

 
Figure 1. Dataflow of Research Methodology for Addressing Class Imbalance in Fraud 

Detection 
Feature Selection: 
Selecting features is crucial for constructing powerful machines or deep learning models. To 

classify the most informative features, we used the Random Forest algorithm. Random Forest 

systematically investigates the correlation between feature quantity adjustments and pivotal 

performance parameters, including the area under the precision-recall curve (AUC-PR), 

accuracy, F1 score, recall, precision, and the area under the ROC curve (AUC).  



                              International Journal of Innovations in Science & Technology 

March 2025|Vol 7 | Issue 1                                                                         Page |609 

 
Figure 2. Class Distribution of non-fraud and fraud 

 
Figure 3. Transaction amount distribution 

 
Figure 4. Relationship between time & amount 
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By employing logistic regression, it evaluates the performance of each feature subset against 

different thresholds for the number of features. Subsequently, these metrics are plotted against 

the corresponding threshold values, providing valuable insights into the optimal number of 

features crucial for our model. This analytical process is presented in Figure 5. The importance 

of each feature was visualized using a bar plot in Figure 6. Subsequently, a subset of features 

with the highest importance scores was selected for model training. This step was important to 

ensure that the models could focus on the most relevant features and avoid overfitting.  To 

further address overfitting, techniques such as dropout and early stopping have been 

implemented in the model architecture and training process. Smote-Tomek was applied to the 

dataset after the selection of features. 

 
Figure 5. Metric values for each threshold 

Random Forest: 
The Random Forest method employs ensemble learning, which involves generating 

multiple decision tree models and synthesizing their predictions to derive a conclusive result. 
The Random Forest algorithm functions through a series of steps designed to create a robust 
ensemble of decision trees. Initially, it selects m features randomly from the total set of M 
features. Using these chosen features, it builds a decision tree by dividing the data into smaller 
parts based on feature thresholds that minimize impurity. This process was repeated multiple 
times, resulting in the creation of numerous decision trees that collectively form the forest. The 
ultimate classification is derived through the aggregation of individual tree outputs within the 
ensemble framework. For classification tasks, the most frequently occurring prediction across 
all trees is used as the final output. 
Logistic Regression: 

A predictive analytics approach used for estimating binary dependent variables predicts 
the probability that a given input corresponds to a specific category. The functional relationship 
between explanatory variables and binary response is typically characterized by the logistic 
function. 

Logistic regression forecasts the likelihood of a particular input being part of a particular 
class via the logistic function 2 – 5 [24]. Equations 2–5 describe logistic regression, which is 
crucial for fraud detection as it estimates the probability of a transaction being fraudulent. 
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σ(z) =
1

1 + e−z
 (2) 

where the linear combination of the input attribute weights is denoted by z: 

z = w0 + w1x1 + w2x2 + ⋯ + wnxn 

Here, x1, x2, … , xn are the input features, while w0, w1, w2, … , wn are the model's 
coefficients (weights). The logistic regression model predicts the following for a given input's 
probability of falling into the positive class (y = 1): 

P(y = 1|x) = σ(z) (4) 

And the probability that it belongs to the negative class (y = 0) is: 

P(y = 0|x) = 1 − σ(z)(5) 
To categorize an input, a threshold (usually 0.5) is selected. If (P(y=1|x) > 0.5), the input 

is labeled as part of the positive category; otherwise, it is labeled as part of the negative category. 

 
Figure 6. Important Features with Random Forest 

Smote-Tomek: 
Synthetic Minority Over-sampling Technique, also known as SMOTE, is a methodology 

employed for handling class imbalances via making artificially created data to augment the 
minority class. Tomek links denote pairs of instances, where one instance is extracted from the 
majority class and the other is selected from the minority class, that are close in proximity despite 
belonging to distinct classes. SMOTE-Tomek combines the oversampling technique of SMOTE 
with the under-sampling technique of Tomek links to create a more balanced dataset while 
simultaneously improving the separation between classes. 

To address the class imbalance, a combined approach utilizing the Synthetic Minority 
Over-sampling Technique (SMOTE) and Tomek links was applied, resulting in a balanced 
dataset referred to as ST. We applied function S to the original dataset O that utilizes SMOTE 
to generate artificial instances for underrepresented categories. This step increases the 
representation of underrepresented classes. Subsequently, we employ function TL to identify 
Tomek links between samples. Tomek links denote proximal instance pairs of opposing classes; 
eliminating the majority class instance of these links helps to clarify the class boundaries. This 
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two-step process of oversampling followed by targeted under-sampling not only makes the 
dataset more balanced but also improves the quality of the decision boundary between classes, 
potentially improving the deep learning models' effectiveness. 
Model Training and Evaluation: 

Three distinct deep learning models have been trained and assessed, one of them is Long 
Short-Term Memory (LSTM), another is Gated Recurrent Unit (GRU), as well as an additional 
hybrid model that incorporates LSTM and GRU layers - to determine their effectiveness in 
identifying fraudulent transactions. Each model underwent training using the preprocessed 
dataset and assessment substantiated by a range of performance benchmarks, particularly 
accuracy, precision, recall, F1 Score, AUROC, and AUPRC. Training histories for each model 
were visualized using line plots in Figure 8, Figure 11, and Figure 14, while ROC curves and 
Precision-Recall curves were plotted to assess model differentiating ability. This step was crucial 
to ensure that the models could effectively detect fraudulent transactions. 
Long Short-Term Memory (LSTM): 

LSTM has emerged as a sophisticated variant of recurrent neural networks (RNNs), 
purposefully engineered to circumvent the traditional RNNs' drawbacks in capturing and 
maintaining long-range contextual information. It employs specialized gates and memory cells 
to modulate information flow, thus enhancing its capacity to preserve relevant data over 
prolonged sequences. Hochreiter and Schmidhuber initially introduced LSTM. Key equations 
governing LSTM are given below 6 - 13 [23]. 

tan h(x) =
ex − e−x

ex + e−x
 (6) 

sigmoid(x) =
1

1 + e−x
 (7) 

it = σ(wxi
T x(t) + whi

T h(t−1) + bi)(8) 

ft = σ(wfx
T x(t) + whf

T h(t−1) + bf)(9) 

ot = σ(wxo
T x(t) + who

T h(t−1) + bo)(10) 

gt = tanh(wxg
T x(t) + whg

T h(t−1) + bg) (11) 

ct = ft ⊙ c(t−1) + it ⊙ gt(12) 

ht = ot ⊙ tanh c(t) (13) 

Equations 6–13 define the Long Short-Term Memory model, which is crucial for 
detecting fraud patterns in sequential transaction data. Long Short-Term Memory architecture 
incorporates several key components that work in concert to process sequential data effectively. 

New information gets integrated into the cell state through the input gate. 𝑖𝑡, while the forget 

gate 𝑓𝑡 Discards unnecessary information from the prior cell state in a selective manner. The 

memory component is the cell state. 𝑐𝑡, which retains data over long sequences. The flow of 
learned features from the cell's memory to the hidden layer representation is under the output 

gate's 𝑜𝑡 Control, determining how the internal memory influences the output. The hidden state 

ℎ𝑡 Encapsulates the network's understanding of the input sequence up to the current time step. 

The network processes an input vector. 𝑥𝑡 At every time step t, represents the current sequence 

element's features. The hidden state ℎ𝑡−1 and cell state 𝑐𝑡−1 from the previous time step carries 
forward relevant information from prior inputs, enabling the network to maintain context over 
long sequences. Bias vectors b and weight matrices W are used in the various computations 
within the LSTM cell, allowing the network to understand and adjust to the specific patterns 
found in the input data. 
Gated Recurrent Unit (GRU): 

GRU is a refined RNN structure developed specifically to address the problem of 
gradients vanishing during backpropagation. This approach refines the LSTM model by 
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consolidating the input and forget gates into a single update gate, thereby improving 
computational efficiency. The innovative GRU was conceptualized and presented to the field of 
deep learning by Cho et al. [25]. Key equations governing GRU are in 14 - 16:  

rt = σ(wxr
T x(t) + whr

T o(t−1) + br)(14) 

zt = σ(wxz
T x(t) + wo

Tz o(t−1) + bz)(15) 

ot = zt ⊙ ot−1 + (1 − zt) ⊙ ot̃(16) 

GRU improves fraud detection by capturing temporal patterns in transaction sequences 
while being more computationally efficient than LSTM, as shown in Equations 14–16. In the 
context of Gated Recurrent Units (GRUs), several key components work in tandem to process 

sequential data.  The network gets an input. 𝑥𝑡 At every time step t, using the preceding time 

step's concealed state. 𝑜(𝑡−1).  The significance of the update gate 𝑧𝑡 Lies in its role in deciding 

the extent to which the previous state should be preserved. The model employs various weight 

matrices. 𝑤𝑥𝑟 , 𝑤ℎ𝑟 , 𝑤𝑥𝑧, 𝑤𝑜 and bias vectors 𝑏𝑟 , 𝑏𝑧 To perform its computations.  The candidate 

activation 𝑜𝑡 Represents a potential new hidden state.  The sigmoid activation function 𝜎 is used 
to compute gate values, ensuring they fall between 0 and 1. Element-wise multiplication, denoted 

by ⊙ is utilized in several operations within the GRU, allowing for fine-grained control over 
information flow. This architecture enables GRUs to effectively capture and propagate pertinent 
data across extended sequences while addressing the issue of the diminishing gradient. 
Hybrid Model (LSTM + GRU): 

The hybrid model integrates the advantages of both LSTM and GRU architectures 
through the use of alternating LSTM and GRU layers. The hybrid approach aims to capitalize 
on LSTM's robust memory retention capabilities and GRU's enhanced computational efficiency. 
Each layer processes the input sequences bidirectionally, capturing information from both past 
and future time steps. 
Proposed LSTM-GRU Hybrid Model:  

The neural network architecture begins with the initialization of a Sequential model.  The 
first layer is a 100-unit bidirectional LSTM, configured to return sequences and shaped to match 
the input dimensions of the training data. Following this, a dropout regularization strategy is 
employed with a 0.3 dropout probability to prevent overfitting.  The next layer comprises a 
Bidirectional GRU with 50 units, also returning sequences, followed by another Dropout layer 
with a 0.3 probability.  The network then incorporates a densely interconnected layer of 64 
artificial neurons employing RELU activation. The last layer consists of a dense layer with just 
one neuron and uses sigmoid activation. Adam is the model optimizer with a rate of learning 

1 × 10−4 (0.0001). After compilation, the model's architecture is displayed using a summary 
function. The training process is subsequently initiated, running for 20 epochs with a batch size 
of 64 samples and incorporating specified validation data to track performance throughout the 
training phase.  
Evaluation Metrics: 
Accuracy: In the domain of classification model evaluation, accuracy is a commonly applied 
metric. It is ascertained by computing the proportion of accurately classified samples relative to 
the complete set of observations as in 17 [26]. 

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(17) 

In the evaluation of classification models, four fundamental metrics are employed to 
assess performance comprehensively. True Positives (TP) represent the number of instances 
accurately classified to be in a positive class, signifying the algorithm's capacity to precisely detect 
true positive occurrences. Conversely, TNs, or true negatives, indicate the count of cases that 
are appropriately categorized as members of the negative class, showcasing the model's 
proficiency in identifying negative cases. False Positives (FP) quantify the instances categorized 



                              International Journal of Innovations in Science & Technology 

March 2025|Vol 7 | Issue 1                                                                         Page |614 

as positive despite their actual negative classification, highlighting potential over-sensitivity in 
the model. Lastly, False Negatives (FN) enumerate the frequency of samples incorrectly labeled 
as negative despite being truly positive, indicating potential under sensitivity. These metrics form 
the cornerstone of various performance measures such as accuracy, precision, recall, and F1-
score, offering a sophisticated comprehension of a model's advantages and weaknesses across 
different aspects of classification. 
F1 Score: 

It is a composite metric that optimizes the tradeoff between recall and precision, 
calculated as the harmonic average of these two indicators, offering a nuanced assessment of a 
model's predictive efficacy, provides a unified metric that considers both aspects equally as in 
18 [26]. 

F1 = 2 ×
precision × recall

precision + recall
(18) 

Recall: 
Recall, interchangeably used with sensitivity and accurate measurement of the 

proportion of true positives. It is determined as in 19 [26]. 

recall =
TP

TP + FN
(19) 

Precision: 
The precision score assesses the reliability of positive classifications, computed as a 

quotient of actually true positives to the sum of all cases the model designated as positive. It is 
determined as in 20 [26]. 

precision =
TP

TP + FP
(20) 

Area Under the ROC Curve (AUROC): 
AUROC functions as a performance metric for assessing a binary classifier's 

discriminative capacity between positive and negative classes across varying decision thresholds. 
This scalar value is derived by calculating the area subtended by the Receiver Operating 
Characteristic curve (ROC), which graphically represents interdependence between the false 
positive and true positive rate at diverse classification thresholds. AUROC values are constrained 
within the interval [0,1], with higher magnitudes signifying enhanced model efficacy in class 
separation. 
Area Under the Precision-Recall Curve (AUPRC): 

AUPRC serves as a crucial measure for assessing the performance of models for binary 
classification, particularly when handling unbalanced class distributions. It evaluates the 
precision-recall curve area, illustrating the precision plotted against the recall for various 
threshold values. The AUPRC is confined to the range of 0 to 1, the greater score signifies 
superior model performance, particularly in situations where the positive class (e.g., fraudulent 
transactions) is rare. 

These preprocessing techniques and evaluation metrics were instrumental in making 
certain that the models were trained using a balanced and adequate dataset and evaluated using 
appropriate performance metrics that account for class imbalance and the costs associated with 
misclassification. 
Results and Discussion: 
Model Performance Evaluation: 
LSTM Model: 

After training with SMOTE-Tomek to address the class imbalance, the LSTM model 
achieved 87.37% precision, 86.46% recall, and 98.92% accuracy. This model demonstrated a 
balanced performance in identifying fraudulent transactions, as evidenced by an F1 Score of 
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86.91%. The classifier's effectiveness in distinguishing between fraudulent and non-fraudulent 
transactions is demonstrated by the AUROC score of 97.46% and AUPRC score of 86.63% as 
represented in Figure 7. However, when the LSTM model was trained without applying 
SMOTE-Tomek, it achieved a slightly higher precision of 90.11%, recall of 85.42%, and 
accuracy of 99.58%. This led to a significantly higher F1 Score of 87.70%, while the AUROC 
and AUPRC scores decreased to 97.99% and 78.71%, respectively. 

Figure 8 presents the training and validation AUC over epochs. The training AUC 
remains consistently close to 1.0, while the validation AUC fluctuates slightly between 0.95 and 
1.0. This indicates that, although the model generalizes well, there are signs of mild overfitting, 
as the training performance is slightly higher than the validation performance. However, the gap 
is minimal, implying that the overfitting is not severe, and the model continues to exhibit strong 
generalization capabilities. The confusion matrix displayed in the LSTM model provides a visual 
representation of its comprehensive classification performance as illustrated in Figure 9. 

 
Figure 7. AUROC and AUPRC for LSTM model with Smote-Tomek 

 
Figure 8. Long Short-Term Memory (LSTM) Training History 
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Figure 9. Confusion Matrix for LSTM model with Smote-Tomek 

GRU Model: 
The GRU model, trained with SMOTE-Tomek to address class imbalance, exhibited 

excellent performance metrics, boasting a 98.97% accuracy. It demonstrated an F1 Score of 
86.49% with a precision of 89.89% and a recall of 83.33%. The GRU model also demonstrated 
superior differentiating ability, as reflected by an AUROC score of 95.82% and an AUPRC score 
of 80.01% as in Figure 10. In contrast, when trained without SMOTE-Tomek, the GRU model 
obtained 97.79% accuracy, 82.76% precision, and 75.00% recall. The F1 Score was 78.69%, and 
the AUROC and AUPRC scores were 94.91% and 72.69%, respectively. This demonstrates that 
using SMOTE-Tomek significantly improved the effectiveness of the model in identifying 
fraudulent transactions. 

Figure 11 presents the GRU training and validation history. The training AUC starts at 
0.98 and reaches 1.0, while the validation AUC slightly decreases from 0.98 to 0.97. This suggests 
that the model is learning effectively but shows a slight tendency toward overfitting, as the 
training performance continues to improve while the validation performance experiences a 
minor decline. However, the validation AUC remains high, and the model still generalizes well, 
indicating minimal overfitting. The model's classification performance is comprehensively 
visualized in the confusion matrix presented in Figure 12, w hich illustrates the distribution of 
false positives, true negatives, true positives, and false negatives for the GRU model, along with 
an in-depth analysis of its prediction accuracy. 
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Figure 10. AUROC and AUPRC for GRU model with Smote-Tomek 

 
Figure 11. Gated Recurrent Unit (GRU) Training History 
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Figure 12. Confusion Matrix for GRU model with Smote-Tomek 
Hybrid Model: 

The Hybrid model, comprising LSTM and GRU layers, attained an accuracy of 99.56% 
with SMOTE-Tomek applied. Notably, it achieved the highest precision and recall rates among 
all models, with values of 91.21% and 86.46% respectively. The Hybrid model yielded an 
AUROC score of 97.62%, an AUPRC score of 88.61%, and an F1 Score of 88.77% as shown 
in Figure 13. In comparison, when trained without SMOTE-Tomek, the Hybrid model obtained 
98.16% accuracy, 89.01% precision, and 84.38% recall. The F1 Score was 86.63%, and the 
AUROC and AUPRC scores were 93.87% and 69.55%, respectively. This comparison 
underscores the substantial performance improvement when SMOTE-Tomek is utilized. 

Figure 14 presents the training and validation history for the Hybrid model. The training 
AUC increases from 0.99 to 1.0, indicating that the model is learning effectively. However, the 
validation AUC declines from 0.96 to 0.94, suggesting potential overfitting. This occurs because 
while the model continues to improve on the training set, its performance on unseen data slightly 
decreases. The widening gap between training and validation AUC indicates that the model may 
be memorizing training patterns rather than generalizing well, though the overall validation 
performance remains high. The model's classification performance is further illustrated in the 
confusion matrix presented in Figure 15. 

 
Figure 13. AUROC and AUPRC for Hybrid model with Smote-Tomek 

 
Figure 14. Hybrid Model Training History 
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Figure 15. Confusion Matrix for Hybrid model with Smote-Tomek 

The findings highlight the effectiveness of deep learning models in detecting fraudulent 
credit card transactions. However, it is essential to acknowledge the significant impact of the 
SMOTE-TOMEK technique on enhancing the models' performance.  Both LSTM and GRU 
models demonstrated robust performance, with the Hybrid model exhibiting promising results 
when combined with SMOTE-TOMEK, particularly in terms of precision, AUROC as 
presented in Table 2. 

The suggested Hybrid LSTM-GRU model is compared with cutting-edge models for 
credit card fraud detection in Table 3, with an emphasis on important performance indicators 
including accuracy, precision, recall, F1-score, and AUROC. 

Table 1. Performance Metrics of Models without SMOTE-TOMEK 

Model Accuracy Precision Recall F1 Score AUROC ARC 

LSTM 0.995771 0.9011 0.8542 0.8770 0.979885 0.787106 

GRU 0.977937 0.8276 0.7500 0.7869 0.949133 0.726898 

Hybrid 0.981620 0.8901 0.8438 0.8663 0.938704 0.695542 

Table 2. Performance Metrics of Models with SMOTE-TOMEK 

Model Accuracy Precision Recall F1 Score AUROC ARC 

LSTM 0.989215 0.8737 0.8646 0.8691 0.974551 0.866329 

GRU 0.989691 0.8989 0.8333 0.8649 0.958174 0.800134 

Hybrid 0.995577 0.9121 0.8646 0.8877 0.976205 0.886068 

Table 3. Performance comparison of the proposed approach with other models 

Model Accuracy Precision Recall F1 Score AUROC ARC 

Hybrid Model 
(SMOTE-TOMEK) 

0.9956 0.9121 0.8646 0.8877 0.9762 0.8861 

LSTM (SMOTE-
TOMEK) 

0.9892 0.8737 0.8646 0.8691 0.9745 0.8663 

GRU (SMOTE-
TOMEK) 

0.9896 0.8989 0.8333 0.8649 0.9582 0.8001 

GA-ANN [21] 0.8893 0.8240 0.7876 0.8054 0.9400 - 

Adaboost+LGBM 
Hybrid [7] 

- 0.9700 0.6400 0.7700 0.8200 - 
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Adaboost+XGBO
OST [7]] 

- 0.9400 0.5900 0.7300 0.7900 - 

Optimized 
LightGBM (O-
LightGBM) [8] 

0.9840 0.9730 0.4060 0.5690 0.9090 - 

LightGBM [8] 0.9992 0.7530 0.7990 0.7690 0.9470 - 

XGBoost [8] 0.9993 0.7900 0.8010 0.7900 0.9520 - 

The LSTM and GRU models showed balanced performance across multiple metrics, 
making them suitable choices for practical uses where both precision and recall are essential. On 
the other hand, the Hybrid model's high precision suggests its potential for use cases prioritizing 
the minimization of false positives. The AUROC scores illustrate the models' ability to 
distinguish between fraudulent and non-fraudulent transactions, where higher values reflect 
superior performance. The observed AUROC scores for all models suggested satisfactory 
differentiating ability, underscoring their utility in fraud detection tasks. 

Overall, the results highlighted the significance of leveraging deep learning techniques 
for the detection of unauthorized credit card usage. Future studies could explore further model 
refinement and feature engineering techniques to enhance detection accuracy and robustness. 
Additionally, real-world deployment considerations, such as computational efficiency and 
interpretability, warrant further investigation to ensure practical applicability in financial systems. 
Conclusion: 

In conclusion, this academic exploration strives to address the compelling issue of credit 
card fraud detection by leveraging advanced deep learning and hybrid algorithms, in 
combination with data preprocessing methods like SMOTE-Tomek. The study demonstrates 
the efficacy of a Gated Recurrent Unit, Long Short-Term Memory, and a Hybrid model 
integrating GRU and LSTM layers in accurately identifying fraudulent transactions within credit 
card data. Using careful data, preprocessing, feature selection, and model training, this study 
highlights the effectiveness of deep learning architectures in discerning fraudulent activities 
amidst legitimate transactions. The evaluation of model performance utilizing performance 
metrics such as F1 Score, AUROC, recall, accuracy, precision, and AUPRC underscore the 
robustness and differentiative ability of the proposed models. 

Notably, the Hybrid model shows encouraging outcomes, particularly about F1 score 
(0.8877), recall (0.8646), and precision (0.9121), AUROC (0.976205), and AUPRC (0.886068), 
showcasing its real-world applicability potential where minimizing false positives is paramount. 
The results highlight the significance of employing sophisticated deep learning techniques in 
conjunction with appropriate preprocessing strategies to reduce financial losses and improve the 
accuracy of fraud detection. 

Furthermore, the insights gained from this research provide valuable guidance to 
financial institutions and stakeholders in selecting and deploying effective fraud detection 
systems. By continuously refining and optimizing deep learning models, alongside exploring 
novel preprocessing techniques, the financial industry can bolster its defenses against evolving 
fraudulent activity involving credit card transactions. 

Considering the ever-changing landscape of financial transactions and cyber threats, 
future research endeavors should focus on further enhancing model robustness, scalability, and 
interpretability. Additionally, investigations into real-world deployment considerations, 
computational efficiency, and regulatory compliance are imperative to ensure the practical 
applicability and efficacy of fraud detection systems in safeguarding financial assets and 
maintaining trust in digital transactions.  
Author’s Contribution: 

To this work, each author has contributed equally. 



                              International Journal of Innovations in Science & Technology 

March 2025|Vol 7 | Issue 1                                                                         Page |621 

Conflict of interest: 
No conflicts of interest exist. 

References: 
[1] Caitlin Mullen, “Card industry’s fraud-fighting efforts pay off: Nilson Report,” Payments 
Dive, 2023, [Online]. Available: https://www.paymentsdive.com/news/card-industry-fraud-
fighting-efforts-pay-off-nilson-report-credit-debit/639675/ 
[2] A. S. Rathore, A. Kumar, D. Tomar, V. Goyal, K. Sarda, and D. Vij, “Credit Card 
Fraud Detection using Machine Learning,” Proc. 2021 10th Int. Conf. Syst. Model. Adv. Res. 
Trends, SMART 2021, pp. 167–171, 2021, doi: 10.1109/SMART52563.2021.9676262. 
[3] K. S. and R. G. C. Phua, V. Lee, “A comprehensive survey of data mining-based fraud 
detection research,” Artif. Intell., 2010, [Online]. Available: 
https://www.researchgate.net/publication/46887451_A_Comprehensive_Survey_of_Data_M
ining-based_Fraud_Detection_Research 
[4] R. J. Bolton and D. J. Hand, “Statistical fraud detection: A review,” Stat. Sci., vol. 17, 
no. 3, pp. 235–255, 2002, [Online]. Available: https://projecteuclid.org/journals/statistical-
science/volume-17/issue-3/Statistical-Fraud-Detection-A-
Review/10.1214/ss/1042727940.full 
[5] J. K. and A. K. S. P. Tiwari, S. Mehta, N. Sakhuja, “Credit card fraud detection using 
machine learning: a study,” arXiv Prepr. arXiv2108, 2021. 
[6] M. H. K. Ruixing Ming, “Comparing SMOTE Family Techniques in Predicting 
Insurance Premium Defaulting using Machine Learning Models,” Int. J. Adv. Comput. Sci. Appl., 
vol. 12, no. 9, 2021, doi: 10.14569/IJACSA.2021.0120970. 
[7] X. C. Esraa Faisal Malik, Khai Wah Khaw, Bahari Belatonm, Wai Peng Wong, “Credit 
Card Fraud Detection Using a New Hybrid Machine Learning Architecture,” Mathematics, vol. 
10, no. 9, p. 1480, 2022, doi: https://doi.org/10.3390/math10091480. 
[8] S. L. M. and S. G. S. K. Hashemi, “Fraud Detection in Banking Data by Machine 
Learning Techniques,” IEEE Access, vol. 11, pp. 3034–3043, 2023, doi: 
10.1109/ACCESS.2022.3232287. 
[9] A. N. Ahmed and R. Saini, “A Survey on Detection of Fraudulent Credit Card 
Transactions Using Machine Learning Algorithms,” 2023 3rd Int. Conf. Intell. Commun. Comput. 
Tech. ICCT 2023, 2023, doi: 10.1109/ICCT56969.2023.10076122. 
[10] E. Jayanthi et al., “Cybersecurity enhancement to detect credit card frauds in health 
care using new machine learning strategies,” Soft Comput., vol. 27, no. 11, pp. 7555–7565, Jun. 
2023, doi: 10.1007/S00500-023-07954-Y/METRICS. 
[11] I. D. Mienye and Y. Sun, “A Deep Learning Ensemble With Data Resampling for 
Credit Card Fraud Detection,” IEEE Access, vol. 11, pp. 30628–30638, 2023, doi: 
10.1109/ACCESS.2023.3262020. 
[12] K. I. Alkhatib, A. I. Al-Aiad, M. H. Almahmoud, and O. N. Elayan, “Credit Card 
Fraud Detection Based on Deep Neural Network Approach,” 2021 12th Int. Conf. Inf. Commun. 
Syst. ICICS 2021, pp. 153–156, May 2021, doi: 10.1109/ICICS52457.2021.9464555. 
[13] S. Kumar, V. K. Gunjan, M. D. Ansari, and R. Pathak, “Credit Card Fraud Detection 
Using Support Vector Machine,” Lect. Notes Networks Syst., vol. 237, pp. 27–37, 2022, doi: 
10.1007/978-981-16-6407-6_3. 
[14] J. Karthika and A. Senthilselvi, “Credit Card Fraud Detection based on Ensemble 
Machine Learning Classifiers,” 3rd Int. Conf. Electron. Sustain. Commun. Syst. ICESC 2022 - Proc., 
pp. 1604–1610, 2022, doi: 10.1109/ICESC54411.2022.9885649. 
[15] M. R. and M. A. F. K. Alarfaj, I. Malik, H. U. Khan, N. Almusallam, “Credit Card 
Fraud Detection Using State-of-the-Art Machine Learning and Deep Learning Algorithms,” 
IEEE Access, vol. 10, pp. 39700–39715, 2022, doi: 10.1109/ACCESS.2022.3166891. 
[16] E. Strelcenia and S. Prakoonwit, “A New GAN-based data augmentation method for 



                              International Journal of Innovations in Science & Technology 

March 2025|Vol 7 | Issue 1                                                                         Page |622 

Handling Class Imbalance in Credit Card Fraud detection,” Proc. 10th Int. Conf. Signal Process. 
Integr. Networks, SPIN 2023, pp. 627–634, 2023, doi: 10.1109/SPIN57001.2023.10116543. 
[17] Amerah Alabrah, “An Improved CCF Detector to Handle the Problem of Class 
Imbalance with Outlier Normalization Using IQR Method,” Sensors, vol. 23, no. 9, p. 4406, 
2023, doi: https://doi.org/10.3390/s23094406. 
[18] V. S. B. and R. J. A. Mahajan, “Credit Card Fraud Detection using Logistic Regression 
with Imbalanced Dataset,” 10th Int. Conf. Comput. Sustain. Glob. Dev. (INDIACom), New Delhi, 
India, pp. 339–342, 2023, [Online]. Available: https://ieeexplore.ieee.org/document/10112302 
[19] A. S. Alexey Ruchay, Elena Feldman, Dmitriy Cherbadzhi, “The Imbalanced 
Classification of Fraudulent Bank Transactions Using Machine Learning,” Mathematics, vol. 11, 
no. 13, p. 2862, 2023, doi: https://doi.org/10.3390/math11132862. 
[20] MACHINE LEARNING GROUP - ULB, “Credit Card Fraud Detection,” Kaggle, 
2017. 
[21] Y. S. & Z. W. Emmanuel Ileberi, “A machine learning based credit card fraud 
detection using the GA algorithm for feature selection,” J. Big Data, vol. 9, no. 24, 2022, doi: 
https://doi.org/10.1186/s40537-022-00573-8. 
[22] B. E. O. & J. J. Ibtissam Benchaji, Samira Douzi, “Enhanced credit card fraud 
detection based on attention mechanism and LSTM deep model,” J. Big Data, vol. 8, no. 151, 
2021, doi: https://doi.org/10.1186/s40537-021-00541-8. 
[23] Y. Singh, “Robust Scaling: Why and How to Use It to Handle Outliers,” Proclus Acad., 
2022, [Online]. Available: https://proclusacademy.com/blog/robust-scaler-outliers/ 
[24] Google Developers, “Calculating a Probability - Logistic Regression,” Google Dev., 
2023, [Online]. Available: https://developers.google.com/machine-learning/crash-
course/logistic-regression/sigmoid-function 
[25] Y. B. Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, 
Fethi Bougares, Holger Schwenk, “Learning Phrase Representations using RNN Encoder–
Decoder for Statistical Machine Translation,” Assoc. Comput. Linguist., pp. 1724–1734, 2014, 
doi: 10.3115/v1/D14-1179. 
[26] S. S. and N. H. A. H. M. O. S. Yee, “Credit card fraud detection using machine 
learning as data mining technique,” Seybold Rep., vol. 15, no. 9, pp. 2431–2436, 2020, [Online]. 
Available: 
https://www.researchgate.net/publication/344788652_CREDIT_CARD_FRAUD_DETEC
TION_USING_DATA_MINING_TECHNIQUES 

 

Copyright © by authors and 50Sea. This work is licensed under 
Creative Commons Attribution 4.0 International License.q 
  

 


