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Photovoltaic (PV) systems are an important solution to the increasing global demand for 
electricity and the declining availability of fossil fuels. However, under Partial Shading 
Conditions (PSC), the Power-Voltage (P-V) curve can have multiple local peaks, which leads 
to significant power losses and makes it harder to find the true Maximum PowerPoint (MPP). 
Traditional algorithms like Perturb and Observe (P&O) and Incremental Conductance (INC) 
often mistake these local peaks for the global ones, making it difficult to accurately track the 
Global Maximum PowerPoint (GMPP) during shading. To overcome this issue, Machine 
Learning (ML)-based Maximum Power Point Tracking (MPPT) methods are explored as a 
data-driven alternative. These aim to improve accuracy and reduce energy loss in PV systems 
affected by shading. The study evaluates several ML techniques—Artificial Neural Networks 
(ANN), Support Vector Machines (SVM), Decision Trees (DT), Random Forests (RF), and 
Weighted K-Nearest Neighbours (WK-NN) using both synthetic and real-world weather data 
from Johannesburg, South Africa. To test their effectiveness, the models are simulated and 
implemented on a hardware-based PV system. Results show that ML-based MPPT methods 
significantly enhance tracking performance and reliability. For example, SVM achieves an 
efficiency of 96.76% under normal conditions and 83.66% during heavy shading, while ANN 
reaches 99.58% efficiency in stable sunlight. RF and WK-NN also maintain over 95% 
efficiency in changing conditions due to their adaptability. Despite the promising results, some 
challenges remain. These include computational complexity, real-time deployment limitations, 
and the ability of models to generalize under varying sunlight levels. Still, this study 
demonstrates that AI-powered MPPT systems can greatly improve energy management and 
grid stability in next-generation solar technologies. Future research should focus on deep 
learning-based MPPT, hardware-efficient AI models, and real-time optimization to reduce 
processing demands and improve scalability in embedded MPPT controllers. 
Keywords: Maximum Power Point Tracking (MPPT), Photovoltaic (PV) Systems, Machine 
Learning (ML), Partial Shading Conditions (PSC). 
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Introduction: 
The global shift toward renewable energy has significantly increased interest in 

photovoltaic (PV) systems, largely due to their sustainability, cost-effectiveness, and scalability. 
However, one of the persistent challenges in solar energy conversion is partial shading, which 
severely reduces power output by introducing multiple local peaks in the power-voltage (P-V) 
curve. Traditional Maximum Power Point Tracking (MPPT) algorithms—such as Perturb and 
Observe (P&O) and Incremental Conductance (INC)—often fail to accurately locate the Global 
Maximum Power Point (GMPP) under these non-uniform shading conditions. This leads to 
power inefficiencies and frequent oscillations around suboptimal points [1]. Energy losses in 
shaded arrays can reach up to 40%, emphasizing the urgent need for more advanced tracking 
solutions [2]. 

To tackle this issue, heuristic optimization techniques like Particle Swarm Optimization 
(PSO) and Genetic Algorithms (GA) have been proposed. While these methods offer improved 
convergence to the optimal power point, they also present drawbacks such as slow tracking 
speeds, high computational demands, and sensitivity to parameter tuning, which limit their real-
time applicability [3]. Recent developments in artificial intelligence (AI) and data-driven 
optimization have introduced intelligent tracking methods, including Artificial Neural Networks 
(ANN), Support Vector Machines (SVM), and Reinforcement Learning (RL). These approaches 
adapt dynamically to changing environmental conditions using both real-time and historical data 
[4]. Unlike traditional heuristics, intelligent methods can detect complex shading patterns, 
distinguish between local and global maxima, and enhance tracking performance with faster 
convergence and reduced steady-state fluctuations [5]. These strategies have shown up to a 25% 
increase in energy efficiency compared to conventional methods, marking them as promising 
tools for intelligent solar energy management [6]. Still, issues like high computational load, 
complexity in training, and challenges in real-time deployment persist [7]. 

Despite these advancements, several key limitations remain. Many existing data-driven 
tracking systems depend heavily on offline datasets and simulations without validation in real-
world hardware setups. Furthermore, deep learning models, although powerful, often require 
significant processing power, posing challenges for real-time use in embedded systems [8]. Both 
heuristic and learning-based techniques may also struggle with rapid environmental changes due 
to limited dataset generalization and poor feature selection. This study aims to address these 
gaps by developing an intelligent MPPT approach that improves energy efficiency in dynamic 
shading conditions while balancing accuracy and computational efficiency. Unlike previous 
research that relies mainly on simulations, this work includes real-world hardware 
implementation, providing a practical evaluation of intelligent tracking performance. 
The core objectives of this study are as follows: 
• To develop and evaluate intelligent MPPT algorithms using machine learning 
techniques, including Artificial Neural Networks (ANN), Support Vector Machines (SVM), 
Decision Trees (DT), Random Forests (RF), and Weighted K-Nearest Neighbors (WK-NN) 
under various partial shading conditions. 
• To generate a hybrid dataset by integrating synthetic and real-world meteorological 
data for robust model training and improved generalization. 
• To design and implement a real-time control system that leverages the trained models 
for intelligent tracking, validated through both simulation and hardware-based photovoltaic 
(PV) system deployment. 
• To benchmark the performance of the ML-based MPPT algorithms against 
conventional techniques such as Perturb and Observe (P&O), highlighting improvements in 
tracking efficiency, convergence speed, and reliability. 
• To assess the feasibility of deploying these intelligent MPPT techniques in practical 
environments by analyzing computational demands, scalability, and real-time adaptability. 
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To address the persistent challenges of partial shading in photovoltaic (PV) systems, this 
study aims to develop an intelligent Maximum Power Point Tracking (MPPT) solution using 
machine learning techniques. The objectives are to improve energy extraction efficiency, ensure 
faster convergence to the global maximum power point under dynamic conditions, and validate 
performance on real-world hardware setups. The novel contributions of this study include a 
comprehensive comparison of multiple ML-based MPPT models, a hybrid dataset combining 
real-world and synthetic weather data, real-time experimental validation, and benchmarking 
against traditional tracking methods. Unlike previous work, this study emphasizes both 
simulation and hardware deployment to bridge the gap between theoretical development and 
practical application. The rest of this paper is organized as follows: Section 2 presents a detailed 
literature review of heuristic, AI-based, and hybrid optimization strategies. Section 3 outlines the 
proposed methodology, including data preparation, algorithm selection, and experimental setup. 
Section 4 compares the performance of data-driven and traditional methods. Section 5 discusses 
the findings, their implications, and the system’s limitations. Finally, Section 6 concludes the 
study and offers recommendations for future research in smart solar energy optimization.  
Literature Review: 

Photovoltaic (PV) energy has become a leading source of renewable energy due to its 
sustainability and low cost. However, its efficiency is heavily influenced by environmental 
factors—especially partial shading. Shading causes multiple peaks (local maxima) in the power-
voltage (P-V) curve, which makes it hard to locate the true peak, known as the Global Maximum 
Power Point (GMPP). Traditional tracking methods like Perturb and Observe (P&O) and 
Incremental Conductance (INC) often miss the global maximum in such conditions, resulting 
in power losses of up to 40% [1]. 

To address these issues, researchers have explored various optimization strategies, 
including heuristic, bio-inspired, and learning-based methods. Conventional gradient-based 
algorithms like P&O and INC suffer from continuous power oscillations and often lock onto 
local maxima under uneven shading [2]. Fuzzy logic controllers offer better adaptability, but they 
require expert knowledge for tuning, making implementation complex [3]. Heuristic algorithms 
such as Genetic Algorithms (GA) and Particle Swarm Optimization (PSO) improve convergence 
but are computationally demanding and sensitive to parameter settings [4]. Some hybrid systems 
that combine these methods with machine learning have shown improved tracking accuracy 
while easing computational load [5]. Recent AI-based solutions have introduced models like 
Artificial Neural Networks (ANN), Support Vector Machines (SVM), and Reinforcement 
Learning (RL) for smarter MPPT. ANNs are good at learning complex P-V relationships, which 
helps reduce power oscillations and boosts tracking accuracy [6]. However, they typically need 
large datasets and struggle with real-time applications. SVMs can better distinguish between local 
and global maxima under shading, but their high computational demands limit their use [7]. 
Reinforcement learning shows strong adaptability and performance, outperforming both 
traditional and ML models in some cases. Still, it requires intensive training and fine-tuning, 
making it hard to implement in embedded systems [8]. 
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Table 1. Related Work 

MPPT Algorithm Used Key Findings Advantages Limitations Application Context Ref 

Artificial Neural Network 
(ANN)  

Improved MPPT accuracy 
under variable shading 
conditions.  

High accuracy, 
adaptive to PSC.  

High computational 
demand, needs a large 
dataset.  

Standard PV systems with 
moderate shading.  [9] 

Support Vector Machines 
(SVM)  

Effectively distinguishes 
between local and global 
maxima in MPPT.  

High efficiency in 
tracking GMPP 
under PSC.  

Computationally 
expensive.  

Complex shading 
scenarios, distinguishing 
local/global maxima.  [10] 

ANN-based MPPT  

Outperformed conventional 
MPPT methods under partial 
shading conditions.  

High efficiency 
(>95%), improved 
tracking accuracy.  

Requires a large 
training dataset.  

Optimized MPPT for 
standalone and grid-
connected PV systems.  [11] 

Support Vector  
Regression (SVR)  

Improved real-time 
adaptation to shading 
conditions.  

High tracking speed 
and stability.  

Sensitive to parameter 
tuning.  

Dynamic environmental 
changes, grid-integrated 
PV.  [12] 

AI-based MPPT with 
Thermal Imaging  

Detects PV anomalies and 
optimizes power extraction.  

Enhances fault 
detection in PV 
systems.  Requires additional 

hardware.  

Fault detection and 
performance 
enhancement in PV 
arrays.  [13] 

Deep Learning-based 
MPPT  

Improved accuracy over 
ANN and SVM under 
dynamic shading.  

High precision, 
ability to generalize 
better.  

Requires high 
computational power.  

Smart solar grids, 
autonomous energy 
management.  [14] 

CNN-based MPPT  

CNN model efficiently tracks 
GMPP under various PSC 
patterns.  

High accuracy, faster 
tracking.  

High training time, 
requires a large 
dataset.  

High-accuracy tracking in 
real-time MPPT.  [15] 

LSTM-based MPPT  

LSTM model enhances 
tracking performance over 
time.  

Better forecasting 
and adaptability.  

Computationally 
intensive.  

Time-series forecasting 
for PV energy prediction.  

[16] 

Deep Reinforcement 
Learning (DRL)  

Reinforcement learning-
based MPPT outperforms 
ANN and SVM.  

Adaptive learning 
capability, real-time 
optimization.  

High complexity, slow 
convergence initially.  

Real-time optimization in 
rapidly changing 
conditions.  [17] 
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Transformer-based 
MPPT  

Transformer networks used 
for real-time MPPT 
optimization.  

Handles complex 
dependencies in 
shading conditions.  

High computational 
requirement.  

Smart solar farms with 
adaptive optimization.  [18] 

GA + PSO  

The hybrid MPPT method 
improves accuracy and 
convergence.  

Effective under PSC, 
reduces power losses.  

Requires fine-tuning 
of parameters.  

Hybrid MPPT solutions 
for  
large-scale solar 
installations.  [19] 

GA + Grey Wolf 
Optimizer (GWO)  

Faster GMPP detection in 
PV system under PSC.  

High accuracy, 
robust optimization.  

Computational 
overhead.  

Grid-tied solar PV 
systems with hybrid 
optimization.  [20] 

Rao-1 Algorithm +  
MPPT  

Improves MPPT tracking 
under dynamic irradiance 
conditions.  

Reduces oscillations, 
and improves 
efficiency.  

Requires optimized 
feature selection.  

Dynamic irradiance 
scenarios, improving 
energy harvesting.  [21] 

PSO + ANN  

The hybrid MPPT method 
achieves 97.5% tracking 
efficiency.  

Combines benefits of 
heuristic and ML 
approaches.  Increased complexity.  

AI-assisted heuristic 
MPPT solutions.  [22] 

SVM +  
Reinforcement Learning  RL enhances tracking 

efficiency under PSC.  
High accuracy in 
varying conditions.  

Requires real-time 
computational 
capability.  

Self-learning MPPT in 
intelligent PV systems.  [23] 

Table 2. Comparison Of Pv Panels 

PV Panel Model Type Maximum Power (W) Efficiency (%) Performance Under Shading 

1STH-215-P(Used in this study) Polycrystalline 215 17.2 Moderate 

SPRX22-370 Monocrystalline 370 22.8 High 

CS6K-280P Polycrystalline 280 17.1 Low 

Table 3. Comparison Of DC-DC Converters 

Converter Type Efficiency (%) Voltage Range (V) Response to Partial Shading 

Boost Converter (Used in this study) 94 10-60 Moderate 

BuckBoost Converter 92 5-50 High 

SEPIC Converter 90 5-75 High 
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Hybrid approaches combining ML and heuristic methods offer a balanced trade-off 
between accuracy and speed. For instance, integrating ANN with PSO has shown better 
tracking and faster convergence [24], while evolutionary algorithms paired with SVMs have 
proven adaptable in real-world tests [9]. Deep learning models—like Convolutional Neural 
Networks (CNN) and Long Short-Term Memory (LSTM) networks—also show strong 
tracking performance under complex shading conditions [10]. Newer ideas, like using thermal 
imaging to identify shaded areas, have improved fault detection and energy output [11]. 
Meanwhile, hybrid evolutionary methods (e.g., GA combined with Grey Wolf Optimizer) have 
increased accuracy and reduced losses, though they still need fine-tuning [12]. Transformer-
based models are also emerging as strong candidates due to their flexibility in adapting to 
various weather conditions, though they require high processing power [13]. 

Despite these advances, several key challenges remain. Many AI models need heavy 
computing resources, making them difficult to run in real-time on embedded systems. Models 
trained only on synthetic data often struggle when applied in real-world environments. Also, 
hardware limitations in low-cost solar systems prevent the widespread use of complex AI 
techniques. Future research should focus on lightweight, efficient models that balance 
accuracy, speed, and processing needs. Real-time optimization and edge computing are 
promising areas that could help make intelligent tracking more practical and scalable. This 
section has reviewed tracking strategies under partial shading, emphasizing the shortcomings 
of traditional methods and the progress made using AI-based solutions. While heuristic 
methods like GA and PSO offer some improvements, ML techniques provide greater 
adaptability. Still, their high complexity and deployment challenges must be addressed. Future 
work should aim to develop efficient, scalable tracking systems that are practical for real-world 
solar energy applications [14]. 
Proposed Methodology: 

The proposed methodology focuses on developing an intelligent, machine learning-
based maximum power point tracking (MPPT) system to optimize power extraction from solar 
arrays under partial shading conditions. Due to the nonlinear and dynamic nature of the 
power-voltage characteristics, this study aims to improve tracking accuracy, convergence 
speed, and adaptability by applying advanced learning techniques, including artificial neural 
networks (ANN), support vector machines (SVM), decision trees (DT), and weighted k-
nearest neighbors (WK-NN). The methodology is divided into key stages: configuring the 
photovoltaic system, generating datasets, selecting models, training algorithms, implementing 
real-time control, and assessing performance. 
System Design and Experimental Setup: 

A standalone solar energy system is developed to evaluate the performance of 
intelligent tracking under varying sunlight conditions. This setup includes a polycrystalline 
photovoltaic panel (1STH-215-P), a Boost DC-DC converter, a tracking controller, and a load. 
The Boost converter is selected for its ability to increase voltage while maintaining high 
efficiency, ensuring stable performance under different shading scenarios. The 1STH-215-P 
panel is chosen for its good efficiency and moderate shading tolerance, making it well-suited 
for practical use. Table II presents a comparison of different solar panels and DC-DC 
converters, highlighting the reasons behind their selection. The system also integrates 
environmental monitoring, sensor calibration, and data collection to ensure real-world 
accuracy. Irradiance and temperature sensors continuously track environmental conditions, 
while a microcontroller-based data logging system records system performance. This setup 
enables real-time validation under actual field conditions, reducing reliance on simulation data 
alone. 
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Figure 1. Proposed Methodology Block Diagram 

Table 4 presents the key electrical specifications of the 1STH-215-P module, including 
short-circuit current (Isc), open-circuit voltage (Voc), and series/shunt resistance values, 
ensuring accurate characterization of the PV panel. Temperature coefficients are also included, 
as they play a crucial role in affecting MPPT accuracy under changing environmental 
conditions. 

Table 4. 1sth-215-p photovoltaic panel specification 

Specification Value 

PV Model  1STH-215-P 

Short Circuit Current (Isc)  7.84 A 

Open Circuit Voltage (Voc)  36.3 V 

Maximum Voltage (Vmpp)  29 V 

Maximum Current (Imp)  7.35 A 

Maximum Power (Pmpp)  213.15 W 

Number of Cells in Series (Ns)  60 

Temperature Coefficient of Isc  -0.36099%/°C 

Temperature Coefficient Voc  0.102%/°C 

Diode Ideality Factor (A)  0.98117 

Series Resistance (Rs)  0.39383 Ω 

Shunt Resistance (Rsh)  313.399 

Dataset Generation and Feature Selection: 
A hybrid dataset, combining synthetic data with real-world weather observations, is 

developed to train the tracking models for optimization. This dataset includes solar irradiance, 
ambient temperature, PV voltage, current, and power output under various partial shading 
scenarios and environmental changes. To enhance model robustness against unpredictable 
environmental variations, advanced preprocessing techniques—such as Gaussian noise 
injection, polynomial regression, and feature normalization—are applied. Real-world field data 
from outdoor solar testbeds is also integrated into the training process to ensure strong 
generalization and practical reliability. 
Selection of Machine Learning Models: 

The selected learning-based tracking models were chosen for their high prediction 
accuracy, computational efficiency, and ability to adapt to changing shading conditions. 
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Artificial Neural Networks (ANNs) are used for their strength in modeling complex, nonlinear 
power-voltage relationships. Support Vector Machines (SVMs) effectively classify between 
local and global maxima. Decision Trees offer a fast, rule-based decision-making approach, 
while Weighted K-Nearest Neighbors (WK-NN) improve stability under fluctuating 
irradiance levels. Unlike deep learning models such as Convolutional Neural Networks 
(CNNs) and Long Short-Term Memory (LSTM) networks—which demand significant 
computational power—these selected models strike a practical balance between accuracy and 
real-time implementation. 
Algorithm Training and Validation: 

The learning models are trained using supervised learning, where historical maximum 
power point tracking data is used to teach the models to predict optimal power output. The 
dataset is divided into 80% for training and 20% for testing. To boost performance, 
hyperparameters are fine-tuned using grid search optimization. Feature normalization 
methods like Min-Max scaling and Principal Component Analysis (PCA) are applied to help 
the models converge faster and avoid overfitting. Model performance is evaluated using 
metrics such as Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and tracking 
efficiency. 
Implementation of ML-Based MPPT Algorithm: 

Real-time solar data is processed by an embedded tracking controller that uses trained 
models to predict the global maximum power point dynamically. The system is implemented 
in MATLAB/Simulink and further validated using a hardware setup that includes a Boost 
converter and a real-time data collection device. The tracking system uses adaptive decision-
making, allowing it to adjust automatically to changing shading conditions, which improves 
overall tracking efficiency. 
Performance Evaluation and Comparative Analysis: 

Conventional methods such as perturb and observe, incremental conductance, 
evolutionary algorithms, and particle swarm optimization are compared with the proposed 
learning-based tracking system. Performance is assessed based on tracking accuracy, 
convergence time, computational complexity, and shading adaptability. Experimental results 
show that the learning-based tracking system outperforms conventional methods by 
eliminating steady-state oscillations, reducing tracking delays, and improving power extraction 
efficiency. This section presents the recommended approach of using an intelligent tracking 
system to maximize solar performance under partial shading conditions. The approach 
integrates solar system modeling, dataset generation, model selection, training, real-time 
deployment, and performance validation. The learning-based models were trained on real-time 
solar data to improve tracking accuracy, while the Boost DC-DC converter was chosen for its 
efficiency and stability under shading conditions. The analysis demonstrates that learning-
based optimization significantly enhances power tracking efficiency and flexibility compared 
to traditional methods, paving the way for more reliable and intelligent solar energy systems. 
Results & Discussion: 

Controlled tests were conducted under both standard and partial shading 
environments to assess the effectiveness of the proposed machine learning-based maximum 
power point tracking system. The study aimed to evaluate advanced learning-based models, 
including artificial neural networks, support vector machines, random forests, decision trees, 
and weighted k-nearest neighbors, against traditional tracking methods like perturb and 
observe. The performance evaluation focused on key metrics such as power extraction 
efficiency, response time, and tracking accuracy under dynamic shading conditions. 
Performance Evaluation of Conventional MPPT Techniques: 

To establish a performance baseline, perturb and observe tracking and non-tracking 
approaches were tested under varying irradiance levels, ranging from 1000 W/m² (Standard 
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Test Conditions) to 500 W/m² (Severe Partial Shading). Table V summarizes the power 
output, efficiency, and DC-DC losses for both approaches. The results show that while 
gradient-based tracking performed well under uniform conditions (97.16% efficiency), its 
effectiveness significantly declined under partial shading (66.92%) due to its inability to track 
the global maximum in complex multi-peak power-voltage curves. In contrast, systems 
without tracking mechanisms exhibited severe inefficiencies, dropping to 18.38% efficiency 
under severe shading, highlighting the need for advanced tracking techniques to improve 
energy harvesting. 
Table 5. Performance Comparison of P&O MPPT vs. Non-MPPT Under Various Shading 

Conditions 

Case Algorithm PV Power 
(W) 

Efficiency 
(%) 

Output 
Power (W) 

DC-DC 
Losses (W) 

STC (1000 
W/m²) 

P&O 207.1 97.16 206.9 0.2 

Non-MPPT 70.5 33.10 69.77 0.73 

Mild PSC 
(850 W/m²) 

P&O 160.3 75.18 159.8 0.5 

Non-MPPT 60.32 28.32 57.85 2.47 

Moderate 
PSC (700 
W/m²) 

P&O 150.2 70.52 149.8 0.4 

Non-MPPT 54.67 25.66 50.96 3.71 

Severe PSC 
(500 W/m²) 

P&O 142.54 66.92 141.34 1.2 

Non-MPPT 39.15 18.38 36.15 3.0 

One major limitation of conventional methods is their slow adaptation to rapid 
changes in irradiance, as shown in Figure 2. Their inability to differentiate between local and 
global maxima often leads to power losses, especially under dynamic conditions. Figure 3 
compares the stabilization time of gradient-based tracking with non-tracking approaches, 
illustrating that while traditional methods stabilize more quickly, they suffer from oscillations 
during partial shading, resulting in suboptimal performance. 

 
Figure 2. Efficiency drop of P&O under severe shading, illustrating its performance 

degradation in complex irradiance conditions. 

 
Figure 3. MPPT tracking time comparison for P&O and non-PMPPT methods, showing 

faster stabilization with P&O but notable oscillations in partial shading conditions. 
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Artificial Neural Network (ANN) Performance in Dynamic Shading Conditions: 
The artificial neural network-based tracking system showed higher efficiency and 

stability compared to traditional methods by dynamically adapting to complex power-voltage 
curve variations. Unlike perturb and observe, which rely on iterative voltage adjustments, the 
neural network model directly predicts the optimal operating point, reducing oscillations and 
enhancing efficiency. Table VI presents the performance of the learning-based system under 
different shading scenarios. 

Table 6. ANN-Based MPPT Performance Under Different Shading Conditions 

Case Algorithm PV Power 
(W) 

Efficiency 
(%) 

Output 
Power (W) 

DC-DC 
Losses (W) 

STC (1000 W/m²)  ANN  212.1 99.58 210.7 1.4 

Moderate PSC 
(700 W/m²)  

ANN  188.7 88.59 187.3 1.4 

Severe PSC (500 
W/m²)  

ANN  161.3 75.77 160.0 1.3 

The results show that the learning-based approach achieved 99.58% efficiency under 
standard conditions and 75.77% efficiency under severe shading, outperforming conventional 
tracking methods. Figure 4 demonstrates the superior tracking accuracy of the neural network-
based system under stable conditions, while Figure 5 illustrates its ability to maintain higher 
efficiency with minimal fluctuations under dynamic shading scenarios.  

 
Figure 4. ANN-based MPPT efficiency compared to P&O under STC, highlighting superior 

tracking accuracy. 

 
Figure 5. ANN MPPT stability under moderate shading conditions, showcasing improved 

tracking with minimal oscillations. 
The artificial neural network (ANN) achieved higher efficiency in all scenarios, with 

99.58% under standard test conditions (STC) and 75.77% under severe partial shading 
conditions (PSC), surpassing the performance of P&O in dynamic shading conditions. Figure 
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4 compares the efficiency of ANN with P&O under STC, highlighting ANN's superior 
maximum power point (MPP) tracking accuracy. Figure 5 shows ANN’s stability in moderate 
shading, where it achieves higher tracking efficiency with minimal oscillations, enabling 
smoother power extraction. 
Comparative Analysis of Multiple Machine Learning Algorithms: 

A comprehensive comparison of various learning-based tracking models was 
conducted, focusing on tracking accuracy, response time, and computational complexity. 
Support vector machines (SVM) showed the highest tracking accuracy (R² = 0.99), but they 
required longer processing times compared to other models. Decision trees and weighted k-
nearest neighbors (WK-NN) delivered competitive results with faster inference times, making 
them more suitable for real-time applications. Table VII provides a comparative analysis of 
the performance of these models. 

Table 7. Performance Evaluation of ML-Based MPPT Techniques 

Algorithm RMSE R² MAP MAE Training Time (sec) 

DT  0.42 0.96 0.18 0.2 0.91 

WK-NN  0.37 0.98 0.14 0.23 0.78 

RF  0.4 0.97 0.16 0.18 5.04 

SVM  0.14 0.99 0.02 0.12 1.1178 

Although support vector machines (SVM) showed the lowest root mean square error 
(0.14), their high computational demands make them less practical for embedded controllers. 
Decision trees provided a balanced tradeoff between accuracy and inference speed, while 
random forest models offered strong generalization but required more computational 
resources. 

 
Figure 6. Comparative RMSE values of ML-based MPPT techniques, demonstrating the 

superior accuracy of SVM. 

 
Figure 7. Trade-off between training time and efficiency for different ML models, 

emphasizing SVM’s balanced performance. 
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Figure 6 shows the accuracy differences between the models, while Figure 7 highlights 
the trade-offs between training time and performance, emphasizing the balance needed for 
real-time deployment. 
Evaluation of Online vs. Offline MPPT Performance: 

A comparison between offline-trained learning models and real-time tracking 
approaches showed that pre-trained models achieved up to 20% higher efficiency than real-
time adaptive techniques under complex shading conditions. Offline models benefit from 
historical training, enabling quick adjustments to sudden irradiance fluctuations, which reduces 
power losses and improves stability. In contrast, real-time models continuously learn but may 
struggle to accurately track power peaks during rapid changes in shading. In Table 8, "Case 
4A" refers to the PV system performance under standard operating conditions with stable 
irradiance, while "Case 4B" refers to performance under severe partial shading scenarios. 

Table 8. Online vs. Offline MPPT Performance Comparison 

Algorithm PV Efficiency 
Case 4A (%) 

PV Power 
Case 4A (W) 

PV Power 
Case 4B (W) 

PV Efficiency 
Case 4B (%) 

WK-NN  95.12 202.6 173.6 81.5 

DT  92.96 198 169 79.34 

RF  94.23 200.7 176.7 82.96 

SVM  96.76 206.1 178.19 83.66 

ANN  88.59 188.7 161.3 75.77 

P&O  70.52 150.2 142.54 66.92 

Table 8 presents a comparative analysis of offline versus online tracking performance. 
While weighted k-nearest neighbors and decision trees offered quick responses, they 
occasionally misclassified local maxima, resulting in slight efficiency losses. In contrast, pre-
trained support vector machines maintained stable tracking without the need for continuous 
retraining, making them more reliable for real-world deployment.  

 
Figure 8. Efficiency comparison of offline-trained MPPT techniques vs. online MPPT 

methods. 
As shown in Figure 8, offline models outperformed online models in handling 

complex shading environments, exhibiting higher efficiency. In contrast, online models 
showed slight performance fluctuations. Figure 9 further highlights the response times of 
various tracking approaches, demonstrating that offline models deliver more consistent power 
tracking, especially under severe shading conditions. 
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Figure 9. Response time differences between online and offline MPPT approaches, 

illustrate the advantages of pre-trained models. 
Summary of Experimental Findings: 

Figure 10 provides a final comparison of tracking algorithm efficiency across different 
shading conditions, further validating the superiority of learning-based techniques over 
conventional methods. The observed trends demonstrate that data-driven tracking systems 
significantly improve energy stability in photovoltaic applications, particularly when irradiance 
fluctuates frequently. Key findings from this study include: 

▪ Artificial intelligence-based tracking outperforms traditional methods, especially under 
partial shading conditions. 

▪ Offline-trained models show greater stability and efficiency compared to real-time 
adaptive techniques. 

▪ Hybrid approaches that combine learning models with heuristic optimization can 
enhance adaptability and efficiency. 

▪ Computational complexity remains a significant challenge, especially for deep learning-
based methods, necessitating optimization for embedded systems. 

 
Figure 10. Final Comparison of MPPT Algorithm Efficiency Under Various Shading 

Conditions. 
The experimental results confirm the viability of intelligent tracking as a highly 

effective solution for optimizing photovoltaic power. Future research should prioritize 
improving computational efficiency, incorporating edge computing solutions [25], and 
enhancing the real-time adaptability of embedded solar tracking systems. The experimental 
results of this study align well with existing research, demonstrating that machine learning-
based MPPT methods, particularly Support Vector Machines (SVM) and Artificial Neural 
Networks (ANN), outperform traditional techniques such as Perturb and Observe (P&O) 
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under partial shading conditions. Compared to previous works [9][14], our approach achieved 
higher tracking efficiency and better stability even during severe shading. The hardware 
implementation also confirmed that offline-trained models provided more reliable tracking 
performance compared to real-time adaptive methods. These findings reinforce the potential 
of AI-driven solutions in addressing complex dynamic energy harvesting challenges in 
photovoltaic systems. 
Discussion: 

The experimental findings demonstrate that intelligent MPPT algorithms significantly 
outperform traditional approaches, especially under partial shading conditions. Among the 
evaluated models, SVM and ANN achieved the highest tracking efficiency and lowest 
prediction errors, proving their robustness against complex irradiance fluctuations. Compared 
to the perturb and observe method, machine learning models demonstrated better tracking of 
the global maximum power point, reduced oscillations, and faster convergence times. These 
improvements are aligned with recent advances in the literature, highlighting the advantages 
of data-driven methods in solar energy optimization. However, certain limitations were 
identified. While offline-trained models like SVM offer higher efficiency, they may lack 
adaptability in real-time settings unless retrained periodically. Additionally, models such as 
SVM and Random Forest exhibit higher computational complexity, which could limit their 
deployment in resource-constrained embedded systems. Future research should consider: 
• Development of lightweight and hardware-friendly ML models for real-time 
deployment. 
• Use of online learning methods to enable adaptive MPPT under rapidly changing 
conditions. 
• Integration of these models into edge devices using microcontrollers or FPGA-based 
platforms to minimize latency. 

This discussion confirms the technical validity and practical potential of intelligent 
MPPT approaches, while also emphasizing the importance of real-time adaptability and 
computational efficiency in their deployment. 
Conclusion: 

This study explored the optimization and stability control of photovoltaic systems 
using various maximum power point tracking (MPPT) techniques under different 
environmental conditions. The research examined both conventional (perturb and observe) 
and machine learning-based tracking methods, including support vector machines, weighted 
k-nearest neighbors, decision trees, artificial neural networks, and random forests. These 
techniques were tested with real-time meteorological data using MATLAB Simulink, 
particularly under partial shading conditions. 

The results showed that support vector machines consistently outperformed 
traditional MPPT methods, offering higher power tracking accuracy and faster convergence 
to the global maximum power point. While gradient-based methods had faster initial tracking, 
they suffered from local maxima trapping and performance degradation under partial shading. 
On the other hand, artificial neural networks and weighted k-nearest neighbors exhibited 
superior efficiency under dynamic irradiance variations, with neural networks being more 
adaptable in rapidly changing conditions. By utilizing a structured training dataset and 
advanced feature engineering, this study improved the predictive accuracy of the machine 
learning models. 

A comparison between online and offline tracking methods revealed that offline-
trained models, particularly support vector machines and weighted k-nearest neighbors, 
provided superior tracking performance and energy extraction efficiency. 
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Key Findings Include: 

▪ Intelligent tracking models significantly outperformed gradient-based methods, 
especially under severe shading conditions. 

▪ Offline-trained learning models showed greater stability and accuracy compared to 
real-time adaptive techniques, making them more suitable for embedded deployment. 

▪ Hybrid machine learning models, such as combining artificial neural networks with 
support vector machines, enhanced adaptability and reduced oscillations around the optimal 
power point. 

▪ PID controllers improved tracking precision, minimizing convergence errors and 
steady-state fluctuations. 

▪ Ensemble learning models, especially random forests, improved tracking reliability 
by addressing misclassification risks under varying shading conditions. 
Future Work: 

Future research should explore deep learning-based tracking models, such as 
convolutional neural networks (CNNs) and long short-term memory (LSTM) networks, to 
further enhance tracking accuracy. Real-time implementation of intelligent tracking systems 
using edge computing and hardware-optimized controllers (e.g., FPGA, microcontrollers) 
should be investigated to improve response times and computational efficiency. Integrating 
IoT-based monitoring systems will enable real-time environmental data collection, predictive 
maintenance, and enhanced system diagnostics, supporting continuous system optimization. 

Additionally, the development of hybrid renewable energy systems, such as solar wind 
and solar-battery combinations, should be explored for better energy management and smart 
grid integration. The optimization of DC-DC converter architectures will also be key to 
minimizing power losses and enhancing overall system performance. This study underscores 
artificial intelligence-driven maximum power point tracking as a transformative approach for 
the next generation of photovoltaic systems. 

Future research should prioritize computational efficiency, real-time AI deployment, 
and adaptive tracking strategies to enable the widespread adoption of intelligent renewable 
energy systems, ultimately improving energy harvesting, system stability, and integration with 
the broader grid. 
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