
 International Journal of Innovations in Science & Technology

Jan 2022 | Vol 4|Issue 1 Page | 32

Realization of Presentation layer information of

Legacy Java Enterprise Applications Through

Design Pattern’s Recovery

Original
Article

Zaigham Mushtaq1, Ghulam Rasool2
1The Islamia University, Bahawalpur, Pakistan 2COMSATS
2University Islamabad, Lahore Campus.
*Correspondence: Zaigham Mushtaq (zaigham@iub.edu.pk).
Citation | Mushtaq, zaigham, and Ghulam Rasool. 2022. “Realization of Presentation Layer
Information of Legacy Java Enterprise Applications Through Design Pattern’s
Recovery”. International Journal of Innovations in Science & Technology 4 (1):32-50.
https://journal.50sea.com/index.php/IJIST/article/view/128.
DOI | https://doi.org/10.33411/IJIST/2022040103.
Received | Dec 20, 2021; Revised | Jan 21, 2022 Accepted | Jan 24, 2022; Published | Jan 26,
2022.

he presentation layer is the outermost layer of an application that provides user interface
and communication services. This layer is responsible for session management, controlling
client access, and validations within data from the client. In legacy enterprise applications

like Java Enterprise Edition Platform (Java EE), the design considerations of the presentation layer
are spread over different design patterns and cross-language constructs. Resultantly, the analysis of
such applications becomes quite challenging due to their heterogeneity, essentially required for the
extraction of design-level information and further modernization. In this research, a flexible
technique is presented to extract presentation tier information based on customizable feature types
by recovering instances of presentation tier patterns of the Java Enterprise Edition Platform. The
proposed approach is evaluated on well operative open-source Enterprise Applications. The
validation results demonstrate the extraction of presentation tier information through Design
Pattern’s recovery. This prototype is validated on the repository of source code of Java
applications.as well on open source java applications
Keywords: Source Code Analysis, Design Patterns, Java Enterprise Applications,

Acknowledgement.
We would like to thank with
deep sense of gratitude to Dr.
Zaigham Mushtaq for his
keen interest, inspiring
guidance and endless support
with our work at all stages.
Conflict of interest.
The authors declare no
conflicts of interest
Author’s Contribution.
Designing The Experiment:

Zaigham Mushtaq, Ghulam
Rasool
Performed The Experiments:
Zaigham Mushtaq, Ghulam
Rasool
Analyzing The Data:
Zaigham Mushtaq
Code, Designed the Software
or Performed the
Computation Work Zaigham
Mushtaq, Ghulam Rasool

Work or Revised It Critically
for Important Content:
Zaigham Mushtaq
Projectdetails.
The aim of this research is the
reusability of exiting code and
design pattern recovery of
lagecy application. The ultimate
goal of this project is to create
automated documentation of
existing legacy code/

T

https://journal.50sea.com/index.php/IJIST/article/view/128
https://crossmark.crossref.org/dialog/?doi=10.33411/IJIST/2022040103

 International Journal of Innovations in Science & Technology

Jan 2022 | Vol 4|Issue 1 Page | 33

Introduction
Evolution, bugs fixing and up-gradation are common in any software system. Many of these

features result in the enhancement and customization of a software application's structural design.
During the development and maintenance of software applications, consistency of documentation
with the design of an application is essential. Legacy software systems [1-3] are difficult to maintain
and upgrade due to obsolete or missing design documentation. It is also observed that the available
documentation does not match the original design due to changes and enhancements made over
time. The code comments and other sources may give some hints to the software developer to
complete the objectives but that does not ignore the necessity of the complete architecture
information of the system. Therefore, for the maintenance and upgradation of the legacy software
system, the software developers must be able to see and understand the complete architecture of
the system to make modifications and apply best design practices [4].

Design patterns are recurring problem-solving techniques[5]. They are reusable components
that can be utilized to solve certain design issues [8]. They aid in the improvement of quality of
software system design [6]. In particular, the detection of different design patterns can help a great
deal to understand the design decisions which can be useful for the comprehensive examination of
a system

The recovery of different design patterns can be very valuable and can help a great deal in
software reverse engineering, maintenance, program comprehension, source code analysis, redesign,
and re-engineering of software applications [7, 8]. Modification of a software system without a
thorough knowledge of multiple design patterns, on the other hand, can cause the application logic
and justification behind the implemented design pattern variation to change. Incomplete knowledge
of design patterns can also make other aspects of software engineering more difficult, such as
refactoring, restructuring, and technology upgrades. All forms of design patterns must be retrieved
to gain insight into the system.

Software application heterogeneity has increased as a result of modernization, making
applications more complex and analysis more difficult [8]. As previously stated, design pattern
recovery is critical for extracting design-level information and the software application's intent. Such
apps' design knowledge and internal logic are stored in many levels that are accessible. Information
is dispersed across different tiers and languages in Java Enterprise applications, which features a
layered architecture. The design artifacts are organized into separate components that reside on the
computer. The presentation tier is the first layer and is responsible for handling user interfaces and
bears communication logic. This layer encapsulates graphical design and user interaction code. The
recovery of presentation tier logic [1] with the help of different design patterns can help a great deal
for understanding and redesigning the structure of an application.

Recovery of different design patterns can help improve the reusability and extendibility of
written logic. Different types of design pattern recovery approaches are reported that support the
extraction of design-level information from software applications [9]. However, complete detection
of presentation tier J2EE Pattern has not been presented so far. The existing approach supports the
only partial recovery of J2EE Patterns within the presentation tier [1]. Therefore, to be able to see
the presentation tier logic implemented, all the design patterns present in a system must be detected
and visualized.

In this paper extendable approach is presented that supports the extraction of presentation
information from the Java Enterprise Edition platform by recovering presentation tier design
patterns. The proposed approach is extendable to support detection of other patterns like GOF
Patterns etc.

The Section 2 in this paper describes related work by describing source code analysis and
design pattern recovery. Section 3 presents background about the role of Enterprise Applications.
Section 4 mentions the mechanism for the extraction of presentation Tier information by using
design pattern recovery and Section 5 describes the conclusion and future work.

 International Journal of Innovations in Science & Technology

Jan 2022 | Vol 4|Issue 1 Page | 34

Background: Role of Design Patterns in Enterprise Applications.
Enterprise applications are large-scale, distributed, multilingual applications constructed

with a variety of technologies. These apps' modules comprises of several language artifacts.
Multilingual enterprise applications are best exemplified by Java enterprise applications. Enterprise
applications enable the creation of numerous components utilizing programming languages such as
C#, Java, HTML, JavaScript, SQL, DSLs, and XML. Because the information that needs to be
fetched is distributed across numerous modules constructed using different programming and
scripting languages, the analysis of such an application is a tough and time consuming operation.
Enterprise applications are complicated and are composed of layers or tiers, each of which are
composed of various technologies and has its own set of responsibilities. Furthermore, each layer
has a collection of different sorts of design patterns to formalize the solution to the difficult problem
[24, 41, 90]. Enterprise applications' server-side architecture is organized into three layers: The
presentation layer, the Business Logic Layer, and the Data Access layer [6].

The enterprise applications are built using design patterns of many types like GOF [6]. Also,
Java Enterprise application design patterns (JEA) [2, 3] are proven solutions that can deal with the
complexity of enterprise-level applications by offering encapsulation. Patterns of Enterprise
Application [5] are another type of pattern that is widely used in enterprise applications to implement
and reuse complex logic. These different types are mostly used in enterprise-level applications. The
reverse engineering of such various design patterns can help recover design information,
architecture, and logic used in the application. Hence the pattern recovery techniques explained in
the previous section can be applied with the help of static and dynamic analysis.

The high-level model of Enterprise Application is presented in Figure 1. The model explains
that all tiers are formed using different components and each layer has its unique responsibility. The
presentation layer encapsulate login to service a client request. The client's request is captured by
the presentation layer, which then conducts the relevant procedures [3]. Single sign-on, session
management, access control to business services, response construction, and response delivery to
clients are all part of this operation.

The information is stored in the form of design patterns in presentation layers [10]. This
information includes pre-processing and post-processing of a request. This layer has centralized
control for handling requests. It also contains a protocol-independent object [11] to pass to other
components. This layer handles view and action management. It creates, dispatches views, and
handles login for view management.

Furthermore, the J2EE design patterns of the presentation tier are listed in Table 1. These
patterns are verified and tested solutions that help build scalable enterprise applications. These
patterns can be applied to any environment other than Java enterprise applications. In a nutshell,
enterprise architecture follows tiered architecture, and each design pattern is specific to a layer. To
extract design logic from the presentation tier, there is a need to detect different types of design
patterns. Table 1. shows the presentation tier logic needed to be extracted for reverse engineering
and the respective design patterns that lies in that information.

Session management, Client Access Control, Helper Properties, Protocol independent
information, Disparate Logic Localization and Control Code in Multiple Views become unavailable.
Key characteristics of the discussion are inscribed in moving forward to the detection of various
types of design patterns from enterprise applications are described below.

1. Each design pattern in an enterprise application has a unique requirement, which
can help understand the reason for the implemented solution.

2. Detection of different design patterns can support reusability which can help
maintain a simpler task with fewer resources to spend [3].

3. The presence of Enterprise applications makes re-engineering a necessary
requirement, as enterprise applications are found everywhere. The recovery of enterprise-level
design patterns increases the adoptability rate and reusability.

 International Journal of Innovations in Science & Technology

Jan 2022 | Vol 4|Issue 1 Page | 35

4. The discovery of multiple design patterns that incorporate systems increases the
reusability of diverse components and reduces cost, maintainability, and design consistency.

5. Different design patterns are applied to build cross-language enterprise applications,
and they are heterogeneous. The recovery of such patterns is a technique for the analysis of
enterprise applications.

In a tiered model, the information flows in a layer in a specific sequence from one
component to the other. Therefore, to realize the complete information, all the patterns that
participate in the presentation tier. However, to the best of our knowledge, available techniques [1-
3, 10, 12] don’t completely realize the presentation tier information using design pattern recovery.

Table 1. Presentation Tier Design Patterns [2, 3]

Tier Name Technology Name of Patterns

The presentation tier Applets, Servlets, UI
Elements, Browser,
JPS etc.

Dispatch View, Intercepting Filter, View Helper,
Service-To-Worker, Front Controller, Composite
View, Application Controller, Context Object

Figure 1. Tiered model of Enterprise Application [2-4]

Table 1. Enterprise Application Presentation Tier logic and relevant Design Patterns [3] [5]

Presentation Tier Information Concern Name of Design Patterns

Session management Service-To-Worker, Application Controller

Client Access Control Front Controller, Dispatch View

Validations and Token Synchronization Intercepting Filter

Helper Properties Integrity and Consistency View Helper, Composite View

Protocol independent information Context Object

Disparate Logic Localization View Helper

Control Code in Multiple Views Front Controller, Application Controller

Proposed Methodology
Only a few patterns from the presentation tier have been discovered, as previously stated [1-

3, 10, 12], including Front Controller, Composite View, and Intercepting Filter patterns. Resultantly,
valuable information about the presentation tier and its logic is lost inclusive of Session management,
client verification, token synchronization, Integrity, and Consistency, etc. [2, 3]. Therefore, we
cannot analyze the application properly which is a prerequisite for reusability, refactoring, reverse
engineering, and re-engineering [3][13].

 International Journal of Innovations in Science & Technology

Jan 2022 | Vol 4|Issue 1 Page | 36

This research enhances the existing approach [1-3, 10, 12] by allowing the recognition of
remaining presentation tier patterns counting Dispatch View, View Helper, Service-To-Worker,
Application Controller, and Context Object patterns along with the already detected patterns [2, 12,
13].

At first, the catalog of feature types [1-3, 10, 12] for presentation tier patterns is enhanced,
some of the additional features are added and definitions of remaining presentation tier patterns are
taken into account using customizable feature types. Based on these definitions, the pattern
detection algorithm is refurbished.
Features for Presentation Tier Design Patterns.

A pattern definition's building blocks are features. The components and their interrelation
are described by features. A design pattern is a grouping of several characteristics. In this section,
the features for the detection of Presentation Tier Design Patterns [12] (Dispatch View, View
Helper, and Service-To-Worker, Application Controller, and Context Object patterns) are
presented.
Context Object

This pattern provides context-oriented access and is responsible for state encapsulation in a
protocol-independent way, shared throughout the application. This modeled couples services and
components and exposes only protocol-specific and context-based relevant APIs [12] for use.

Figure 1. Context Object

Table 2. Features of Context Object Pattern

Index F. # Feature’s Signature

PF1 F28 Get All Classes()

PF2 F45 Has class (PF1) Extends Http Servlet

PF3 F46 Has Object of Http Servlet Request

PF4 F47 Has Object of Http Servlet Response

PF5 F14 Has Method With R Type (PF3, PF4)

PF6 F46 & F14 Has Object (PF3)AND Has Method With Parameter Type (PF3, PF4)

PF7 F14 Has Method With Parameter Type (PF3, PF4)

PF8 F14 Has Method With Parameter Type (PF6)

PF9 F19 Has Realization(PF7, PF8)

View Helper
This figure is used to resolve the complexity and streamline access to model state and data

access logic. Sometimes business data access logic and presentation logic are intermingled.
Resultantly, the reusability, flexibility, and change management become quite difficult. The view
helper pattern supports template-based views and disallows the use of program logic in views. The
panoramas are used to provide encapsulation of formatting code by delegating its responsibilities,
whereas, Helper is utilized in encapsulation of view processing logic [12]. It acts as an adapter to
process formatting logic.

 International Journal of Innovations in Science & Technology

Jan 2022 | Vol 4|Issue 1 Page | 37

Figure 2. View Helper Pattern

Table 3. Features of View Helper Pattern

PF1 F29 Get XMl Objects ()

PF2 F30 Has Number Of Associations With Type (PF1,>=2, “HTML” | “JSP”)

PF3 F31 Has These XML Tags (PF2, “Include”| “Put”)

PF4 F32 Get JSP Objects ()

PF5 F33 Get HTML Objects ()

PF6 F30 Has Number Of Associations With Type (PF1, >=1, “HTML” | “JSP”)

PF7 F5 Has Association (PF5, PF3)

PF8 F34 Has No Number Of Associations With Type (PF4 >= X, ”HTML” | ”JSP”)

PF9 F5 Has Association (PF7, PF3)

Dispatcher View
Dispatcher View invokes view processing before initiating the business process. This design

is implemented with the help of the dispatcher component as the combination of Front Controller
and View Helper patterns. The role of a dispatcher is to perform navigation or view management
inside a controller or in view.

Figure 3. Dispatcher View Pattern

Table 4. Features of Dispatch View Design Pattern

PF1 F20 Has Defined A Type (All Objs, “Dispatch”)

PF2 F40 Has No Realization With Type (PF1, “Http Servlet”)

PF3 F31 Has These XML Tags (PF2, “Include”| “Put”)

PF3 F32 Get JSP Objects ()

PF4 F33 Get HTML Objects ()

PF1 F5 Has Association (F5, F3)

PF2 F34 Has No Number Of Associations With Type (PF4 >= X, ”HTML” | ”JSP”)

PF3 F5 Has Association (PF5, PF3)

 Service-To-Worker
This Pattern performs authorization and authentication, encapsulates business logic, and

simplifies control flows and views. The Service to Worker is a combined form of micro patterns
including dispatcher or controller including helper or views. This pattern supports centralized
control and request handling [12]. After that forwards control to view for presentation in the form
of dynamic response.

 International Journal of Innovations in Science & Technology

Jan 2022 | Vol 4|Issue 1 Page | 38

Figure 4. Service to Worker Pattern
Table 5. Service to Worker Pattern

PF1 F12 Get All Interfaces ()

PF2 F5 Has Association (All Objs, F1)

PF3 F15 Has Method With Parameter Type (All Objs, F2| “Object”| “String”)

PF4 F14 Has Method With R Type (F3, F2| “Object”| “String”| “T”)

PF5 F28 Get All Classes ()

PF6 F15 Has Method With Parameter Type (F6,”String”| “string”)

PF7 F41 Has No Delegation (F4, F2)

PF8 F23 Has Delegation (F8, F5)

PF9 F19 Has Realization (All Objs, F2)

PF10 F23 Has Delegation (All Objs, F9)

Application Controller
This convention provides centralized retrieval and invocation components for request

processing (like commands and views) and offers a central point for screen navigation and
application flow. This structure offers centralized and modularized actions and views management
[12].

Figure 5. Application Controller Pattern
Table 6. Application Controller Pattern

PF1 F29 Get XMl Objects ()

PF2 F32 Get JSP Objects ()

PF3 F33 Get HTML Objects ()

PF4 F30 Has Number Of Associations With Type (PF3, >=1, “HTML” | “JSP”)

PF5 F5 Has Association (PF4, PF3)

 International Journal of Innovations in Science & Technology

Jan 2022 | Vol 4|Issue 1 Page | 39

PF6 F34 Has No Number Of Associations With Type (PF5 >=1, “HTML” | “JSP”)

PF8 F6 Has DTOs ()

PF9 F28 Get All Classes ()

PF10 F5 Has Association (PF8, PF9)

PF11 F30 Has Number Of Associations With Type(1, (“Class”&&”Interface”),PF4)

 Extended Catalogue of J2EE Design Patterns by using Feature Types
The design Pattern is necessary for the production and detection of the pattern since it

includes concrete definitions and standard parameters. As a result, the Presentation tier J2EE
Patterns definitions are extracted from standard resources[1, 2, 13].

The features type for their realization is decided based on these definitions. The feature
types, as previously said, are expandable and reusable, and can be translated into a pattern detection
technique. These features can be developed to increase the quality of the image and find other
patterns. Previously, the catalog of feature types of the J2EE Design Pattern was presented [1, 10].
However, only four patterns were realized to represent Presentation Tier Information including
Front Controller, Intercepting Filter, and Composite View Patterns [1] . As a result, vital information
about Presentation Tier along with Session management, Client Access Control, Helper Properties,
Protocol independent information, Disparate Logic Localization, and Control Code in Multiple
Views become unavailable.

In this research, all remaining Patterns of the J2EE Platform were realized to extract
complete information of J2EE Patterns relating to the Presentation Tier. As the Pattern definitions
are customizable & extendable based on feature types to accommodate new pattern definitions or
their variants. The catalog of J2EE Patterns is further extended to accommodate new pattern
definitions that pertain to the Presentation tier as well as Context Object Pattern, Application
Controller Pattern, View Helper Pattern, Dispatch View Pattern, and Service to Worker Pattern. All
the pattern definitions are developed by the existing catalog of feature types of J2EE Design
Pattern[1, 10]. However, to cater to Servlet information three more features are introduced and
added to the Catalogue of Feature Types.

Table 7. Extended Features of Features Catalogue

F. # Feature Signatures

F44 Has class () Extends Http Servlet

F45 Has Object of Http Servlet Request

F46 Has Object of Http Servlet Response

 Explanation of new Features
The subject class is an Http Servlet class that extends the generic Servlet Class. We can get

specified methods of Servlet Class. Feature # 44 is for the class that returns Features of Http Servlet
(mentioned in Table 8).The role of Http Servlet Request, Http Servlet Response is to get and set
Http Servlet methods. Servlet Request provides basic setter and getter methods for requesting a
Servlet. Http Servlet Request extends the Interface with getters for HTTP communication. Http
Servlet Response object receives the request from the service method and dispatches the request to
the concerning method depending on the incoming HTTP request type. Feature # 45(Table 8)
pertains to the object to receive incoming HTTP request headers and form data. Feature # 46(Table
8) pertains to the object to setup HTTP response including content type and response message.
Extended J2EE Pattern Detection Approach

The proposed approach is translated in the form of a Design Pattern Detection Tool that
contains the definitions of Presentation Tier Patterns. This approach used the meta-model of the
enhanced RDB model and realized the J2EE pattern instances from the source code.

 International Journal of Innovations in Science & Technology

Jan 2022 | Vol 4|Issue 1 Page | 40

The pattern detection approach for the presentation tier contains the algorithms that used
the feature type of J2EE Patterns. A combination of feature types is employed to extract accurate,
interclass relationships among the design pattern components. The proposed approach identifies
the features within the source code by using multiple kinds of classes, object-oriented relationships,
interclass relationships, relevant objects, and a variety of methods. All these steps support the
effective realizations of pattern instances within the Presentation tier.

To detect the complete catalog of J2EE Patterns for the Presentation Tier, the existing
approach [1] needs enhancement as tool availability is deficient to observe all 9 J2EE Patterns about
Presentation Tier. For this purpose, the Pattern Detection Engine (JPDE) was upgraded with the
capability to notice patterns of the presentation tier. For this purpose, the following extensions were
applied.

• Addition of Three (3) more Features in the already available Features Catalogue.

• Extension of information in Super parsing Module (JPSP) for the addition in meta-model
forth new features.

• Addition of algorithms in Pattern Detection Module (JPDE) for the discovery of newly
added features of 5 J2EE Patterns at presentation tier.

The exiting parsing capability of Enterprise Architect (EA) [5, 6, 11] is fine-tuned by using
a super parsing module. EA is a well-versed and famous tool for the modeling of software systems
[7-9, 14]. This tool is also effectively used to recover design from the source code. However,
Enterprise Architect has a weak parsing mechanism and encounters the following deficiencies
mentioned below.

Table 8. Deficiencies of Enterprise Architect

1 Resolving Delegation of Cross language artifacts

2 Resolving Association of Cross language artifacts

3 Resolving Association among Function Parameters

4 Resolving Association Return Type Function

5 Resolving Association among Local Variables

6 Resolving Aggregation

More, the EA lacks the following relationships to resolve

• Delegation between artifacts of multiple languages

• Associations through local variables

• Associations through function’s parameters

• Associations through function return type

• Associations between cross language components

• Other forms of associations like aggregation
Extended Super Parsing Module (ESPM) and its Approach:

Initially, the raw MDB model was created using EA Tool. The deficiencies of the model
were resolved in the form of a Super parsing module. The role of the super parsing module is to
enhance the initial mete model created by the EA RDB model. To extend the existing functionality
and to cater all the information prevalent to the Presentation tier and detection of the Presentation
tier pattern, the Extended Super Parsing Module (ESPM). The ESPM is an extended RDB Model
containing the initial RDB model of EA upgraded to a super parsing model and extended capability
to have all the information to detect J2EE Presentation Tier Design Patterns.

The existing model JPSP was reinforced to ESPM by introducing definitions of 5 J2EE
Patterns relevant to Presentation Tier (cater Presentation layer information). Although some
information was already available, however, the process for getting Servlet information features was
yet to be proposed. So, features# 44 to 46 (3 features) were introduced in ESPM Module.

 International Journal of Innovations in Science & Technology

Jan 2022 | Vol 4|Issue 1 Page | 41

The Super Parsing Module is equipped with multiple techniques including regular
expressions, parsers multiple languages like HTML, JSPs, XML, and Java, etc. This module performs
the following operations as mentioned in Table 10.

Detection of Association

1 Local variable and resolving their scope

2 Using Symbol table for Type resolution

3 Resolving weak associations

4 Association Through Local Variables

5 Association Through Operation Parameters

6 Association Through Function Return-Type

Detection of Delegation

1 Detecting Delegation By Call Scope

2 Detecting Delegation Relationship

The ESPM is displayed to J2EE Pattern Detection Tool (JPDT) enhanced with the extra
definitions of remaining presentation tier design patterns. This tool has Pattern definitions of
Presentation tier and mines through ESPM Module
Extended Visualization Tool Module for Presentation Tier Patterns (EVPM):

The extended visualization module (EVPM) is responsible for the show-case of the
Presentation Tier pattern’s instances realized from the source code of the enterprise applications.
The navigational component supports precise marking of the detected pattern instances within the
source code of the applications. Using this capability, the UML of the Pattern Instance It is pertinent
to mention that by using the visualization module all the components (that participate in the
constitution of Presentation Tier Patterns) can be individually monitored within the source code.
This process enables the dependency analysis and propagation analysis of the source code
components.

Figure 6. Presentation Tier Design Pattern Detection Approach

 International Journal of Innovations in Science & Technology

Jan 2022 | Vol 4|Issue 1 Page | 42

Investigation of Approach: Case Study
It is required to validate the proposed methodology for the identification of Presentation

Tier Patterns based on extended feature types (Figure7) through reliable and most recent Enterprise
Applications. For this purpose, In this section, the evaluation process is performed on reputable
medium and large-scale enterprises Applications including Java Pet Store, EJBCA, Apache OFBIZ,
Open Brava, and Geo Server, [15-25]. More, the documentation and source code of these ERP
applications is available and free to use.
3. Result and discussion

The results of the proposed approach were compared with the existing approach [1] on
earlier mentioned open source Enterprise Applications [15-25]. The outcome clearly shows the
realization of a complete catalog of Presentation Tier Patterns instances from every application.
It is pertinent to mention that the designated case studies were extensively used in medium and
large-scale applications. The manual code inspection of instances of Presentation Tier Patterns is
not possible. Keeping this fact in mind, it is ensured that the recovered instances were manually
validated.
Extraction of Source Code Metrics and Relationships

Initial stats of the results based on the tool evaluation of the selected case studies on open-
source Enterprise Applications are shown in Table11. During the process of presentation Tier
design pattern recovery, some object-oriented types and interclass relationships are found in the
form of classes, Packages, Interfaces, Methods, Attributes, Associations, Generalizations, and
Realizations (Shown in Table 12). All these attributes are the building block of the Presentation Tier
Design Pattern. Moreover, during this process, multiple cross-language files and their relationships
are also recovered including Java, JSP, HTML, XML, SQL, and property files mentioned in Table
13.
Realization of Presentation Tier Pattern Instances

The tool evaluation results show the realization of Presentation Tier pattern instances from
the prescribed open-source Enterprise applications. The outcome of the evaluation is shown in
Table 15. The older version of the tool was limited for recovering Presentation tier Patterns, while
the present version is capable to recover all the Design Patterns of the presentation tier. More the
existence of recovered pattern instances is verified through manual code inspection. We found single
instances of Presentation tier Patterns in the source code; this is due to the fewer utilization of
specified pattern instances. Moreover, fewer patterns were not realized. However, deep manual
examinations we found their definitions but did not qualify for actual pattern definition as prescribed
by the sun microsystem.

The recovered pattern instances are thoroughly inspected manually within the source code
and found correct. Primarily, found some false positives but all of them were removed when we
narrow down the criteria and refine the actual pattern definition with the pattern detection
algorithm.

Moreover, we did not find some presentation tier Patterns instances from the selected
applications [15-25]. We discovered through manual research that the source code for these patterns
did not match the stated principles offered by the solar micro system and did not follow the definite
structure. Handling Design Patter’s Variants is another research dimension. This research focuses
on actual definitions of J2EE Design Patterns.
Measuring Precision and Recall

To validate the extracted pattern instances, the approach is measured by calculating the
results in terms of precision and recall metrics. These metrics help in determining the authenticity
of the Design Pattern extraction approach for the Presentation Tier. They were used to examine the
quality of the approach by identifying the relevant Presentation Tier Patterns and then calculating
the relevant instances that are recovered[25].

 International Journal of Innovations in Science & Technology

Jan 2022 | Vol 4|Issue 1 Page | 43

However, there are certain shortcomings i.e., in the case of the large source code
examination, measuring recall becomes challenging as the manual examination is difficult and time-
consuming. Identification of false negatives requires comparison with valid and reliable benchmarks.
Achieving both precision and recall metrics at the maximum level is difficult [26].

The outcome of the case study examination validated the proposed solution from the case
study of open-source ERP applications. The detail of Presentation Tier Patterns is given in Table
15, whereas the detail of recovered Presentation Tier instances along with the false positives and
precision in Table 14 and Figure 8 respectively

Table 11. Initial Metrics of Selected Software Applications (Case Study)

Source Code Metrics

Open Source Enterprise Applications

Open
bravo
[15]

J Pet
Store
[21]

EJBCA
[22]

Geo Server
[23]

OF Biz
[24]

Application size MB 380 11.1 57.4 104 146

Directories 1,591 378 980 1,040 1,745

Lines of Code (LOC) 434,043 6,573 357,952 192,403 356,474

Blank Lines of Code (BLOC) 44,596 4,603 39,871 28,745 39,221

Physical Executable Lines of Code (PLOC) 306,605 17,891 230,877 98,738 259,761

Logical Executable Lines of Code (LLOC) 221,021 13,957 174,124 74,019 203,697

McCabe VG Complexity (MVG) 38,267 1,796 23,501 13,867 43,723

Code and Comment Lines of Code (CSLOC) 2,109 77 2,241 571 771

Comment Only Line of Code (CLOC) 82,842 14,079 87,204 64,920 57,492

Commentary Words (CWORDS) 508,444 103,222 505,004 276,208 392,418

Header Comment Line of Code (HLOC) 32,930 10,828 20,230 3,778 20,805

Header Commentary Words (HCWORD) 240,627 86,048 122,211 26,577 149,924

Table 12. Metrics of Classes, Objects, and Interclass Relationships

Metrics Open Source Enterprise Applications

Open
bravo [15]

J Pet
Store [21]

EJBCA
[22]

Geo
Server
[23]

OF Biz
[24]

Packages 198 128 614 144 276

Total classes 1,987 267 2,121 1,121 1,135

Abstract Classes 83 21 181 64 100

Interfaces 68 63 212 76 90

Methods 14,818 1,955 36,446 9,885 15,544

Attributes 7,232 1,132 13,253 3,275 6,153

Associations 21,662 4,307 158,334 4,826 15,185

Generalizations 1,318 43 1,225 557 707

Realizations 227 29 439 134 263

Total Connections 23,362 4,385 166,742 5,624 22,221
Table 13. Identification of Cross-Language Files

Cross Language
Metrics -

 Open Source Applications

Open
bravo [15]

J Pet Store
[21]

EJBCA
[22]

Geo Server
[23]

OF Biz
[24]

Java Files 2,387 467 3,823 1,413 2,139

XML Files 2,341 97 3252 405 2,732

HTML Files 450 37 554 75 46

 International Journal of Innovations in Science & Technology

Jan 2022 | Vol 4|Issue 1 Page | 44

JSP Files 1 98 125 146 140

SQL Files 122 5 29 5 11

All Parsed Files 4,746 541 6168 1,669 4,076

Other Files 5,753 206 3,418 3,064 5,813

Total Files 10,499 747 9,586 4,733 9,889

Cross Lang Associations 18,862 3,729 141638 2,199 2,787

Figure 8. Precision of Presentation Tier Patterns

Table 14. Precision Summary of ERP Application

Figure 9. Presentation Tier Pattern’s Recall Metrics Java Pet Store [22]

 International Journal of Innovations in Science & Technology

Jan 2022 | Vol 4|Issue 1 Page | 45

Figure 10. Presentation Tier Pattern’s Precision & Recall Metrics Java Pet Store [22]

Figure 11. Presentation Tier Pattern’s F-Score Metrics Java Pet Store[22]

However, due to the absence of a benchmark, measuring recall is very difficult and manual
authentication is cumbersome and extensive especially for large source code applications. We tried
to select an application with moderate source code and it contained verified instances of J2EE
Design Patterns. J Pet store [21] found a suitable candidate as this is a medium-level application by
Sun Microsystems and is enriched with actual instances of J2EE design patterns. The findings of
manual inspection of code and recovered pattern instances supported our approach through recall
matrices are presented in Figure 9. The comparison of precision and Recall metrics is staged in
Figure 10. The F-Score is a measure between precision and Recall. In our case study for J Pet Store,
the F-score is 0.89, which is quite healthy. The F-Score measure is mounted in Figure 11.
Discussion

The present approach supports the realization of J2EE Design Patterns. These patterns
contain cross-language artifacts that require the identification of all cross-language components that
participate in the pattern’s construct. Initially, the concept of cross-language code analysis and
standard for the realization of J2EE Patterns was presented. For this purpose, a catalog for the

 International Journal of Innovations in Science & Technology

Jan 2022 | Vol 4|Issue 1 Page | 46

recovery of J2EE Design Patterns was offered that was capable to realize only 10 J2EE Design
Patterns dispersed on all layers of the software application.

However, when we discuss specifically presentation tier design patterns, it is observed that
the earlier approach supports the recovery of only three design patterns prevailing to presentation
tier including Composite View, Front Controller, and Intercepting Filter patterns (Sr # 1 to 3 in
Table 15). This approach was deficient to provide complete information of the presentation tier
revealed by design pattern recovery. As a result, a more comprehensive methodology was needed to
ensure the complete recovery of design patterns at the presentation tier.

The existing method is enhanced to recover all Presentation Tier design pattern instances.
Initially, the Catalogue of feature types is expanded by three extra features, resulting in an extended
catalog of customizable and extendable feature types. Secondly, to extract all the complete artifacts
that participated in the definition of presentation level design pattern, the existing module was
upgraded in the form of an Extended Super Parsing module (ESPM). Thirdly, the existing pattern
detection module JPDT enhanced to extended JPDT i.e., EPDT. In this module, the new pattern
definitions were added in the form of a pattern detection algorithm to realize all the instances of
presentation design pattern instances within the source code. Last but not least the exiting
visualization module is extended to EPVM to show and navigate the recovered presentation tier
design pattern instance within the source code.

Table 15. Presentation Tier Design Pattern Instances Extracted (Case Study ERP Applications)

Instances of
Presentation Tier J2EE

Design Patterns

 Open-Source Applications

Openbravo
[15]

J Pet Store
[22]

EJBCA
[26]

Geo Server
[27]

OF
Biz[24]

1 Composite View 11 1 2 13 11

2 Front Controller 2 3 2 1 1

3 Intercepting Filter 2 1 4 1 1

4 Context Object 4 5 11 7 15

5 View Helper 1 12 6 15 1

6 Service-To-Worker 1 5 5 3 1

7 Dispatcher View 7 9 3 1 3

8 Application
Controller

11 2 21 1 10

Total Pattern Instances 39 38 54 42 43

Threats to Validity
This section addresses issues about the proposed approach's acceptability in terms of its

validity, which refers to validity which means the confirmation of the approach through empirical
results and demonstrating that the suggested research is a substantial contribution with proof of
concept.

Internal validity metrics ensure the technique validated by tools or methodology is reliable
[28].The current approach aids in the detection of multilingual J2EE Design Patterns' presentation
tier. The prior method could only discover a few patterns related to presentation tier patterns;
nevertheless, all of the current pattern definitions are an extension of past research. Standard pattern
definitions and their related attributes are derived from authentic and dependable resources utilizing
an adaptive and expandable feature to avoid risks to internal validity[2, 25, 29-31].

This approach is implemented in the J2EE Pattern Detection Tool, which is capable of
extracting Pattern descriptions from the source code of designated applications. The results validate
the approach through open-source ERPs [15-25] . However, manual inspection of the outcome is
needed to avoid false positives. In this regard, community participation is necessary to strengthen

 International Journal of Innovations in Science & Technology

Jan 2022 | Vol 4|Issue 1 Page | 47

the results and reduction of the effect of biases. For further evaluation, the results shall be available
on the GitHub repository. As already discussed, the previous approaches can’t support the detection
of presentation tier design patterns in a multilingual environment. The external validity demands
generalization of approach on large scale. For this purpose, we initial tested our system on JPET
Store [22] by sun microsystems, then we further evaluated our approach on famous and commonly
used medium/ large scaled ERPs [15-25] .All of these applications are open source and their
documentation is available for further validation [32-36]. All the extracted pattern instances for the
presentation tier are manually inspected and found correct, however, generalization in terms of
precision and recall for all presentation tier pattern instances is quite challenging. The pattern
definitions are customizable and extendable to accommodate for any variation in existing patterns
or any addition of new pattern definitions. This nature of feature types generalizes the approach to
accommodate any kind of pattern definitions and is scalable to detect them within the source code
of multiple object-oriented languages.
4. Conclusion

In this research, customizable and extendable definitions are proposed that enable the
extraction of presentation tier information in the form of design pattern recovery. The approach is
validated from a reliable open-source multilingual ERP application. The approach is customizable
and extendable to accommodate variants and new design definitions. The technique is validated on
J2EE Design Patterns detection. At present we are working on the detection of patterns of
integration tier and business application tier. Moreover, we are acting on the detection of recurring
design definitions and variants handling.

 International Journal of Innovations in Science & Technology

Jan 2022 | Vol 4|Issue 1 Page | 48

References
1 Mushtaq, Z., Rasool, G., and Shahzad, B.: ‘Detection of J2EE Patterns based on

Customizable Features’, INTERNATIONAL JOURNAL OF ADVANCED COMPUTER

SCIENCE AND APPLICATIONS, 2017, 8, (1), pp. 361-376

2 Alur, D., Malks, D., Crupi, J., Booch, G., and Fowler, M.: ‘Core J2EE Patterns (Core Design

Series): Best Practices and Design Strategies. Mountain View, CA, USA: Sun Microsystems’,

in Editor (Ed.)^(Eds.): ‘Book Core J2EE Patterns (Core Design Series): Best Practices and

Design Strategies. Mountain View, CA, USA: Sun Microsystems’ (Inc, 2003, edn.), pp.

3 Aniche, M., Yoder, J., and Kon, F.: ‘Current challenges in practical object-oriented software

design’, in Editor (Ed.)^(Eds.): ‘Book Current challenges in practical object-oriented

software design’ (IEEE, 2019, edn.), pp. 113-116

4 Fowler, M.: ‘Patterns of enterprise application architecture.-Addison-Wesley Longman

Publishing Co’, 2002

5 Tiwari, K.: ‘Study and Assessment of Reverse Engineering Tool’, 2020

6 Belfadel, A., Amdouni, E., Laval, J., Cherifi, C.B., and Moalla, N.: ‘Towards software reuse

through an enterprise architecture-based software capability profile’, Enterprise Information

Systems, 2020, pp. 1-42

7 Afzal, K.: ‘Formal Verification of Software Models in MDE’, 2017

8 Ibrahim, L.M., and Ibrahim, K.A.: ‘Constructing an Add-in Tool for Enterprise Architect

v7. 5 To Measure the Quality of Object Oriented Design (Class Diagram)’, International

Journal of Computer Science and Information Security, 2015, 13, (7), pp. 72

9 Gahalaut, A.K., and Khandnor, P.: ‘Reverse engineering: an essence for software re-

engineering and program analysis’, International Journal of Engineering Science and

Technology, 2010, 2, (06), pp. 2296-2303

10 Mushtaq, Z.: ‘Multilingual Source Code Analysis for Recovery of J2EE Environment’, 2017

11 Fekete, A., and Cserép, M.: ‘Incremental Parsing of Large Legacy C/C++ Software’, in

Editor (Ed.)^(Eds.): ‘Book Incremental Parsing of Large Legacy C/C++ Software’ (2018,

edn.), pp. 51-54

12 Fowler, M.: ‘Patterns of Enterprise Application Architecture: Pattern Enterpr Applica Arch’

(Addison-Wesley, 2012. 2012)

13 Rubis, R.: ‘Patterns for Enterprise Application Design and Development’, Florida Atlantic

University, 2017

14 Mark, C.: ‘Sun Certified Enterprise Architect For Java Ee Study Guide, 2/E’ (Pearson

Education India, 2010. 2010)

 International Journal of Innovations in Science & Technology

Jan 2022 | Vol 4|Issue 1 Page | 49

15 Ortiz, J.C.V.: ‘DiseÃ±o de un software que integre una tienda online con Openbravo ERP’,

Revista Matices Tecnológicos, 2018, 7

16 Jain, A., Gupta, S., Vyas, M., Pathy, D., Khare, G., Rajan, A., and Rawat, A.: ‘Open source

EJBCA public key infrastructure for e-governance enabled software systems in RRCAT’:

‘ICT Based Innovations’ (Springer, 2018), pp. 127-139

17 Ryoo, H.-G., Kim, S., Kim, J.-S., and Li, K.-J.: ‘Development of an extension of GeoServer

for handling 3D spatial data’, in Editor (Ed.)^(Eds.): ‘Book Development of an extension

of GeoServer for handling 3D spatial data’ (2017, edn.), pp. 6

18 AS, M.P.: ‘ERP OPEN SOURCE APACHE OFBIZ’, Jurnal E-Komtek (Elektro-

Komputer-Teknik), 2018, 2, (2), pp. 129-133

19 Aversano, L., Guardabascio, D., and Tortorella, M.: ‘Analysis of the documentation of ERP

software projects’, Procedia computer science, 2017, 121, pp. 423-430

20 Rychkova, I., Regev, G., Le, L.-S., and Wegmann, A.: ‘From business to IT with SEAM: The

J2EE Pet Store example’, in Editor (Ed.)^(Eds.): ‘Book From business to IT with SEAM:

The J2EE Pet Store example’ (IEEE, 2007, edn.), pp. 495-495

21 Schuts, M.: ‘Industrial experiences in applying domain specific languages for system

evolution’, [Sl: sn], 2017.

22 Technology, O.: ‘Java Pet Store’, 2021, 1.3.1_02

https://www.oracle.com/java/technologies/petstore-v1312.html

23 Kalyanam, R., Zhao, L., Song, C., Biehl, L., Kearney, D., Kim, I.L., Shin, J., Villoria, N., and

Merwade, V.: ‘MyGeoHub—A sustainable and evolving geospatial science gateway’, Future

Generation Computer Systems, 2019, 94, pp. 820-832

24 OFBiz, A.: ‘Apache OFBiz’, 2021 https://blogs.apache.org/ofbiz/entry/apache-

ofbiznews-may-2021

25 Crupi, J., and Baerveldt, F.: ‘Implementing Sun Microsystems’ Core J2EE Patterns’,

Compuware White Paper, 2004

26 AB, P.S.: ‘EJBCA Enterprise’,2021https://www.primekey.com/products/ejbca-enterprise/

27 Foundation, O.S.G.: ‘GeoServer’, 2021 http://geoserver.org/

28 Elish, M.O., and Mohammed, M.A.: ‘Quantitative analysis of fault density in design patterns:

An empirical study’, Information and Software Technology, 2015, 66, pp. 58-72

29 Crawford, W., and Kaplan, J.: ‘J2EE Design Patterns: Patterns in the Real World’ (" O'Reilly

Media, Inc.", 2003. 2003)

 International Journal of Innovations in Science & Technology

Jan 2022 | Vol 4|Issue 1 Page | 50

30 Alur, D., Crupi, J., and Malks, D.: ‘Core J2EE patterns: best practices and design strategies’

(Gulf Professional Publishing, 2003. 2003)

31 Johnson, R., and Hoeller, J.: ‘Expert one on one J2EE development without EJB’ (John

Wiley & Sons, 2004. 2004)

32. http://geoserver.org/download/, accessed 01102016 2016

33. http://www.openbravo.com/product-download/, accessed 01102016 2016

34. https://www.primekey.se/technologies/products-overview/ejbca-enterprise/

35. https://www.ejbca.org/index.html, accessed 01102016 2016

36. http://ofbiz.apache.org/download.html; , accessed 01102016 2016

Copyright © by authors and 50Sea. This work is licensed under Creative

Commons Attribution 4.0 International License.

http://geoserver.org/download/
http://geoserver.org/download/
http://www.openbravo.com/product-download/
http://www.openbravo.com/product-download/
http://www.openbravo.com/product-download/
http://www.openbravo.com/product-download/
http://www.primekey.se/technologies/products-overview/ejbca-enterprise/
http://www.primekey.se/technologies/products-overview/ejbca-enterprise/
http://www.primekey.se/technologies/products-overview/ejbca-enterprise/
http://www.primekey.se/technologies/products-overview/ejbca-enterprise/
http://www.primekey.se/technologies/products-overview/ejbca-enterprise/
http://www.primekey.se/technologies/products-overview/ejbca-enterprise/
http://www.ejbca.org/index.html
http://www.ejbca.org/index.html

