
 International Journal of Innovations in Science & Technology

Jan 2022 | Vol 4|Issue 1 Page | 1

Transformation of Monolithic Applications towards

Microservices

Original
Article

Zaigham Mushtaq, Najia Saher,Faisal Shazad, Sana Iqbal, Anam Qasim

Faculty of Computing, Islamia University, Bahawalpur, Pakistan.
*Correspondence: Zaigham Mushtaq (zaigham@iub.edu.pk).
Citation | Mushtaq, zaigham, Najia Saher, Faisal Shazad, Sana Iqbal, and Anam Qasim. 2022.
“A Review on Transformation of Monolithic Applications towards Microservices
Environment”. International Journal of Innovations in Science & Technology 4 (1):1-18.
https://journal.50sea.com/index.php/IJIST/article/view/127
DOI | https://doi.org/10.33411/IJIST/2022040101
Received | Dec 17, 2021; Revised | Jan 9, 2022 Accepted | Jan 18, 2022; Published | Jan
22, 2022.
__

he traditional monolithic approach is widely employed in centralized software several
challenges in programming. The study utilized different techniques for the easy
development, deployment, and reusability, as the modules are tightly connected,

causing transformation of several running monolithic applications to micro services including,
Angular 2, REST API, Web application and several other architectural approaches are
discussed. This review paper highlights the significance of microservices and the
transformation of monolithic applications towards microservices. As multiple software
applications are an integral part of a traditional monolithic application, the modules cannot be
extended separately, and different modules cannot use various technology stacks. So,
monolithic source code must be migrated to the microservice platform in order to extend `the
lifecycle of applications in today's environment. However, due to structural complexity,
scattered application logic, and dependency upon external framework libraries, the
transformation towards a microservices platform is quite challenging. A Microservice
architecture is a container of loosely coupled independent services making a flexible system.
In this study, potential areas for the transformation of monolithic application source code are
highlighted. Furthermore, key challenges and open research issues in this area are highlighted,
requiring the research community's attention. The study concludes that Microservices are not
a one-size-fits-all solution for every challenging situation. Monolithic transformation requires
significant amount of time and effort on the part of everyone in the business.
Keywords: Transformation; Monolithic; Microservices

Acknowledgement.
We would like to thank with
deep sense of gratitude to our
research supervisor Dr.
Zaigham Mushtaq for his keen
interest, inspiring guidance and
endless support with our work
at all stages.
Author’s Contribution.
Designing The Experiment:
Sana Iqbal, Zaigham Mushtaq,
Najia Saher. Performed The

Experiments: Sana Iqbal,
Zaigham Mushtaq, Faisal
Shazad
Analyzing The Data: Sana
Iqbal, Zaigham Mushtaq,
Anam Qasim
Code, Designed the
Software or Performed the
Computation Work Sana
Iqbal, Zaigham
Mushtaq, Anam Qasim
Work or Revised It

Critically for Important
Content: Sana Iqbal,
Zaigham Mushtaq, Najia
Saher, Faisal Shazad
Conflict of interest.
The authors declare no
conflicts of interest
Project details. The aim of
this research is the reusability
of exiting code and
transformation towards
microservices environment

T

https://doi.org/10.33411/IJIST/2022040101
https://crossmark.crossref.org/dialog/?doi=10.33411/IJIST/2022040101

 International Journal of Innovations in Science & Technology

Jan 2022 | Vol 4|Issue 1 Page | 2

Introduction
The terminology "microservice architecture" refers to a tactic that assimilate

independent services coupled [1]. This paradigm supports the accumulation of scalable and
maintainable platform for microservices. In ordinary environments, all the business
components are packed together in a centralized traditional application [2, 3], and excessive
code is dispersed and released as a whole; this development and deployment style is known as
monolithic, as shown in Figure 1.

In traditional monolithic environments, all the business components are packed
together in a centralized traditional application [2, 3] and excessive code is dispersed and
released as a whole; this development and deployment style[4] is renowned as monolithic. To
provide high availability and flexibility, the monolithic application is established as a whole,
with load balancing handled by a load balancer at the front end. When a performance
bottleneck arises in an application, it is usually due to restraints in one of the modules rather
than the system's overall components. Relevant components or modules can't be replicated
for extending monolithic architectural systems [5], and spreading the full application over
numerous nodes is a waste of resources. Also, more problems are associated with monolithic
systems as sometimes code is vulnerable or a lot of re-engineering is required.

Moreover, large application systems have complex maintenance in terms of
continuous integration and release[6]. Drawbacks of monolithic systems include tight coupling
between components, as a single application handles every task, less reusability, large codebase,
tough for developers and QA to understand the code and business knowledge, less scalability,
more deployment, and restart times.

Therefore, Microservices [7] accompany a few advantages, for instance, Figure 2
shows the reality that microservices are developed and deployed individually, allowing for
more horizontal scalability and flexibility in different environments [8] and development team
designs that are more efficient. Also, this system is easy to maintain, available and can easily
be invoked. It's no surprise, then, that major internet companies Google, eBay, Netflix, and
others have made significant attempts to transit from monolithic architectures to microservice
oriented application landscapes. Thus because of numerous advantages, there is a need for
time to change monolithic systems to microservices systems.

Bottleneck components illustrate the applications of microservice in the microservices
architecture [2, 9], these components can be deployed in several copies to overcome
performance and scalability issues. Figure 3 shows a microservices technological architecture
that can be utilized to address issues such as large project teams, iteration of an intricate and
inefficient software update, and so on.

Additionally, the trend of migrating monolithic applications [2] to microservices is
steadily expanding, transforming monolithic legacy applications into a microservice
architecture. Microservices provide for the continuous supply and deployment of large,
sophisticated systems that are easier to test and deploy. They communicate and exchange data
using the lightweight HTTP protocol, moreover microservices are always available can be
invoked and it uses simple language for invocation. Also, microservice’s [1, 2] technological
architecture is a good option for applications requiring high-concurrency and high-capacity
systems.

Nowadays, internet systems including Amazon, Netflix, Google, IBM, Uber, Alibaba,
and more firms have made the transition from monolithic [2] to microservice design. There
are a range of technologies available in the form of microservices applications (XML, Ruby,
Python, and Java etc.) [9] Multiple languages support acts as a framework for the
transformation of monolithic systems.

Considering the benefits explained above it is need of time to migrate to microservices
architecture. In this paper materials and method describes the main characteristics on which

 International Journal of Innovations in Science & Technology

Jan 2022 | Vol 4|Issue 1 Page | 3

transformation is based, the most up-to-date methodologies and technologies for moving
from monolithic to microservice architectures will be given, Discussion section further
discusses tools and their details, proposed research design and the challenges and impact of
migrating to microservices.

Figure 1. Monolithic Architecture

Figure 2. Microservices Architecture

Figure 3. Difference Between Monolithic and Microservices Architecture

https://journal.50sea.com/index.php/IJIST/Transformation-of-Monolithic-Application

 International Journal of Innovations in Science & Technology

Jan 2022 | Vol 4|Issue 1 Page | 4

Figure 4. Characteristics of Microservices [10]

The concept to bring the vision [11] of microservices to life[8], it is based on the
following characteristics in Figure .
Small and Focused.

The architectural style of microservices [12] Figure 2 shows a strategy for building a
single application out of a number of small services. These are well understood and focused
on a specific problem.
Lightweight.

Microservices [13] are well-designed and matched to a single business capability can
perform only one function. As a result, microservices with smaller lightweight footprints are
one of the common features as shown in Figure 4 that can be seen in most implementations.
Language Neutral.

Different microservices applications are written in different languages and
microservices [10] can be communicated through a language-independent interface which is
Rest API.
Loosely Coupled.

If changes to one system's design, implementation, or behavior do not cause changes
in the other, the systems are loosely linked. When this comes to microservices in Figure 2, if
a change to one microservice causes an almost rapid change to all other microservices,
coupling may happen [10] that collaborate with it directly or indirectly. Loosely coupled
services [1] make it easier to implement continuous integration and deployment scenarios.
Multiple Codebases

Each Service can have an independent codebase and CI/CD tooling sets as illustrated
in Figure 2. Services[12] are built around business capabilities, independently deployable and
packaged in code, each running in its processor codes[7].

The implementation of these characteristics in Figure 4 are also very adaptable in terms of
adjusting and enhancing the knowledge-based element that is being examined. The execution
engine simply needs to be enriched with more data-dependent rules after the data sources have
been further integrated. This includes cases in which continuous data streams must be polled
in real time. This way efficient transformation[8] of monolithic applications can be done.
Figure 5 describes the main tools/techniques towards microservices that if implemented
smartly will cope with challenges transformation to microservices architecture[12] will give the
best results.

 International Journal of Innovations in Science & Technology

Jan 2022 | Vol 4|Issue 1 Page | 5

Figure 5. Tool used in Transformation

Table 1. Transformation of Monolithic Applications to Microservices
Techniques/Tools: Literature Review

S#

Technique/Tool
Algo

Model Analysis Language
Case

Studies
Problem

definition
Future work

1.
PPTAM+Tool
[21]

Continuous
assess
degradation
system, avoids
performance
regression.

Dynamic
analysis

Java code
Open-
sourceDSL
Frame work

Transitioning
microservices
may not end
up with the
same or abetter
performing
system

Integrating
advanced
statistical tools
in R scripts like
genetic
algorithms can
evaluate
architectural
choices.

2.
Software
clustering
algorithm SarF [9]

Identify candidate
micro services

Static
analysis

Java
code,COB
OL

Spring Boot
Pet Clinic.

Manuals effort
is required
analyzing many
dimensions

Execution
timing and
revisions need
to be added to
improve
candidate’s
identification

3. Angular2 [16]

Mapping model
bw Java classes/
proposes a fitness
function to
measure service
quality

Dynamic
analysis

Java with
spring boot.

MVC
framework

Complex task
to identify and
classify the
existing service
layer.

Advanced
analysis such as
service
descriptions
including its
usages,
dependency
graphs can
exclude.

4. Docker 8[20]

Tip-of-ice berg
programing
model/
Demonstrate tree
shaking,
 sand-
boxing approach

Statistic
analysis,
dynamic
analysis

java,
python,
Ruby++,.n
et

Industry
example
node.js on
IoT project

Architectural
adjustments
are required to
fulfill
functional and
non-functional
requirements.

Stronger
connection ad
hoc reuse and
its impact in
the design in
terms of
adaptation
effort.

 International Journal of Innovations in Science & Technology

Jan 2022 | Vol 4|Issue 1 Page | 6

5.
NSGA-III (algo)
[30]

Measure quality
indicators IGD &
HV/ analyze
both closeness
and diversity of
web services.

Dynamic
analysis

JavaScript
PHP,

Metal1 in
version5.9

Closeness
problem and
diversity of a
Pareto front.

Inverted
Generational
Distance
(IGD) can
measure
convergence
and closeness
between PF
known and Pf
true.

6.
Steinmetz
architecture[31]

Graph clustering
algorithm/metho
dology aggregates
three dimensions
into a single graph

Dynamic
analysis

java code

java based
applications
from
GITHUB

Decomposition
process is a
significant
challenge.

specific
patterns may
be detected
where this
methodology
falls short.

7.
FX-Agents
Approach [25]

The approach
used Web Service
GUI (WSGUI)
Engine, which
does allow
dynamic GUI
Generation.

Dynamic
analysis

WSDL

Event
Planning
System using
BSD and
WSGUI

Shortcomings
of current Web
service
standards like
WSDL and
SOAP.

FX-Agent’s
approach may
not identify
the
deficiencies of
WSDL and
associated
technologies.

8.
SSA,SCGA,
CSDA techniques
[12].

Static analysis and
dynamic analysis
model/ evaluate
the degree of
dependence, and
through function
clustering

Static
analysis
Dynamic
analysis

Web
application
server tom
cat 8.5.20,
Spring
Boot 1.5.7

12
applications
of
opensource
java based
projects

Lack of
consideration
of the runtime
dynamic
characteristics,
completeness
and accuracy of
the static
analysis.

Evaluation of
candidate
microservice
sets obtained
by different
divisions is
needed.

9.
MOEA 4 MBPL
approach[14]

Extract Feature
Models on multi-
objective
evolutionary algo.

Dynamic
analysis

java, PHP,
COBOL

Six micro
services
based
systems

Manual
approach to
support design
Microservices-
Based Product
Lines (MBPLs).

Non-
functional
properties, as
well as the
creation of
other
architectural
models is
needed.

10
MST Clustering
Algo [1]

Graph-based
clustering/ meta
information from
monolithic code
bases to construct
a graph represents

Static
analysis,
Dynamic
analysis

Java, Ruby,
and Python

21
opensource
projects

Informal
migration
patterns &
techniques.

fine-granular
software
artifacts
improve the
granularity and
precision

 International Journal of Innovations in Science & Technology

Jan 2022 | Vol 4|Issue 1 Page | 7

Many strategies and tools for transforming monolithic software programs have been
presented in Table 1 which presents the best knowledge on transformation tools and
techniques.
Tools for the Transformation of Monolithic Applications Towards Microservices

A tool support is intended to make developing, deploying, and running applications
easier transformation to microservices. The developer can use tools to package an application
with all of its components, including libraries and other dependencies, and deploy it as a single
package[15]. It Creates the environment for an automated workflow and verify following
overviews given in Figure 5 about some tools used in microservices transformation[4].
Angular2

Angular2 [16] is a web application development platform for mobile and desktop
devices. Using the Angular tool, any template may be translated to code that is properly
optimized for today's JavaScript virtual machines. It is used as a frontend tool[16]. This
framework was created to help solve problems that arise when working with single-page
applications. It began with the development of a model for converting Java classes into
microservice concepts. After that, it shows how to use a fitness function to determine service
quality.
REST API

A REST API [17] is an easy-going and undisturbed software intermediary that allows
two applications to talk to each other (API or Web API) that follows to the limitations of the
REST architectural style and allows collaboration with RESTful [2, 18] web services. RESTful
API [17] was introduced before Microservices that makes it easy to build loosely coupled
Microservices.
Web Application Server

Tomcat [19] combines different applications in one package, users get a web server
(that can manage HTTP requests/responses) and a web container (gears a Java Servlet API,
also known as a servlet container). It is not a developed Java EE application server, despite
the fact that it is commonly referred to be one (it does not appliance the whole Java EE API).
Any Web application distribution [12]may be accomplished in several ways using the Tomcat
server in microservices architecture (Figure 2).
Spring Boot for Microservices Identification

Spring Boot[19] is employed in the backend. With Spring Boot[12], Microservices
allow to start small and iterate quickly. As a result, it has established itself as the de-facto
standard for Java microservices. It simplifies the development of standalone, production-ready
Spring-based applications that may be "simply run". Spring Boot's[19] multi purpose-built
capabilities make it simple to create and deploy microservices at scale.
Docker and Docker Swarm

Docker[20] is a software platform that makes it simple for software developers to
implement the use of container into their development process. Containers are a considerably
better solution for a microservices design than VMs just in terms of efficiency. Docker is a
free and open-source software platform that runs on a range of operating systems, making it
accessible to developers working on a variety of platforms.
Techniques & Approaches Proposed for the Transformation Towards Microservices
Platform.

Many organizations are approaching the objective of migrating to a microservices
architecture from a monolithic one. Microservices promise faster processing and delivery, as
well as the flexibility to pivot when market need shifts. Therefore, from our experience, the
following fundamental techniques\approaches in Figure 4 will ensure that this revolutionary
journey begins with an effective strategy.

 International Journal of Innovations in Science & Technology

Jan 2022 | Vol 4|Issue 1 Page | 8

SCGA, CSDA Technique
SCGA, CSDA Technique[12] suggests decomposing monolithic applications vertically

into a subset of business-driven services. This technique[12] determine the degree of
dependence, the coupling between functions was used. It performs static and dynamic analysis
on monolithic apps to determine their static structure and runtime behavior.
PPTAM, PPTAM+ Technique
PPTAM, PPTAM+Technique [21] amalgamate an Application Performance Monitoring
(APM) tool that gathers performance data and stack traces and shows conceptions of the
results to stakeholders. By the time, PPTAM Tool [21]is also been improved such that it can
detect performance reduction when switching from monolithic to microservice systems [4]
developed and launched using DevOps.
SArF (Clustering Algorithm Tool)

SArF (Custering Algorithm Tool)[9] utilizes graph clustering [2] for the program
dependencies that are static, as well as program and data dependencies. This algorithm [22]
can collect software programs and data that are closely connected. It breaks down a system
into manageable collections of software objects (e.g., programs, data). This decomposition[8]
can be used to represent the system's architectural information and highlevel abstraction
interpretations.
MST Clustering Algorithm

MST Clustering algorithm [23] comprises of three extraction stages: monolithic,
graphing, and microservices stage[24]. To generate a graphical representation of the monoliths,
the coupling solutions, on the other hand, depend on (meta-)information from monolithic
code bases[4] in a refactoring situation, which are then evaluated by the clustering method to
give endorsements for possible microservice contenders [9] .
FX-Agents Approach

FX-Agents [25] constructed a Business Service Directory (BSD) based on Info master
that provides dispersed search using logic as “glue. “The FX-Agents approach[25] is used in
the microservices conversion to identify the insufficiencies of WSDL[26] and related
technologies, then to discourse them with the acceptance and flexibility of Declarative Logic.
Maturity Model for Smart WS

The maturity model [27]determines Smart WS quality and usefulness. It connects
various types of devices and real-world objects using Web Standards (WS), allowing them to
become part of the Internet (WWW)[27].
MOEA4MBPL (approach)

MOEA4MBPL[14]is based on evolutionary algorithms with many objectives. The
NSGA-II[28] and SPEA2[29] was used to evaluate six microservices-based systems by using
MOEA4MBPL[14]. Multi-objective evolutionary algorithms are utilized in this method. The
method proved successful in identifying FMs with good precision and recall trade-offs, as well
as meeting all microservice requirements.
NSGA-III Algorithm

NSGA-III algorithm [30] is used to measure quality indicators e.g. IGD and HV.
Quality indicators enable us to analyze both closeness and diversity of web services. It is a
Search-Based Microservice Identification algorithm[13].
Semi-Automated Approaches.

Semi-Automated Approaches [31] establishes a paradigm for mapping Java classes to
microservice ideas. Following that, it presents a fitness function for determining service
quality. Also this approach[32] developed a toolkit for analyzing monolithic systems and
recommending the most effective approaches to divide functionality into a group of
microservices.

 International Journal of Innovations in Science & Technology

Jan 2022 | Vol 4|Issue 1 Page | 9

Steinmetz Architecture
Steinmetz Architecture [31] aggregates the three dimensions into a single graph that

we cluster into microservice candidate recommendations. It is a semi-automatic microservice
decomposition technique[33].
Clustering-based Technique

Clustering-based Technique [31] defines function[34] that measures a microservice's
quality by looking at its capacity to deliver consistent service and its dependency with other
microservices in the resulting architecture.
Tip of the ice berg Programming Model

Tip of the ice berg Programming Model [20] that performs additional research to show
a powerful link among ad hoc monolithic application reuse and its influence on design in
relations of amendment effort. It employs both static and dynamic analytic approaches [20]
that offered actual evidence for opportunistic software's function.
SCRUM, KANBAN Approach

SCRUM, KANBAN Approach[35] in which the background of migrations to
microservices, a qualitative study on intents, strategies, and problems were recommended.
Based on real-world industry systems, it examines the revolution procedure from monolithic
architectures to Microservices.

Using the above technologies for migration to a microservice-based architecture legacy
systems have been migrated by organizations [8] to achieve modernization. There are open
challenges[21] as well as gaps in the use of these technologies/tools that are essential for both
practice and research. For instance, diverse microservices can be freely joining or provide the
same functionality in many forms, but may get deprecated or offline at any point in time. This
particular problem is concerned with dealing with change and evolutionary variety [27] of
microservices.

Further, a microservice-based architecture [12] permits to effortlessly accomplish and
coordinate such a blend. These services promise a number of advantages, including reduced
maintenance work, greater availability, shortened incorporation of advanced features, allowed
nonstop delivery and DevOps, better configurability management, and shorter time to market.
On the other side, microservices are highly compatible, empowering developers to integrate
functionalities of different systems that are not executed with the same technologies. For
example, applying a complex business rule may require harmonization among a Java, a PHP,
and a COBOL application. So, by using these tools, microservice-based systems enable for
reprocess and personalize. The above-mentioned tools/techniques are presented in the [Table
1]below, which provides an overview of monolithic system[36].

Figure 6. Proposed Techniques & Approaches for the Transformation Towards

 International Journal of Innovations in Science & Technology

Jan 2022 | Vol 4|Issue 1 Page | 10

Microservices Platform from Monolithic Applications
Discussion

The main topic of discussion in this section is that none of the recently mentioned
techniques/tools provide a general, extendable, and broader solution for analyzing the
transformation of monolithic in microservice architecture at different degrees of abstractions.
The presentation of various applications is incomplete and should be expanded. Existing
techniques/tools/methods are challenging to extend and understand. The analysis in [Table
1] shows that monolithic transformation to microservices is still a challenge[36] for the
software engineering community. However, it is contented that less complicated model is
needed to help transform monolithic applications as it is simpler to carry out, the analysis is
shown in Table 2.

Table 2. Types of analysis and use

Analysis type Usage

Dynamic 60%

Static 10%

Static/dynamic 30%

This research highlights the key challenges[36] that exist in real-world development
environments in many areas, such as analysis, performance, scalability, flexibility, accuracy,
and applicability. The difficulties arise when dealing with complex and large systems that span
multiple areas and languages. The main difficulty for transformation tools is the tight coupling
of required microservices features in different platforms as a modification made to a small
section of code might require building and deploying an entirely new version of software.
Scaling specific functions of an application, also means you have to scale the entire application.
Microservices solve these challenges[37] of monolithic systems by being as modular as
possible. As the world is moving towards microservices architecture so, there is a need of time
that monolithic applications or legacy code need to be reused. Also, Monolithic applications[4]
need to be transformed towards microservices architecture to achieve better usability of
applications in a smart way. However, it is contented that less complicated model Figure 7 that
is simpler to carry out is needed to help transform monolithic applications.

Proposed research design
outlined in this paper was embedded
into a predefined extraction model in
Figure 7. It comprised of three
extraction stages: the legacy code
stage, the methodology
implementation stage and the
extraction microservice candidate’s
stage. There were two
transformations between the stages:
The construction step transforms
the legacy code into the program
representation, and the extraction
step decomposed (detect being as
modular as possible. As the world is
moving towards microservices

architecture so, there is a need of time that monolithic applications or legacy code needed to
be reused. Also, Monolithic applications [4] need to be transformed towards microservices
architecture to achieve better usability of applications in a smart way. However, it is contented

 International Journal of Innovations in Science & Technology

Jan 2022 | Vol 4|Issue 1 Page | 11

that less complicated model Figure 8 that is simpler to carry out is needed to help transform
monolithic applications.

The transformations performed during the steps may differ according to the extraction
strategy in use. Furthermore, the following is the description of key challenges which
transformation process has to deal with them.
 Challenges & Impacts: Transformation of Monolithic to Microservices

In this section Challenges and impacts of transformation of monolithic applications
towards microservices platform is discussed.
Challenges

More than 70% of today's technology leaders use the phrase "monolith to
microservices" to describe their business. Managing microservices becomes more difficult as
the number software increases in the microservices transformation. Increased robustness,
enhanced scalability, and faster time to market are all well-documented advantages.
Implementing microservices, like any transformational tendencies, comes with its own set of
contests. Figure 8 illustrates the topmost challenges that most organizations suffer in their
microservices journey.
It is critical that these challenges are thoroughly addressed, or be prepared for one of the
following outcomes: the project will never see the light of day, or it will be completed only to
find that many of the expected benefits are not realize.
Refactoring

The most challenging things in these situations is separating these services. Refactoring
[3] the services out of the monolithic design can require a long time and effort. As a result, the
refactoring to microservices [23] should be done in stages. Also, even if it may be faster, new
functionalities should not be added to monolithic when implementing it.
Testing

Developers can use a variety of automatic testing [15] techniques to test an application,
based on its requirements. Microservices go hand in hand with continuous integration [29]
and continuous delivery. Without these two approaches, managing multiple services, their
implementations, and validation of the service's behaviors becomes very difficult.
Splitting up

When separating apart the services [22], it's important to keep in mind that the services
don't get very fine-grained. Microservices may cause performance [17] disbursal, particularly
when communicating across the network. If you communicate via REST over HTTP, for
example, each inter-service contact adds burden due to network delay and marshalling and
unmarshalling the data. There will be a lot of interactions between the services if they are
highly fine-grained, and because each call adds strain, the system may not run efficiently
enough.
Integration

Integration [4] across different microservices is one of the most difficult tasks. Since
the players may choose to utilize different programming languages while creating services, it
is not advisable to attach the interaction between services to a certain technology. It is
preferable to use a technology that does not demand the use of a certain programming
language.
Data management

Data management [16] is a vital feature of any application. The application's use cases
and the database schema that should be used. Microservices allow users to use a variety of
database engines. This architecture, known as “database per service”, has its private set of
tasks. Numerous databases make managing them more difficult, and the organization may not
have a clear understanding of the database. However, using a single database for all services is
troublesome because the database structure is now tightly coupled. The usage of a single

 International Journal of Innovations in Science & Technology

Jan 2022 | Vol 4|Issue 1 Page | 12

shared database negates many of the advantages of microservices, and thus is not
recommended.
Tight coupling

Monolithic applications are being refactored [38] or rewritten using the microservice
architectural pattern. Decoupling a monolithic program into discrete modules that each
include the components required to execute a particular business function is a common way
to achieve microservice architecture. These applications should be loosely coupled[39]so that
they can be reused according to specific services. These services usually connect with one
another via language-independent APIs such as REST [17]. Biggest disadvantage of
virtualization shown heavy load on underlying kernel or server but from past some decades
an alternative technology emerges and get popular in a short time [40, 41].
Fault-tolerant

Microservices must be fault-tolerant in design [2, 42]. In a distributed system with
many services, it is possible that a service may become overburdened and unable to reply on
time, or that the service will go down. The circuit breaker pattern is convenient. The circuit
breaker pattern responds quickly to errors and can give a fallback that returns default data
rather than waiting for a dependency's answer. When there are enough failures, the circuit
breaker will stop making additional calls to the dependent and will instead return an error.
Hystrix [42] is a library for distributed systems that provides latency and fault tolerance. This
is simple to use and allow developers to make calls to dependencies with minimal latency and
fault tolerance.
Impacts
Social impacts

In the transformation putting whole organization on the project, may halt or slow
down any development as this can disconnect those people from other ongoing development,
or longer than project team thinks. Instead of making it a project, it should be an ongoing
effort [43].
Economic impacts

The economic impact of such a change is not negligible, and taking such an important
decision to re-architect an existing system should always be based on solid information, so as
to ensure that the migration will allow achieving the expected benefits. Moving to economics,
it was proposed that monoliths benefit from economies of scope, and microservices benefit
from economies of scale[44].

Figure 8. Challenges in Transformation to Microservices

https://en.wikipedia.org/wiki/Economies_of_scope
https://en.wikipedia.org/wiki/Economies_of_scope
https://en.wikipedia.org/wiki/Economies_of_scope
https://en.wikipedia.org/wiki/Economies_of_scale
https://en.wikipedia.org/wiki/Economies_of_scale
https://en.wikipedia.org/wiki/Economies_of_scale

 International Journal of Innovations in Science & Technology

Jan 2022 | Vol 4|Issue 1 Page | 13

Conclusion
This research provides knowledge about the unique challenges that businesses have to

experience transitioning from monolith to microservices, this shift requires a significant
amount of time and multiple organizational teams' efforts. Making a distributed and systematic
system creates additional issues that must be reported and resolved. Although microservices
architecture can be thought of as an advanced software framework, it is more systematic in
terms of microservices tooling approaches, and most difficulties can be overcome by using
open-source tools developed by software businesses.

However, mentioned strategies and technologies may not be able to solve the problem
of loose coupling and code restructuring. The focus on challenges should almost always be
on the technical side. The organization's architecture should be similar to its structure.
Microservices are not a one-size-fits-all solution for every situation, and the challenges can be
tough to overcome in some circumstances. Monolithic refactoring is a significant procedure
that involves a significant amount of time and effort on the part of everyone in the business.
This change is still feasible. Organizations attempting this change should weigh the costs and
advantages of the transition in question, as well as their own concerns. To be successful with
microservices, technical and hierarchical problems must be overcome. There is also a demand
for tools that may address technical issues and obstacles associated with the transition from
monolithic to microservices architecture.
Refrences

1. Mazlami, G., J. Cito, and P. Leitner, Extraction of Microservices from Monolithic

Software Architectures. 2017. 524-531.

2. Zahid, M., Z. Mehmmod, and I. Inayat. Evolution in software architecture recovery

techniques—A survey. in 2017 13th International Conference on Emerging

Technologies (ICET). 2017. IEEE.

3. Jamshidi, P., et al., Microservices: The journey so far and challenges ahead. IEEE

Software, 2018. 35(3): p. 24-35.

4. Selmadji, A., et al., From Monolithic Architecture Style to Microservice one Based on

a SemiAutomatic Approach. 2020. 157-168.

5. Tapia, F., et al., From monolithic systems to microservices: A comparative study of

performance. Applied Sciences, 2020. 10(17): p. 5797.

6. Lapuz, N., P. Clarke, and Y. Abgaz. Digital Transformation and the Role of Dynamic

Tooling in Extracting Microservices from Existing Software Systems. in European

Conference on Software Process Improvement. 2021. Springer.

7. Brito, M., J. Cunha, and J. Saraiva. Identification of microservices from monolithic

applications through topic modelling. in Proceedings of the 36th Annual ACM

Symposium on Applied Computing. 2021.

8. Birchall, C., Re-engineering legacy software. 2016: Manning Publ.

 International Journal of Innovations in Science & Technology

Jan 2022 | Vol 4|Issue 1 Page | 14

9. Kamimura, M., et al. Extracting Candidates of Microservices from Monolithic

Application Code. in 2018 25th Asia-Pacific Software Engineering Conference

(APSEC). 2018. IEEE.

10. srijan, The Advantages of Microservices.

11. Dragoni, N., et al., Microservices: Yesterday, Today, and Tomorrow, in Present and

Ulterior Software Engineering, M. Mazzara and B. Meyer, Editors. 2017, Springer

International Publishing: Cham. p. 195-216.

12. Ren, Z., et al. Migrating web applications from monolithic structure to microservices

architecture. in Proceedings of the Tenth Asia-Pacific Symposium on Internetware.

2018.

13. Yi, J.-H., et al., An improved NSGA-III algorithm with adaptive mutation operator

for Big Data optimization problems. Future Generation Computer Systems, 2018. 88:

p. 571-585.

14. Mendonça, W.D., et al. Towards a Microservices-Based Product Line with Multi-

Objective Evolutionary Algorithms. in 2020 IEEE Congress on Evolutionary

Computation (CEC). 2020. IEEE.

15. Saman, B., Monitoring and analysis of microservices performance. Journal of

Computer Science and Control Systems, 2017. 10(1): p. 19.

16. Bandara, C. and I. Perera. Transforming Monolithic Systems to Microservices-An

Analysis Toolkit for Legacy Code Evaluation. in 2020 20th International Conference

on Advances in ICT for Emerging Regions (ICTer). 2020. IEEE.

17. Salah, T., et al. The evolution of distributed systems towards microservices

architecture. in 2016 11th International Conference for Internet Technology and

Secured Transactions (ICITST). 2016. IEEE.

18. Apis, N. Difference between microservices and monolithic architecture. Available

from: https://nordicapis.com/should-you-start-with-a-monolith-or-microse.

19. Macero, M., The Microservices Journey Through Tools. 2017. p. 179-265.

20. Mäkitalo, N., et al., On opportunistic software reuse. Computing, 2020. 102(11): p.

23852408.

21. Janes, A. and B. Russo, Automatic Performance Monitoring and Regression Testing

During the Transition from Monolith to Microservices. 2019. 163-168.

 International Journal of Innovations in Science & Technology

Jan 2022 | Vol 4|Issue 1 Page | 15

22. Kobayashi, K., et al. SArF map: Visualizing software architecture from feature and

layer viewpoints. in 2013 21st International Conference on Program Comprehension

(ICPC). 2013. IEEE.

23. Yano, K. and A. Matsuo. Labeling feature-oriented software clusters for software

visualization application. in 2015 Asia-Pacific Software Engineering Conference

(APSEC). 2015. IEEE.

24. Brandes, U., M. Gaertler, and D. Wagner. Experiments on graph clustering

algorithms. in European Symposium on Algorithms. 2003. Springer.

25. Petrie, C., et al. Adding AI to web services. in International Symposium on Agent-

Mediated Knowledge Management. 2003. Springer.

26. Curbera, F., et al., Unraveling the Web services web: an introduction to SOAP,

WSDL, and UDDI. IEEE Internet computing, 2002. 6(2): p. 86-93.

27. Maleshkova, M., et al., Smart Web Services (SmartWS)--The Future of Services on

the Web. arXiv preprint arXiv:1902.00910, 2019.

28. Deb, K., et al., A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE

transactions on evolutionary computation, 2002. 6(2): p. 182-197.

29. Adham, A., N. Mohd-Ghazali, and R. Ahmad, Performance optimization of a

microchannel heat sink using the Improved Strength Pareto Evolutionary Algorithm

(SPEA2). Journal of engineering thermophysics, 2015. 24(1): p. 86-100.

30. Carvalho, L., et al. On the Performance and Adoption of Search-Based Microservice

Identification with toMicroservices. in 2020 IEEE International Conference on

Software Maintenance and Evolution (ICSME). 2020. IEEE.

31. Löhnertz, J. and A.M. Oprescu, Steinmetz: Toward automatic decomposition of

monolithic software into microservices. 2020.

32. Maisto, S.A., B. Di Martino, and S. Nacchia. From Monolith to Cloud Architecture

Using Semi-automated Microservices Modernization. in International Conference on

P2P, Parallel, Grid, Cloud and Internet Computing. 2019. Springer.

33. Löhnertz, J. and A.M. Oprescu, Steinmetz: Toward automatic decomposition of

monolithic software into microservices.

34. Eski, S. and F. Buzluca. An automatic extraction approach: Transition to

microservices architecture from monolithic application. in Proceedings of the 19th

International Conference on Agile Software Development: Companion. 2018.

 International Journal of Innovations in Science & Technology

Jan 2022 | Vol 4|Issue 1 Page | 16

35. Fritzsch, J., et al. Microservices migration in industry: intentions, strategies, and

challenges. in 2019 IEEE International Conference on Software Maintenance and

Evolution (ICSME). 2019. IEEE.

36. Assunção, W.K., J. Krüger, and W.D. Mendonça. Variability management meets

microservices: six challenges of re-engineering microservice-based webshops. in

Proceedings of the 24th ACM Conference on Systems and Software Product Line:

Volume A-Volume A. 2020.

37. Rajasekharaiah, C., Microservices: What, Why, and How?, in Cloud-Based

Microservices. 2021, Springer. p. 13-40.

38. Hunold, S., et al. Pattern-based refactoring of legacy software systems. in International

Conference on Enterprise Information Systems. 2009. Springer.

39. Hasselbring, W. Microservices for scalability: Keynote talk abstract. in Proceedings of

the 7th ACM/SPEC on International Conference on Performance Engineering. 2016.

40. Sehir e N, Shehzad M.A, Aslam M.S, Sajid W and Imran M, “Optimize Elasticity in

Cloud Computing using Container Based Virtualization”. International Journal of

Innovations in Science and Technology, Vol 02 Issue 01: pp 01-16, 2019.

41. Saleem.K, Khan.SM “A Study of Awareness and Practices in Pakistan’s Software

Industry towards DevOps Readiness” International Journal of Innovations in Science

and Technology Vol 3 Issue 3 PP 102-115, 2021.

42. Hassan, S., R. Bahsoon, and R. Kazman, Microservice transition and its granularity

problem: A systematic mapping study. Software: Practice and Experience, 2020. 50(9):

p. 1651-1681.

43. Auer, F., et al., From monolithic systems to microservices: an assessment framework.

Information and Software Technology, 2021. 137: p. 106600.

44. Singleton, A., The economics of microservices. IEEE Cloud Computing, 2016. 3(5):

p. 16-20.

Copyright © by authors and 50Sea. This work is licensed under
Creative Commons Attribution 4.0 International License.

 International Journal of Innovations in Science & Technology

Jan 2022 | Vol 4|Issue 1 Page | 17

 International Journal of Innovations in Science & Technology

Jan 2022 | Vol 4|Issue 1 Page | 18

