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he integration of machine learning (ML) in aquaculture enables data-driven fish species 
recommendations based on water quality parameters. Traditional fish farming faces 
challenges like manual monitoring, inefficient species selection, and unpredictable 

water conditions, leading to economic losses. This paper presents a software-based fish 
recommendation system using ML models to analyze seven key water parameters: pH, 
Temperature, Turbidity, TDS, Dissolved Oxygen, Nitrate, and Ammonia. Various ML 
algorithms, including Random Forest, XGBoost, and SVM, were evaluated, with the 
optimized model achieving over 90% accuracy. A graphical user interface (GUI) allows users 
to input parameters and receive real-time recommendations, enhancing efficiency and 
sustainability in aquaculture. 
Keywords: Fish Farming; Machine Learning; Water Quality Analysis; XGBoost; Smart 
Aquaculture. 
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Introduction: 
Aquaculture has become an essential component of global food systems, contributing 

significantly to food security, nutrition, and economic development. As demand for fish 
continues to rise, modernizing aquaculture practices has become crucial. However, traditional 
fish farming remains largely dependent on manual water quality monitoring and farmer intuition, 
which often results in inefficient operations, inaccurate species selection, and vulnerability to 
environmental changes. These challenges can lead to poor yields, increased costs, and 
avoidable losses. Water quality parameters such as pH, temperature, total dissolved solids 
(TDS), turbidity, ammonia, dissolved oxygen, and nitrate directly influence fish health, growth, 
and survival. Monitoring these parameters manually is not only labor-intensive but also lacks 
the responsiveness required for real-time decision-making, especially in large-scale farming 
systems. To address these limitations, this study proposes a machine learning-based fish species 
recommendation system that predicts the most suitable species for a given aquatic 
environment. The objective is to support aquaculture decision-making by analyzing real-time 
water quality data using a variety of machine learning algorithms, including Random Forest, 
Decision Tree, XG-Boost, K- Nearest Neighbors, Support Vector Machine, and Logistic 
Regression. The system integrates preprocessing techniques such as feature scaling and dataset 
balancing to enhance prediction accuracy. In addition, a graphical user interface (GUI) was 
developed to allow farmers and aquaculture professionals to input water parameters and 
receive instant fish species recommendations. By automating and optimizing the species 
selection process, this system aims to improve the efficiency and sustainability of aquaculture 
operations. The novelty of this study lies in the use of additional water quality parameters not 
originally present in the dataset, such as TDS, dissolved oxygen, ammonia, and nitrate, 
generated through synthetic data. This, along with addressing class imbalance using SMOTE, 
improves the model's generalizability. By automating and optimizing the species selection 
process, this system aims to improve the efficiency and sustainability of aquaculture operations. 
The remainder of this paper includes a review of Literature review, a detailed methodology, 
results and performance analysis, discussion of findings and limitations (Section 5), and 
conclusions. 
Literature Review: 

In recent years, the integration of Internet of Things (IoT) technologies and machine 
learning (ML) techniques in aquaculture has garnered considerable attention. Numerous 
studies have focused on real-time water quality monitoring; however, the majority emphasize 
environmental assessment rather than intelligent fish species recommendation. This section 
reviews prior work on IoT-based monitoring systems and AI-driven fish species selection, 
identifying critical gaps that the present study aims to address. 
IoT-Based Water Quality Monitoring Systems: 

Several studies have proposed IoT-based solutions for continuous monitoring of 
aquaculture environments. These systems generally consist of sensor networks, cloud-based 
data storage, and remote access functionalities. However, most lack intelligent decision-
making features for species recommendation. For instance, Cordova Rozas et al. presented 
a cloud-integrated water monitoring framework comprising five stages: data acquisition, 
cloud storage, database management, report generation, and prediction. Despite its 
effectiveness in water quality monitoring, the system does not include species-specific 
recommendations[1]. Gao et al. developed an IoT-enabled fish farming system focused on 
continuous monitoring and fish movement tracking, without offering guidance on species 
selection [2]. Similarly, Nagayo et al. designed a solar-powered aquaponics setup with 
Arduino-based temperature control but did not incorporate AI-based recommendations [3]. 
Pasika et al. proposed a cost-effective IoT monitoring system that measures temperature, 
pH, turbidity, humidity, and water level, yet lacked intelligent decision-making capabilities 
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[4]. Huan et al. introduced an NB-IoT-based system for real-time data acquisition to 
enhance aquaculture efficiency, but again, omitted species recommendation features [5]. 
Key Limitations in IoT-Based Systems: 
Lack of intelligent decision-making: Most systems only monitor water quality without 
suggesting suitable fish species.  
Absence of predictive analytics: Few studies offer insights into how water quality 
fluctuations affect fish health. 
Minimal AI integration: Many systems focus solely on data collection without employing 
ML for species prediction. 
Poor user experience: Several solutions lack user-friendly graphical interfaces tailored for 
farmers with limited technical expertise. 
AI-Based Water Quality and Fish Species Recommendation Systems: 

Though machine learning is increasingly applied in aquaculture, few studies have 
developed models for intelligent fish species recommendation. Most efforts are directed 
towards water quality assessment or predicting fish survival, without providing actionable 
recommendations based on real-time data. For example, Chiu et al. implemented an IoT-aided 
aquaculture framework using deep learning to predict growth patterns in California bass, 
focusing primarily on feeding behaviors rather than species suitability [6]. Niswar et al. utilized 
MQTT and LoRa-based sensor networks for real-time crab farming monitoring but did not 
include species prediction capabilities[7]. Billah et al. introduced smart instrumentation for 
water quality assessment, yet lacked recommendation functionality [8]. Uddin et al. developed 
a survival prediction model using Random Forest based on environmental parameters like pH, 
temperature, and turbidity. While insightful, the model did not utilize real-time data or suggest 
optimal fish species[9]. Abinaya et al. created an IoT-based monitoring system using Arduino 
and GSM modules, sending SMS alerts for water quality issues but omitting any fish 
recommendation logic [10]. Islam et al. developed a fish species prediction model using J48, 
KNN, Random Forest, and CART algorithms. Although the Random Forest model achieved 
88.48% accuracy, it excluded essential parameters such as TDS, DO, nitrate, and ammonia 
[11]. Hemal et al. introduced Aqua Bot, an IoT-enabled water monitoring solution powered 
by ML, but it lacked a comprehensive species recommendation component and considered 
only a limited number of parameters [12]. 
Key Limitations in AI-Based Systems: 
Limited parameter integration: Most models incorporate only 3–4 parameters, reducing 
predictive robustness. 
Lack of real-time analytics: Few models are capable of forecasting water quality changes 
and their impacts. 
Lack of real-time analytics: Few models are capable of forecasting water quality changes 
and their impacts 
Limited sustainability: Despite the occasional mention of solar-powered components, their 
integration into intelligent systems is minimal. 
Non-intuitive interfaces: Many AI-based models are not paired with graphical user 
interfaces, limiting usability for non-technical users. 
Identified Research Gaps: 

From the reviewed literature, several key gaps emerge:  
Insufficient AI-driven decision support: Existing systems focus on monitoring rather than 
intelligent species selection.  
Limited environmental parameter scope: Models often neglect critical factors like nitrate, 
ammonia, TDS, and DO. 
Lack of real-time predictive capability: There is a noticeable absence of models that 
integrate real-time data streams for forecasting species suitability. 
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Sustainability concerns: Few studies incorporate renewable energy solutions for long-term 
operation. 
Usability limitations: Many systems do not offer interactive GUIs, hindering accessibility 
for fish farmers. 
Research Contribution: 

To address these gaps, this study proposes a machine learning-based fish species 
recommendation system that: Utilizes seven key water quality parameters (pH, 
Temperature, Turbidity, TDS, DO, Nitrate, Ammonia), Implements advanced ML 
algorithms (Random Forest, XG- Boost, SVM, KNN, etc.). Achieves over 90% accuracy in 
predicting optimal fish species, Offers an intuitive graphical user interface (GUI) for easy 
user interaction and decision-making. 
Methodology: 

This section outlines the methodology employed in the development of the machine 
learning-based fish species recommendation system. It covers the dataset, preprocessing 
techniques, selection of machine learning models, evaluation metrics, and the development 
of a user-friendly graphical interface. 
Water Quality Parameters: 

To ensure accurate and context-specific fish species recommendations, the system 
utilizes seven essential water quality parameters: temperature, turbidity, pH, total dissolved 
solids (TDS), dissolved oxygen (DO), ammonia, and nitrate. These parameters are widely 
recognized in aquaculture research for their significant influence on fish health, growth, and 
survival. 

Each fish species thrives within specific environmental conditions. Therefore, 
deviations from optimal ranges can result in stress or mortality. Our recommendation system 
evaluates these parameters to identify the most suitable fish species for a given aquatic 
environment Table 1 summarizes the standard reference ranges for each water quality 
parameter, which serve as the baseline for model training and decision-making. 

By incorporating a comprehensive set of water quality indicators, the system aims to 
offer a more holistic and intelligent recommendation approach, moving beyond simple 
monitoring to enable informed aquaculture management decisions. 

Table 1. Optimal ranges of water quality parameters 

Water Quality Parameter Value 

Temperature 25◦C–32 ◦C or >20 ◦C 
pH 6.5–8.5 

Turbidity 30–80 cm 
Dissolved Oxygen (DO) >5 mg/L 

Total Dissolved Solids (TDS) 400 mg/L 
Nitrate 0–100 

Ammonia 0–0.2 

In this section, we present the methods employed in developing the machine 
learning-based fish species recommendation system. It includes details about the dataset, 
preprocessing techniques, machine learning models, performance evaluation metrics, and the 
development of the graphical user interface (GUI). 

We have taken into consideration seven key water quality parameters to determine the 
suitability of water for different fish species. These parameters are temperature, turbidity, pH, 
total dissolved solids (TDS), dissolved oxygen (DO), ammonia, and nitrate. Based on these 
parameters, our system provides fish species recommendations that are best suited for the 
given water conditions. The reference values for these parameters are presented in Table 1. 
Any significant deviation from the optimal ranges can negatively affect fish health and 
survival, making it essential to select the right species for specific water conditions. 
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Each of these parameters is essential in evaluating water suitability for fish farming: 

• Temperature affects fish metabolism, growth, and oxygen availability. Extreme 
temperatures can cause stress and even lead to fish mortality. 

• pH influences water acidity or alkalinity, affecting fish health. Most fish species thrive 
within a pH range of 6.5 to 8.5, while extreme values can be harmful or fatal. 

• Turbidity indicates water clarity. High turbidity can reduce light penetration, disrupt 
photosynthesis, and create unfavorable conditions for fish. 

• Dissolved Oxygen (DO) is critical for fish survival, with levels dropping below 5 mg/L 
potentially leading to stress and reduced growth. 

• TDS (Total Dissolved Solids) represents minerals, salts, and organic matter in water. High 
TDS levels can disrupt fish osmoregulation. 

• Nitrate and Ammonia are nitrogen-based compounds. High nitrate levels (>100 mg/L) 
can lead to excessive algal growth, while ammonia is toxic to fish even at low concentrations 
(>0.2 mg/L). 

Since each of these parameters plays a critical role in fish health and survival, feature 
selection was not applied before model training. All seven parameters were deemed essential 
for accurately assessing water quality and determining the suitability of water for various fish 
species. Omitting any of these parameters could lead to a loss of important information, 
potentially compromising the accuracy of the species recommendations. 
Data Collection: 

This study utilizes the Real-Time Pond Water Dataset for Fish Farming, sourced 
from Kaggle [13], originally collected by the Faculty of Fisheries at the University of Dhaka, 
Bangladesh. The dataset consists of 591 samples with four primary features: temperature, 
turbidity, pH, and fish species. The independent variables pH (91 unique values), 
temperature (51 unique values), and turbidity (108 unique values) reflect diverse water quality 
conditions. The dependent variable includes 11 fish species such as Katla, Song, Prawn, Rui, 
Koi, Pangas, Tilapia, Silver Carp, Karpio, Magur, and Shrimp. 

To extend the dataset and enable more accurate fish species predictions, additional 
water quality parameters Total Dissolved Solids (TDS), Dissolved Oxygen (DO), Ammonia, 
and Nitrate were incorporated through synthetic data generation. These parameters were not 
originally present in the dataset but are widely recognized as essential indicators for 
aquaculture suitability[14][15]. The absence of these features could limit the model’s ability 
to generalize across realistic aquaculture scenarios. Synthetic values were generated based on 
standard ranges reported in aquaculture literature. For instance, DO values were sampled 
between 4 and 10 mg/L, which supports optimal respiration for most freshwater fish 
species. TDS values were generated between 200 and 500 mg/L, ammonia between 0 and 
1.5 mg/L, and nitrate between 0 and 50 mg/L—ranges consistent with those used in fish 
farming management guidelines [14]. A practical example: for a given row with pH 7.8, 
temperature 29°C, and turbidity 7 NTU (favoring Tilapia), a synthetic DO value of 6.9 mg/L 
and TDS value of 350 mg/L were generated using a uniform distribution in Python. These 
values were generated using numpy.random.uniform() to reflect real-world variability while 
ensuring ecological validity. By enhancing the dataset with realistic synthetic data, the feature 
set was expanded, resulting in improved model learning and robustness. The distribution of 
samples by fish species is provided in Table 2. 

To further improve the dataset and address the issue of limited sample size and class 
imbalance, we employed the Synthetic Minority Over-sampling Technique (SMOTE) to 
generate additional synthetic samples. This process increased the total number of samples 
from 591 to 1,320, which helped balance the dataset and improve model generalization. 

Although the system enables real-time predictions through manual user input of 
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water parameters, it does not integrate automatic real-time data acquisition from IoT sensors 
or cloud-based sources. The current approach relies on users manually entering measured 
parameters via the GUI for fish species recommendation. Future enhancements could focus 
on connecting the system to real-time water monitoring devices for fully automated 
operation. 

Table 2 presents the distribution of fish species in the dataset, revealing a noticeable 
class imbalance. Tilapia (129), Rui (99), and Pangas (78) are the most represented species, 
making them the majority classes. In contrast, species like Koi (15), Prawn (14), and Magur 
(11) have significantly fewer samples, making them minority classes. This imbalance can lead 
to biased model predictions, where the classifier favors majority classes while misclassifying 
underrepresented species. To address this issue and improve prediction accuracy for all fish 
species, techniques such as SMOTE are essential for balancing the dataset. 

Table 2. Distribution of fish species in the dataset 

Class Label Number 

Tilapia 129 
Rui 99 

Pangas 78 
Katla 58 

Silver Cup 55 
Shrimp 50 

Sing 49 
Karpio 33 

Koi 15 
Prawn 14 
Magur 11 

Table 2 presents the distribution of fish species in the dataset, revealing a noticeable 
class imbalance. Tilapia (129), Rui (99), and Pangas (78) are the most represented species, 
making them the majority classes. In contrast, species like Koi (15), Prawn (14), and Magur 
(11) have significantly fewer samples, making them minority classes. This imbalance can lead to 
biased model predictions, where the classifier favors majority classes while misclassifying 
underrepresented species. To address this issue and improve prediction accuracy for all fish 
species, techniques such as SMOTE are essential for balancing the dataset. 
Data Preprocessing: 

To ensure the reliability of model predictions, it is essential to preprocess the dataset 
by handling missing values, addressing class imbalance, and normalizing data. The following 
section details these preprocessing techniques and their impact on model performance. 

Handling Missing Data: Any missing values in the dataset were addressed using mean 
or median imputation to maintain data integrity. Splitting the Dataset: The dataset was divided 
into two sets: 80% for training data and 20% for testing data, allowing an effective evaluation 
of the model’s predictive performance. Balancing the Dataset: The dataset was checked for 
class imbalance, and SMOTE (Synthetic Minority Oversampling Technique) was applied. This 
method generates synthetic samples for underrepresented classes, improving model 
performance on imbalanced data. These preprocessing steps ensure that the dataset is well-
prepared for model training, minimizing biases and improving predictive accuracy. By 
handling missing values, we maintain data consistency, while proper dataset splitting allows 
the model to generalize effectively. Additionally, balancing the dataset using SMOTE helps 
address the issue of class imbalance, ensuring that minority classes are adequately represented 
in training. These refinements collectively enhance the robustness of the machine-learning 
model, leading to more reliable fish species recommendations. 



                                 International Journal of Innovations in Science & Technology 

Special Issue |ICTIS 2025                                                                         Page|116 

 
a. Before SMOTE 

 
b. After SMOTE 

Figure 1. Distribution of fish species before and after applying SMOTE. 
Figure 1 illustrates the distribution of fish species before and after applying the 

Synthetic Minority Over-sampling Technique (SMOTE). In Figure 1(a), the dataset is 
imbalanced, with certain fish species, such as Tilapia and Rui, having significantly more 
samples compared to others like Prawn and Magur. This imbalance can negatively impact 
the performance of machine learning models by causing them to favor majority classes. In 
Figure 1(b), after applying SMOTE, the dataset is balanced, meaning all fish species have an 
equal number of samples. SMOTE achieves this by generating synthetic data for the 
underrepresented classes, improving model performance by reducing bias and enhancing 
generalization. 
A. A. Implemented Machine Learning Algorithm This study utilizes six machine-learning 
models to predict the most suitable fish species based on various water quality parameters. 
The implemented models include Random Forest (RF), Extreme Gradient Boosting 
(XGBoost), K-Nearest Neighbors (KNN), Support Vector Machine (SVM), Decision Tree 
(DT), and Logistic Regression. 
1. Random Forest (RF):  Configured with 100 decision trees and a random state of 42. 
Hyperparameters were manually tuned by iteratively adjusting parameters based on 
validation performance. 
2. Extreme Gradient Boosting (XGBoost): Configured with optimized hyper-parameters 
using GridSearchCV, employing a learning rate of 0.1, max depth of 6, and 100 estimators. 
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3. K-Nearest Neighbors (KNN): The optimal k- k-value was determined as seven after 
testing multiple values. 
4. Support Vector Machine (SVM): Configured with a regularization parameter (C) of 10 
and a gamma value of 0.1. These values were manually selected after trial-and-error testing 
to improve model performance, with a random state of 42 for reproducibility. 
5. Decision Tree (DT): Configured with a maximum depth of 5 and a random state of 42. 
Hyperparameters were selected manually through iterative testing on validation data. 
6. Logistic Regression (LR): Configured with L2 regularization (Ridge), a learning rate of 0.1, 
and a random state of 42. Hyperparameters were manually adjusted based on validation 
performance. 

These models were chosen for their effectiveness in accurately predicting fish species 
based on water quality parameters, and they were fine-tuned using hyperparameter 
optimization techniques to improve predictive accuracy. The selection of the final model was 
determined by comparing performance metrics, including accuracy, precision, recall, and F1 
score. 

 
Figure 2. Flowchart of ML Model. 

Figure 2 (Flow Diagram) illustrates a machine learning-based fish species 
recommendation system developed to assist in aquaculture. The process starts with the user 
entering key water quality factors such as pH, temperature, turbidity, total dissolved solids 
(TDS), dissolved oxygen, nitrate, and ammonia. These values undergo standardization and 
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normalization to maintain consistency and improve model accuracy. After preprocessing, the 
data is provided to a trained ML model, which analyzes the parameters and predicts the most 
appropriate fish species for aquaculture. The system processes this information and displays 
the recommended fish species to the user through a user-friendly interface. By leveraging 
machine learning, this system enhances decision-making in aquaculture, reduces reliance on 
manual monitoring, improves efficiency, and promotes sustainable fish farming practices. 
Performance Evaluation: 
The trained models were evaluated using the following metrics: 
Accuracy: The percentage of correctly classified instances. 
Precision – The ratio of correctly predicted positive instances to the total predicted 
positive instances. 
Recall: The ratio of correctly predicted positive instances to total actual positive instances. 
F1-Score: The harmonic mean of precision and recall, offering a balanced assessment of 
model performance. 
Among all models, XGBoost achieved the highest accuracy, exceeding 90%, and was 
selected for final deployment. 
GUI Design: 

A simple GUI-based application was developed to take seven water quality 
parameters, i.e. pH, Temperature, Turbidity, TDS, Dissolved Oxygen, Nitrate, and 
Ammonia, as input. The trained machine-learning model processes these inputs and 
provides a fish species recommendation. The interface ensures easy data entry and quick 
predictions for users. 
Results: 
Evaluation Metrics for Model Performance: 

To assess the performance of the classification models, several key evaluation 
metrics were employed. One of the most fundamental tools in classification tasks is the 
confusion matrix, which provides a comparison between predicted and actual values. The 
confusion matrix consists of four essential components: True Positive (TP), False Positive 
(FP), True Negative (TN), and False Negative (FN). TP represents the number of positive 
instances correctly identified, whereas FP denotes negative instances incorrectly classified 
as positive. Similarly, TN refers to correctly identified negative instances, while FN 
represents positive instances that were misclassified as negative. From this matrix, multiple 
performance metrics are derived to measure model effectiveness. 

• Accuracy determines the percentage of correctly classified instances in the 
dataset. 

• Precision evaluates the proportion of correctly predicted fish species among all 
positive predictions. 

• Recall (Sensitivity) measures the model’s ability to correctly identify fish species 
when they are present. 

• F1-Score represents the harmonic mean of Precision and Recall, providing a 
balance between the two. 

• Matthews Correlation Coefficient (MCC) assesses overall classification quality 
by incorporating all confusion matrix components. 

• ROC-AUC visualizes the trade-off between TPR and FPR across thresholds, using 
a one-vs-all strategy for multi-class classification. A higher AUC score indicates better 
model performance. 
Machine Learning Model Result Comparison: 

We applied six ML algorithms to predict suitable fish for individual ponds based on 
several parameters, including accuracy, precision, recall, F1-score, and the ROC curve. We first 
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evaluated the performance of these models without balancing the dataset. Afterward, we also 
evaluated the models after applying the balancing technique. 

 
(a) Before SMOTE 

 
(b) After SMOTE 

Figure 3. Confusion matrix of ensemble model before and after SMOTE. 
Figure 3(a), Before SMOTE, highlights the class imbalance in the dataset. The 

model performs well for 
majority classes like Tilapia (24), Rui (15), and Shrimp (13), but struggles with minority classes 
such as Prawn and Magur, leading to frequent misclassifications. Some classes, like Karpio and 
Koi, also show lower prediction counts. This imbalance affects the overall performance and 
justifies the need for SMOTE to enhance prediction accuracy for underrepresented fish 
species. 

Figure 3(b), After SMOTE, demonstrates a significant improvement in classification 
performance across all fish species. Unlike the "Before SMOTE" matrix, where minority 
classes were often misclassified, this matrix shows more balanced predictions, indicating the 
effectiveness of SMOTE in addressing class imbalance. 
Key improvements: 
• Better classification of previously underrepresented species (e.g., Magur, Prawn, 
and Pangas now have strong diagonal values). 
• Fewer misclassifications across all classes, indicate that the model has learned 
better decision boundaries. 
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• Higher overall accuracy, as false positives and false negatives have been reduced 
compared to the previous model. 

Table 3. ML algorithm performance evaluation before smote. 

Without Smote 

ALGORITHM ACC PRE REC F1 MCC 

XG 0.79 0.83 0.8 0.8 0.77 
RF 0.77 0.78 0.77 0.77 0.74 
DT 0.75 0.79 0.76 0.76 0.73 

SVM 0.59 0.61 0.6 0.58 0.54 
KNN 0.49 0.53 0.5 0.5 0.42 

LR 0.52 0.5 0.53 0.51 0.45 

Table 3 presents the performance comparison of various machine-learning 
algorithms without applying SMOTE. The results indicate that XGBoost (XG) achieved the 
highest performance, with 79% accuracy, 83% precision, 80% recall, 80% F1-score, and 77% 
MCC, making it the best-performing model. Random Forest (RF) followed closely, 
obtaining 77% accuracy, 78% precision, 77% recall, 77% F1-score, and 74% MCC. The 
Decision Tree (DT) model performed moderately well, achieving 75% accuracy, whereas 
SVM, KNN, and Logistic Regression (LR) demonstrated lower performance levels, with 
LR showing the weakest results (52% accuracy, 50% precision, 53% recall, 51% F1-score, 
and 45% MCC). These results suggest that ensemble models like XGBoost and Random 
Forest outperform other models in this scenario. 

Before applying SMOTE, the results from Table 3 demonstrate that XGBoost 
outperforms all other models, achieving the highest accuracy and balanced performance across 
metrics such as precision, recall, and F1-score. Random Forest follows closely, offering strong 
performance as well. However, models like SVM, KNN, and Logistic Regression lag, with 
Logistic Regression showing particularly poor results. These findings suggest that more 
complex models like XGBoost and Random Forest are better suited for the classification task, 
while simpler models struggle to handle the complexities of the dataset. 

Table 4. ML algorithms performance evaluation after smote. 

After Applying Smote 
Algorithm ACC PRE REC F1 MCC 

XG 0.968 0.968 0.968 0.968 0.968 
RF 0.966 0.970 0.970 0.970 0.960 
DT 0.902 0.900 0.900 0.900 0.890 

SVM 0.842 0.850 0.840 0.840 0.830 
KNN 0.840 0.845 0.840 0.840 0.830 
LR 0.644 0.650 0.650 0.620 0.610 

Table 4 presents the performance metrics of various machine learning models after 
applying SMOTE, the XGBoost (XG) model achieved the highest performance, with 96.8% 
accuracy, 96.8% precision, 96.8% recall, a 96.8% F1-score, and a 96.8% MCC. The Random 
Forest (RF) model followed closely, achieving 96.6% accuracy, 97% precision, 97% recall, a 
97% F1-score, and a 96% MCC. Among other models, the Decision Tree (DT) achieved 90.2% 
accuracy, while the Support Vector Machine (SVM) and K-Nearest Neighbors (KNN) 
performed similarly, with 84.2% and 84% accuracy, respectively. Logistic Regression (LR) 
exhibited the lowest performance, with 64% accuracy, 65% precision, 65% recall, 62% F1-
score, and 61% MCC. 

The ROC curve was also utilized to compare model performance, applying the One-
vs-Rest method for multi-class classification. The XGBoost model demonstrated the best 
differentiation between classes, confirming its effectiveness in fish species classification. These 
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results indicate that XGBoost is the most effective model for fish species classification after 
SMOTE, followed by Random Forest, while Logistic Regression remains the least effective 
for handling this classification problem. 

Figure 4 (a: ROC Curve for XGBoost) illustrates the performance of the XGBoost 
model before applying SMOTE. The ROC curve represents the trade-off between the true 
positive rate and the false positive rate for each fish species classification. While the model 
performs well for certain species, achieving AUC values close to 1.0, other species exhibit 
lower AUC scores, indicating difficulties in accurate classification. This discrepancy arises due 
to the imbalanced nature of the dataset, where some fish species have significantly fewer 
samples compared to others. The model struggles to learn distinctive patterns for these 
minority classes, leading to misclassifications. This demonstrates the limitations of training on 
an imbalanced dataset, as the model tends to favor the majority classes, reducing its overall 
reliability in classifying underrepresented species. The impact of this imbalance will be analyzed 
further in Figure 4 after the application of SMOTE to assess improvements in classification 
performance. 

Figure 5 (a: ROC Curve for XGBoost) displays the ROC curve of the XGBoost model 
after applying SMOTE to balance the dataset. Compared to Figure 4, the ROC curves show a 
noticeable improvement in classification performance across different fish species. The AUC 
values for previously underrepresented classes have increased, indicating that the model is now 
better at distinguishing between species. This improvement results from SMOTE generating 
synthetic samples for minority classes, allowing the model to learn more patterns that are 
representative. By addressing class imbalance, SMOTE reduces the model's tendency to favor 
majority classes, leading to a more balanced classification performance. 

The enhanced ROC curve demonstrates the effectiveness of oversampling in 
improving model generalization, ensuring more reliable predictions across all fish species. The 
comparative analysis of ROC curves for various models further highlights the effectiveness of 
SMOTE in improving classification performance. While XGBoost and Random Forest show 
significant enhancements in their AUC scores after addressing the class imbalance, models like 
Decision Tree and SVM exhibit moderate improvements. However, Logistic Regression still 
struggles to differentiate between fish species due to its linear nature, reinforcing its limitations 
in handling complex patterns These findings emphasize the importance of selecting robust 
machine learning models and applying appropriate preprocessing techniques to ensure 
accurate and reliable fish species classification. The following figures illustrate the ROC curves 
of different models, providing a visual representation of their classification capabilities before 
and after the SMOTE application. 

The results shown in Figure 4 and Figure 5 emphasize the pivotal role that data 
preprocessing plays in improving model performance. The marked improvement in AUC 
scores after applying SMOTE not only validates the effectiveness of oversampling techniques 
but also underscores the importance of handling class imbalances in machine learning tasks. 
The enhanced ROC curve for XGBoost after the SMOTE application confirms that this 
method can mitigate the risks of overfitting to majority classes, resulting in better 
generalization across all species. The improvement in AUC for minority classes is particularly 
notable, as it highlights how SMOTE’s synthetic samples allow the model to capture a broader 
range of patterns and distinguish more accurately between different species. 

In contrast, models like Logistic Regression, which rely on linear decision boundaries, 
continue to struggle with the complexities of multi-class classification, particularly in 
imbalanced datasets. The results indicate that Logistic Regression is not well-suited for 
problems involving intricate, non-linear patterns, such as those found in fish species 
classification. Although Logistic Regression performs reasonably in simpler scenarios, its 
limitations become evident when applied to more complex, imbalanced datasets, as seen in 
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the lower AUC scores for various fish species. 
This comparative analysis reveals a critical insight into model selection: while SMOTE 

can significantly improve performance, it cannot fully compensate for the limitations of less 
complex models like Logistic Regression. Thus, selecting an appropriate model, such as 
XGBoost or Random Forest, becomes crucial when addressing classification problems 
involving imbalanced and complex datasets. These models, coupled with techniques like 
SMOTE, offer the best approach to ensuring reliable predictions across all classes, particularly 
in challenging scenarios such as fish species classification. 

The following figures further demonstrate the impact of various preprocessing 
techniques and models on classification performance. Through a detailed analysis of ROC 
curves, the results advocate for the importance of both the right choice of model and 
preprocessing method in enhancing classification reliability, especially in multi-class 
classification tasks. 
 

 
(a) ROC Curve of XGBoost 

Model 

 
(b) ROC Curve of Random 

Forest Model 

 
(c) ROC Curve of Decision Tree Model 

 

 
(d) ROC Curve of SVM Model 



                                 International Journal of Innovations in Science & Technology 

Special Issue |ICTIS 2025                                                                         Page|123 

 
(e) ROC Curve of KNN Model 

 
(a) ROC Curve of XGBoost Model 

 
(b) ROC Curve of LR Model 

 
(f) ROC Curve for the LR Model 

 
(c)ROC Curve of Decision Tree Model 

 
(d) ROC Curve of SVM Model 

Figure 4 ROC Curves of Different ML Algorithms Before Applying SMOTE. 
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(e) ROC Curve of KNN Model 

 
(f) ROC Curve of LR Model 

Figure 5. ROC Curves of Different ML Algorithms After Applying SMOTE. 
Fish Recommendation System GUI: 

The Graphical User Interface (GUI) of the fish species recommendation system offers 
an intuitive and user-friendly platform for inputting water quality parameters and obtaining 
classification results. Designed with ease of use in mind, the GUI enables users to input values 
such as pH, temperature, turbidity, TDS, dissolved oxygen, nitrate, and ammonia. These inputs 
are then processed using the developed machine-learning model. Upon submission, the system 
predicts the most suitable fish species based on the provided parameters and displays the 
results in a clear and readable format. Figure 6 illustrates the GUI, showcasing its layout and 
functionality, which ensures seamless user interaction. 

The GUI is built using Python and Tkinter, providing a simple yet effective framework 
for developing desktop applications. The machine learning model is integrated through sci-
kit-learn, enabling real-time classification of water quality data. Pandas is utilized for efficient 
data manipulation, while Matplotlib is employed for visualizing the prediction results. To 
enhance usability, PyInstaller is used to convert the Python script into a standalone executable 
(.exe) file. This ensures that users can run the application without needing to install Python or 
any dependencies locally, offering a smooth and hassle-free experience. 

  

Figure 6. GUI Of Fish Recommender System. 
Discussion: 

This project represents a novel approach by integrating machine learning (ML) with 
real-time water quality monitoring to enhance traditional fish farming practices. While 
previous studies primarily focus on water quality monitoring, this research innovates by 
introducing an AI-powered fish recommendation system that aids farmers in making more 
informed decisions about the most suitable fish species for their farming conditions. 
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The system is built around an architecture that seamlessly combines data collection, 
processing, and analysis. This results in an optimized fish species selection based on seven 
crucial water quality parameters: pH, temperature, turbidity, total dissolved solids (TDS), 
dissolved oxygen, nitrate, and ammonia. A key feature of this study is its comprehensive 
approach, as it considers a broader range of water quality parameters than many previous 
studies, which typically focus only on pH and temperature. Parameters like turbidity, TDS, 
and ammonia, which are critical for fish health and farming success, are often overlooked in 
existing literature. By incorporating these additional parameters, this research enhances the 
accuracy and practicality of the fish species recommendation system. Moreover, Table 5 
provides a comparative analysis between this study and prior works. While many studies 
have focused on Internet of Things (IoT)-based water quality monitoring systems, very few 
have combined machine learning with fish species recommendation. Even among those that 
do use ML, most rely on a limited set of parameters. In contrast, this research applies an 
optimized machine learning algorithm to a well-structured, multi-parameter dataset, resulting 
in a fish prediction accuracy exceeding 90%. This highlights the project's contribution to 
advancing the use of ML in aquaculture, particularly in integrating multiple water quality 
parameters for more accurate species selection. 

The integration of machine learning with water quality monitoring in this manner 
offers a promising tool for farmers, allowing them to optimize fish farming practices based 
on comprehensive environmental data. 
Conclusion: 

This research introduces a machine learning-based fish species recommendation 
system aimed at improving decision-making in aquaculture. By incorporating seven key 
water quality parameters: pH, temperature, turbidity, total dissolved solids (TDS), dissolved 
oxygen, nitrate, and ammonia, the model predicts the most suitable fish species for given 
water conditions, enhancing fish farming efficiency and sustainability. 

The study evaluated several machines learning algorithms, including XGBoost, 
Random Forest (RF), Decision Tree (DT), Support Vector Machine (SVM), K-Nearest 
Neighbors (KNN), and Logistic Regression (LR). Among these, XGBoost achieved the 
highest performance with an accuracy of 96.8% after the application of SMOTE (Synthetic 
Minority Over-sampling Technique), followed closely by Random Forest with 96.6%. 
Decision Tree and SVM also demonstrated strong results, with accuracies of 90.2% and 
84.2%, respectively. However, KNN and Logistic Regression performed less effectively, 
recording accuracies of 84% and 64%, respectively. 

The use of SMOTE significantly enhanced classification accuracy, particularly for 
underrepresented fish species, by addressing dataset imbalance. This improvement ensures 
more reliable predictions across all species, making the model more robust in real-world 
applications. Furthermore, a graphical user interface (GUI) was developed to make the 
system user-friendly and accessible. The GUI allows fish farmers and aquaculture 
professionals to input water quality parameters and receive real-time recommendations for 
the most appropriate fish species. 

The integration of this machine-learning model into practical aquaculture operations 
has the potential to significantly enhance fish farming practices. By improving decision-
making, it can help optimize yields, reduce costs, and promote more sustainable aquaculture 
practices, ultimately contributing to the advancement of the industry. 

Table 5. Comparison of ml model performance with previous studies. 

Reference Models Evaluated Best Per-
forming 
Model 

Data Pre-
processing 

Accuracy 
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Islam et al. J48,J48, KNN, 
RF,NB, CART 

RF None 88.48% 

Hemal et al. XGBoost, RF, DT, 
KNN, LR, SVM 

RF SMOTE 94% 

Proposed 
Model 

XGBoost, RF, DT, 
KNN, SVM 

XGBoost Feature Scaling, 
SMOTE 

96.8% 

Table 5 compares the performance of different models from previous studies with the 
proposed model. Islam et al. achieved 88.48% accuracy using Random Forest (RF) without any 
preprocessing, while Hemal et al. improved performance to 94% by applying SMOTE with RF. 
The proposed model outperformed both studies, achieving 96.8% accuracy using XGBoost 
with feature scaling and SMOTE, demonstrating the effectiveness of data preprocessing and 
advanced ensemble learning in improving classification performance. 
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