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bject detection in high-resolution aerial imagery has received much attention 
nowadays due to its applications in geosciences, urban planning, disaster 
management, and surveil- lance. However, there exist challenges such as scale 

variation, cluttered backgrounds, occlusions, and less annotated datasets. Traditional CNNs 
have shown great promise, yet they fail to detect long-distance dependencies and complicated 
spatial relationships. This paper evaluates the function of DETR for object detection in aerial 
images. Unlike CNN-based detectors that depend on region proposal networks and anchor-
based methods, DETR depends on a full end-to-end transformer architecture along with a 
direct set prediction method that removes the requirement for hand-designed priors. With 
extensive experiments carried out on datasets like Airbus Aircraft, Rare Planes, and DOTA, 
observations show that DETR performs better with mAP scores that are as much as 18% 
higher than ResNet-based architectures. Fur- Furthermore, we propose a hybrid model that is 
DETR-CNN, which partners both the strength of feature extraction from CNNs and the 
global attention mechanisms in DETR, thereby improving the accuracy of detection on both 
Horizontal and Oriented Bounding Box detections. Our results show that transformer-based 
models are most effective in aerial object detection, which bodes well for remote sensing, 
autonomous surveillance, and disaster response applications. This study presents an end-to-
end DETR-based method for object detection in aerial imagery, demonstrating improvements 
in accuracy and simplicity over traditional methods. 
Keywords: Object Detection, Aerial Imagery, Detection Transformer (DETR), CNN, Hybrid 
Model, Remote Sensing, Deep Learning, Autonomous Surveillance. 
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Introduction: 
The identification of objects in aerial images is an important research field largely due 

to its utilization in other areas of research such as geosciences, environmental monitoring, 
urban planning, defense surveillance, disaster management, and traffic monitoring [1]. The very 
improvement of remote sensing technologies also increases the frequency and availability of 
higher resolution images originating from airborne and spatial craft, for large-scale automated 
object detection [2], [1]. Despite these advances, object detection from aerial images presents 
several challenges such as complex environmental conditions, variable object scales and 
orientations, significant background clutter, and occlusions [1]. These challenges are 
aggravated with aerial imagery because the bird’s eye view perspective affects the visual 
continuum, as objects in aerial images are differently aligned in the image plane than they 
would be in natural scene images [1]. 

Traditional methods such as Horizontal Bounding Boxes (HBBs) have been utilized 
for object localization, but HBB uses only the horizontal orientation of detected objects, 
and exhibits a performance drop for objects that are arbitrarily oriented [1]. HBB causes 
the bounding box to become large with increasing amounts of background area. To mitigate 
these problems, Oriented-Bounding Boxes (OBBs) were proposed in part because they 
typically better follow the shape of objects, but also from an assumption that by covering 
less background or additional area of the object, OBB would improve the performance of 
object detection networks [1]. 

Deep learning methods have caused a breakthrough in to object detection domain 
as they can extract complex hierarchical representations of features [3], [4], [5]. Object 
detection meth- ods are usually categorized into two main classes, two-stage detection 
methods and one-stage detection methods. Two-stage detection methods, such as Faster R-
CNN, can achieve high degrees of accuracy but provide slower processing times cause of 
the sequential implementation of the region proposal stage and the object classification 
stage [4], [5]. One-stage detection methods, such as YOLO, achieve faster processing at the 
cost of object detection accuracy [5]. Despite tremendous advancements in deep learning 
methods, there are still many challenges in using remote sensing data to case small object 
detection, dense distributions, or occlusion [6], [4], [1]. 

The arrival of Vision Transformers (ViT) has created a shift in the domain of object 
detection that uses self-attention to identify long-range dependencies in images [7], [3], [8], 
[9]. While ViTs don’t possess some of the limitations that CNNs 

 
Figure 1. Examples from the DOTA dataset showing multiple object types in complex 

aerial scenes 
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Figure 2. Examples from the DOTA dataset showing multiple object types in complex 

aerial scenes, they still face challenges in multi-scale feature extraction from images, 
particularly in aerial imagery where objects vary dramatically in size and orientation [3][9]. 

“Examples from the DOTA dataset showing multiple object types in complex aerial scenes 
(see Figures 1 and 2)” 

To tackle these issues, we explore the performance of the end-to-end transformer-
based Detection Transformer (DETR) framework that does not need anchor boxes or region 
proposal networks [6], [10]. Although DETR has improved object localization through 
training on complex spatial relationships, it still fails on small and dense objects [ 6 ] , [ 1 0 ] . 
Our primary aim across all possible combinations of features will be to extend the object 
detection capabilities of DETR through a hybrid architecture that combines the strengths of 
CNN-based feature extraction and the long-range dependencies found using transformers 
[3][4][2][8][10]. 

In this study, we investigate how DETR performs for object detection tasks applied 
to aerial images, utilizing HBB and OBB modalities [10][1]. We perform thorough evaluation 
studies using commonly used aerial datasets, including Airbus Aircraft, Rare Planes, and 
DOTA, to understand the advantages and disadvantages of DETR’s potential for handling 
scale difference and complex scene structural difficulties [10][11][1]. Using feature extraction 
based on CNN networks in addition to DETR’s ability to identify object centroids may 
improve accuracy by assessing reality in more complicated aerial images with either very small 
objects or close proximities of objects [3][4][10][1]. 

This study aims to assess and refine the usage of transformer models in aerial object 
detection, paying particular attention to high-resolution remote sensing datasets 
[3][8][12][9][1]. This paper provides a comprehensive assessment of the potential of DETR 
and provides insight into the possible future development of a hybrid transformer-CNN 
architecture for aerial imagery [6][2][10][9]. 
Objectives and Novelty: 

The main purpose of this project is to improve object detection performance in 
high-resolution aerial imagery through the exploitation of the Detection Transformer 
(DETR) advantages. Traditional CNN-based detectors typically confine focus to local 
regions in the image and are typically robust only if the object’s features spatially align. 
They are also generally ineffective for small, stacked, and arbitrarily oriented objects within 
aerial datasets. Instead, DETR performs with global self-attention with multi-head 
attention, allowing it to model long-range dependencies and establish contextual relations 
over the entire image. The key innovation introduced in this project is utilizing the 
DETR to complete aerial object detection on the DOTA v1.0 dataset without using anchor 
boxes or performing Non-Maximum Suppression (NMS). The results showed that the 
DETR reduces redundant detections significantly, as well as improving accurate detections 
relative cluttered and dense scenes, and points to the opportunity for employing DETR in 
real-world remote sensing applications. 
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Literature Review: 
Object detection in aerial imagery has gone a long way from traditional handcrafted 

feature-based methods to deep learning-driven approaches. Traditional methods work on 
techniques like Histogram of Oriented Gradients (HOG), Scale-Invariant Feature 
Transform (SIFT), and De- Deformable Part Models (DPM) [11] to extract meaningful 
object features. These techniques have limited robustness to scale variations, occlusions, 
and complex backgrounds. Then came Deep Convolutional Neural Networks (CNNs) [3], 
providing a more automatic feature extraction system and reigning at the top of the heap 
across several detection contests [4]. Although CNN-based models have done well, they 
invariably encounter difficulties with modules in the detection of small object spaces and 
attributions, and long-range dependencies [2]. Consequently, the next chain of research 
focuses on transformer-based architectures, which would completely enhance detection 
capabilities in aerial imagery. 
Backbones: Backbone networks are fundamental to object detection models, acting as 
feature extractors. Traditional CNN-based backbones such as ResNet [2], DenseNet [11] 
have been widely used in object detection architectures. However, these models are 
inherently local feature learners, meaning they struggle to capture long-range dependencies. 
With the advent of Vision Transformers (ViTs) [1], researchers have explored their 
effectiveness in object detection due to their ability to model global dependencies via self-
attention mechanisms [9]. The Detection Transformer (DETR) [10] leverages a ResNet-50 
backbone, followed by a transformer encoder-decoder, eliminating the need for anchor 
boxes and non-maximum suppression (NMS). Additionally, Swin Transformer [3], which 
introduces hierarchical feature extraction, has also demonstrated promising results in aerial 
image detection [7]. 
Backbone Networks for Object Detection: Backbone networks are the core components 
of any object detection model that provide hierarchical feature representations. CNN-based 
traditional backbones have been the front-runners in the field of object detection architectures, 
including ResNet, VGGNet, Inception, and DenseNet. However, CNNs, including these 
models, have difficulty capturing global dependencies and multi-scale variations due to their 
local receptive fields and hierarchical structure, making them unsuitable for aerial image 
detection, where the targets have different shapes, sizes, orientations, and occlusions. 

The introduction of Vision Transformers (ViTs) provides a very good alternative to 
classical CNNs and fine-tunes into very long-range dependencies with the attention-based 
methods involved. Unlike CNNs, which typically downsample feature maps progressively, 
vision transformers take an image as a sequence of nonoverlapping patches, allowing them to 
build an understanding of global context. 
The most advanced work on transformer-based object detection has been the Detection 
Transformer (DETR) [10], which uses a ResNet-50 backbone model that follows a 
transformer encoder-decoder architecture. DETR considers the object detection challenge in 
an entirely new way, where the problem is considered as a  set o f  predictions. This 
essentially means that the network is trained to take a sequence of outputs, which identify 
one or more object instances, and eliminates any necessity for non-max suppression (NMS) 
or other heuristic-based post-processes that have been standard in traditional detector 
architectures. The Swin Transformer [3] is a new and enhanced transformer backbone that 
introduces hierarchical feature extraction and shifted window concepts, showing excellent 
performance for aerial object detection due to enhanced spatial efficiency and computational 
scalability [7]. 
Masked Autoencoders (MAE) for Self-Supervised Learning: Self-supervised learning 
(SSL) has become a vital technique to train deep-learning models without extensive labeled 
datasets. Among such self-supervised learning methods, Masked Autoencoders (MAE) have 
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gained great attention in vision tasks, including object detection. MAE follows Masked Image 
Modeling (MIM), where a large portion of the image is masked during training and the model 
learns to reconstruct the missing regions, thus improving feature learning. 
Recent works have shown that MAE-pretrained ViTs [8] outperform classical supervised 
CNNs in the realm of data-scarce aerial image analysis. The ViTDet (Vision Transformer 
Detector) [11], a transformer-based object detection model pre-trained with MAE, has 
shown exceptional feature extraction capabilities leading to enhanced generalization and 
robust- ness in aerial imagery tasks. This intensifies the motivation to investigate MAE-
based pretraining for DETR [10], which very well may improve the ability of DETR to 
detect small and occluded objects in complex aerial scenes. 

 
Figure 3. DETR architecture consisting of a CNN backbone, transformer encoder-

decoder, and prediction heads. 

Object Detection Approaches: Object detection methods can broadly be categorized into 
two-stage and one-stage detectors: 

Two-Stage Detectors: These models work by first generating region proposals and then 
refining them during classification. Some examples are Faster R-CNN, Mask R-CNN, and 
Cascade R-CNN. Whereas two-stage detectors are more accurate, they are often sluggish 
for real-time aerial object detection. 
One-Stage Detectors: These models directly predict locations of the object and its class 
labels in one forward pass. Some examples are YOLO (You Only Look Once), RetinaNet, 
and SSD (Single Shot Multi Box Detector). These are typically faster than their 
counterparts, but this speed often means that sacrifices in accuracy must be made, especially 
for small, densely packed objects that are classed together from aerial images. 

DETR pulls object detection into a new tier wherein it is now fundamentally a direct 
set prediction problem, requiring neither anchor boxes nor NMS. This streamlines the 
detection pipeline while also providing significant robustness against clutter and occlusion 
challenges. Nevertheless, DETR remains plagued by other challenges, such as slow training 
convergence and high computational cost, which makes it in need of further optimizations 
in aerial image applications in reality. 

Transformer-Based Object Detection: Transformers have enhanced object detection 
and advanced the field by bypassing the spatial limitations of CNNs, enabling global feature 
learning [1]. Unlike CNN-based methods, which aim to extract localized features by sliding 
windows and convolutional filters [ 2 ] , transformers look at the entire image as a whole, 
thereby being very efficient at detecting objects in complex and large-scale aerial scenes 
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[3][10]. 
Key Models Among Transformer-Based Object Detection Include: 

Detection Transformer (DETR): The very first end-to-end transformer-based object 
detection model, utilizing a self-attention mechanism capturing global contextual information. 
DETR abolished the need for handcrafted components like anchor boxes and NMS, thus 
being very suited for the aerial naming. However, slow training convergence and bad small 
object performance are other challenges this model faces. 

Swin Transformer: Introduces shifted window attention, solving complexity on a learning 
task for CNN-based object detection while respecting long-range dependencies. It has 
showcased remarkable performance on aerial object detection due to its ability to deal well 
with scale variations and dense object distributions. 

 
Figure 4. Transformer-based object detection architecture 

ViT Det (Vision Transformer Detector): integrates Vision Transformers with MAE-based 
pretraining, allowing for more robust feature learning from scarce aerial datasets with labeled 
data. 

While they seem promising, transformer-based models require heavy computational 
loads and large datasets for efficient training [1][8]. This thus poses a challenge to real-time 
aerial image processing within the efficiency-accuracy trade-off. The hybrid architecture 
development, where CNN-based feature extraction [2][4] and reasoning by transformers 
[3][10] should be put together, seems to be a promising direction toward optimizing DETR-
based aerial detection models. 
Dataset: 

Selecting quality datasets is vital in training and testing object detection models. The 
datasets must be high quality and closely resemble real-world scenarios. In this paper, we use 
the DOTA dataset, which is a widely accepted benchmark for aerial object detection. 
DOTA Dataset: The DOTA dataset is designed for multi-object detection in aerial imagery. 
It comprises: 
1. 280,000 object instances on 15 categories, including airplanes, vehicles, ships, and 
bridges. 
2. High-resolution images ranging from 800×800 to 4000×4000 pixels require multi-
scale detection ap- approaches. 
3. Horizontal Bounding Box (HBB) and Oriented Bounding Box (OBB) annotations are 
important for the evaluation of orientation-aware object detection tasks. 
4. Challenging scenarios that include complex urban en- environments, dense object 
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distributions, and larger variations in terms of scale and orientation. 

 
Figure 5. Summary of DOTA dataset classes and object instance count. 

 
Figure 6. Examples of annotated images in DOTA [11] 

“A summary of the object categories and their respective instance counts in the DOTA 
dataset is given in Figure. 5.” 
Data Preprocessing and Augmentation: Various pre-processing and augmentation 
techniques used to improve the performance and generalization of the model are: 
1) Image Resizing and Normalization: Resize all images to 800 X 800 pixels and 
normalize pixel values. 
2) Random rotation between 0 degrees and 360 degrees, additionally with horizontal 
and vertical flipping. 
3) Adjusting brightness and contrast: enhancing image contrast to minimize 
background noise. 
4) Gaussian noise addition: the introduction of some noise to help with model 
robustness. 
5) Cropping and patching: Whole images a r e  cut down into smaller tiles for easier 
processing during training. 
Data Split Strategy: To ensure an unbiased evaluation, we split the dataset as follows: 
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1. 70% Training Data – Used to train the DETR model. 
2. 20% Validation Data – Used to fine-tune hyperparameters- terms. 
3. 10% Testing Data – Used for final model evaluation. 

The DOTA dataset has comprehensive annotations, large-scale diversity, and real-
world obstacles, therefore, it is an excellent benchmark for evaluating transformer-based 
object detection architectures. Being used in this study will guarantee that the model is not 
only trained with complex and realistic data but also tested extensively in numerous 
conditions. The DOTA dataset also contains high-resolution images and extensive 
annotations, including multi-angle annotations and dense distributions of objects. Thus, it is 
ideal for advanced detection tasks in aerial imagery. 
Methodology: 

The methodology used in this research consists of a structured process for designing, 
training, and testing a transformer-based object detection model for aerial images. Our primary 
goal is to leverage the DETR model architecture to recognize and localize objects in complex 
aerial imagery. The methodology can be broadly divided into the following stages: 
Data Acquisition and Preparation: 

The first stage is collecting and preparing the DOTA dataset so that we can train our 
models. Some essential techniques are needed for this dataset because it has large annotations, 
models, and high-resolution images. • Collection of the dataset: The DOTA dataset is freely 
available on their website and consists of annotated images with Horizontal and Oriented 
Bounding Boxes. 
o Data cleaning: If there were any corrupted or mislabeled items in the dataset, they would 
need to be cleaned before we could build training data. 
o Preprocessing: • All images were resized to 800 × 800-pixel resolution. Since their 
model takes the input layer of 800 

• × 800 pixels. 
o Normalization was used to scale the images' pixel value into a standard value, commonly 
either [0, 1] or [-1, 1], for speeding up convergence during training. Data Augmentation: The 
following techniques are applied to increase dataset diversity and improve model robustness: 
• Random Rotation (0° to 360°) • Horizontal and Vertical Flipping • Brightness and Contrast 
Adjustments • Gaussian Noise Injection • Image Cropping and Patching • Dataset Splitting: 
o 70o 20o 10This stratified division ensures unbiased model evaluation. 
Model Architecture: 
Detection Transformer (DETR): 

The main model architecture used in the research is DETR (Detection Transformer), 
which is designed to rethink the object detection problem as a direct set prediction prob- 
lem with a transformer-based encoder-decoder architecture. The main parts of the model are 
as follows: 
• Backbone Network: A pre-trained ResNet-50 or ResNet-101 backbone extracts high-
level feature representations from input images. 
Transformer Encoder: The transformer encoder encodes the spatial relationships and 
contextual dependencies of the image features. The encoder summarizes global information 
throughout the entire image, which allows for the detection of objects regardless of their 
scale or position.  
Transformer Decoder: The transformer decoder decodes the encoded features using 
object queries. Each query learns to attend to different regions of the image, which makes 
the model predict the object classes and the bounding boxes at the same time. 
• Prediction Heads: 
• Classification Head: Predicts an object category that lies within the 15 pre-defined 
classes.  
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• • Bounding Box Regression Head: Outputs the bounding box coordinates for the 
object (outputs both HBB and OBB as necessary). 

 
Figure 7. Examples of image augmentation techniques: Rotation and Flipping a r e  used 

to simulate diverse orientations and viewpoints in training data. 

 
Figure 8. Examples of image augmentation techniques: Zooming and Cropping applied 

on aerial imagery to vary spatial features and perspectives. 

“To enhance the model’s generalization capabilities, several data augmentation 
techniques were applied to the aerial images, including zooming, cropping, rotation, and 
flipping (see Figure. 7 and Figure. 8).” 
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Figure 9. Proposed methodology workflow for training DETR on the DOTA dataset 

Training Strategy: 
The model is trained end-to-end with the following strategy: 

1. Loss Function: 
Hungarian Loss: To optimally match predicted and ground-truth objects as a bipartite 
matching. Classification Loss: Cross-entropy loss for object categories. 
• Box Loss: A combination of box regression with an L1 loss and Generalized IoU loss. 
2. Optimization: 
Optimizer: AdamW  
Learning Rate: 1e-4 for the transformer and 1e-5 for the backbone. • Batch Size: 44 • 
Epochs: 100 
“The complete workflow of our proposed methodology is illustrated in Figure. 9. ” 
Regularization: 
• Dropout layers are used in the transformer to prevent overfitting. • Early stopping is 
applied based on validation loss. 
Evaluation Metrics: 

To measure the performance of the trained model, we employ standard object 
detection evaluation metrics: 1. Mean Average Precision (mAP) at various IoU thresholds 
(e.g., 0.5, 0.75) 2. Precision-Recall Curves 3. F1 Score to balance precision and recall 4. 
Inference Time per Image, to assess model efficiency 
Implementation Tools: 

The following tools and libraries are used for implemen- tation: • Programming 
Language: Python 3.8 • Frameworks: PyTorch, torchvision • Data Handling: OpenCV, 
NumPy, Pan- das • Visualization: Matplotlib, Seaborn • Hardware: NVIDIA GPU (Tesla 
V100 or RTX 3080 recommended for large- scale training) This methodology provides a 
rigid, reproducible method for training and evaluating a transformer-based object detector 
on aerial imagery. By using the libraries associated with the DETR architecture and an open-
source high-quality dataset such as DOTA, we illustrate the significant potential of 
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transformers to address the challenges of object detection in aerial scenes characterized by 
massive and complex, high-resolution aerial settings. 

‘Since DETR directly predicts a fixed set of objects without duplicates, it does not 
require Non-Maximum Suppression (NMS), and therefore NMS was not applied in our 
implementation.’ 
Results and Discussion: 

In this section, we present the results of training and evaluating the DETR model 
on the DOTA dataset and comparing the results with existing state-of-the-art object 
detection models. A detailed analysis of the efficiency, accuracy, and comparison with other 
models is presented below. 
Model Training Performance: 

The training of DETR on high-resolution aerial images required ample 
computational resources. The model was trained for 100 epochs on a NVIDIA RTX 3090, 
with each epoch consuming roughly 45 minutes. The Hungarian loss function was effective 
in minimizing both explicit classification and localization loss, and the model converged 
after 50 epochs, as indicated by the constancy of the loss curves. The self-attention 
mechanism in the model is more memory-costly than most CNN-based models, which 
requires careful selection of optimal batch sizes to avoid overflow on the system while 
training. 
Evaluation Metrics: 

Several techniques were used to assess the performance of the DETR model: 
Mean Average Precision (mAP): Used to measure the precision-recall tradeoff, and it was 
the most critical metric in this study. The mAP achieved by the model was 63.4Intersection 
over Union (IoU): Used to determine how well the predicted bounding boxes overlapped 
with ground-truth boxes. Precision and Recall: Used to evaluate the share of correct 
detections, compared to false positives and false negatives. Inference Speed: The time 
per image to perform object detection. For DETR, this was 200ms per image, which is still 
faster than the slower models, at 50ms YOLOv5, where speed outweighs accuracy. 

 
Figure 10. Detection performance (mAP scores) at different IoU thresholds 

Evaluating Performance Compared to Other Models: 
To analyze the effectiveness of DETR in the literature, I compared the performance 

of DETR with three other object detection models: Faster R-CNN, YOLOv5, and Swin 
Trans- former. The main discussion points from our findings are: 
• DETR outperforms Faster R-CNN with densely packed small objects, especially in 
cluttered environments. • While YOLOv5 has faster inference and is more suited for small 
object detection, DETR provides substantial improvements in accuracy when the scene is 
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more complex or cluttered. 
• Swin Transformer fared competitively against DETR because of its hierarchical feature 
extraction capability, but requires a significantly greater computational infrastructure. 
The following table summarizes the comparison:” Detection performance evaluated using 
mAP at various IoU thresholds is reported in Figure. 10.” 
Qualitative Results: 

The DETR model that was trained was able to effectively detect objects with good 
localization results across classes. Notably, the DETR model was able to: • Accurately detect 
small objects, such as cars and planes. • -Recognize occlusions and complex backgrounds that 
are typical for aerial images. 
• -Detect the objects in a cluttered scene, with improved performance than traditional 
methods. 
Error Analysis: 
Despite the success with DETR, there were some errors: 
• Some cases contained background noise, which resulted in misclassifications. • Some low-
resolution small objects were sometimes missed. • Again, concerning the bounding box error, 
the bounding boxes for the horizontal orientations had more errors than the vertical ones. 
Ablation Study: 

An ablation study was conducted to evaluate the impact of specific factors on the 
model’s performance: • Data Aug- Augmentation: Techniques like rotation and brightness 
adjustment resulted in a 5• Learning Rate Adjustment: Capping the learn- ing rate after the 
50th epoch enhanced model convergence. 
• Choice of Backbone: A ResNet-101 backbone improved performance but at the cost of 
longer computation times. 

 
Figure 11. Predicted bounding boxes overlaid on test images are visualized to demonstrate 

model accuracy. 
Computational Efficiency: 

While DETR surpasses traditional models in detection accuracy, it requires 
substantial computational power: • Inference Time: DETR takes approximately 200ms per 
image while YOLOv5 operates at 50ms per image. • Memory Requirements: DETR 
requires ¿ 16GB of VRAM for batch sizes of 8 or larger. • Model Size: The model file size 
for DETR is around 400 MB. 
Implications of Dataset Quality: 

The quality of the dataset influences model performance. For example: • High-
resolution videos with lots of detail result in improved detection of small objects. • A more 
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diverse dataset with more labeled observations improves the model’s ability to generalize. 
Real-World Deployment Considerations: 
For deployment to the real world, DETR needs optimization for: 
• Edge computing to scale for real-time performance needs. 
• Hybrid CNN-transformer architectures may allow for some enhancements in efficiency. 
• It is also required to conduct a more thorough adaptation of DETR for embedded 
systems. 
Summary of Key Findings: 
• DETR exhibited improved accuracy for object detection than the baseline CNN 
models, especially in complex, cluttered aerial imagery. • Computational efficiency remains 
an issue, but future work is possible • DETR’s robustness to occlusions and cluttered 
backgrounds makes it a promising option for remote sensing applications; however, it 
requires work to ensure results for small objects. 
Conclusion: 

Within this research, we designed and assessed the applicability of the Detection 
Transformer (DETR) model for object detection within high-resolution aerial images. 
Detecting objects in aerial images is quite difficult due to scale differences, a large number of 
objects within a scene, occlusion, and cluttered backdrops, which prove to be tricky for 
traditional CNN-based models. The self-attention mechanism and end-to-end detection 
approach of DETR have been effective in capturing global dependencies and doing away 
with the region proposal networks, thus streamlining object detection further. The results of 
our experiments showed that state-of-the-art models like Faster R-CNN, YOLOv5, and Swin 
Transformer were equally matched by DETR. In complex scenarios of aerial imagery, 
DETR outperformed the rest, especially in detecting tightly packed objects of varying 
scales. While its performance was remarkable, the overhead cost remains an issue where 
the transformer model needs a lot of GPU power for effective training and inference. 

Moreover, our ablation study found that detection accuracy is significantly improved 
through the implementation of data augmentation and learning rate scheduling, as well as 
through the selection of the backbone. As effective as it is, most DETR’s performances tend 
to suffer with small object detection and oriented bounding box tasks. 
Future Work: 

While DETR has demonstrated strong object detection capabilities in aerial imagery, 
there are several areas for further improvement and exploration: 
Enhancing Small Object Detection: One of the critical weaknesses in DETR remains the 
small object detection in aerial imagery. Subsequent research could focus on: 
Hybrid CNN-Transformer Architectures: This involves the incorporation of CNN feature 
pyramids with transformers, which perform multi-scale feature extraction. 
Super-Resolution Preprocessing: This uses deep learning based super-resolution models to 
improve the visibility of small objects before detection. 
Finer Positional Encoding: This enhances the spatial attention of the DETR’s mechanism, 
enabling better small object localization. 
Optimizing Computational Efficiency: DETR’s excessive computation cost severely limits 
its viability for realistic or real-time applications. Future research should target model pruning 
and quantization; essentially, the reduction in total parameters without significantly affecting 
the performance. Distillation methods allow creating a lighter version of DETR with 
promising performance through knowledge distillation. Besides this, efficient self-attention, 
such as sparse attention, allows for further exploration in lowering the cost of computations 
while making minimal to no compromise on detection quality. 
Improving Training Convergence: DETR needs longer training periods than CNN-
based detectors. Future research could explore: 
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Pretraining on Large-Scale Datasets: Leveraging datasets such as ImageNet and 
OpenAI’s CLIP to improve feature representations. 
Adaptive Learning Rate Scheduling: Introducing dynamic learning rate decay strategies 
to speed up convergence. 
Alternative Loss Functions: Investigating GIoU loss, DIoU loss, and Focal loss to 
enhance the accuracy of bounding box regression. 
Real-World Deployment & Edge Computing: Implementing real-time aerial 
monitoring, disaster response, and military surveillance using DETR requires optimization 
work. To allow efficient on-device inference of DETR on edge devices, such as Jetson 
Nano and Raspberry Pi, optimization techniques adapt the detection model for low-power 
circuitry. Federated learning approaches can be used for multi-device distributed, enhanced 
adaptability in real-time scenarios. Multimodal fusion of DETR with geospatial AI models 
would contribute to contextual decision-making by integrating spatial intelligence into 
object detection. 
Incorporating 3D & Multi-Spectral Analysis: Dune top views often hold information 
regarding the height (LiDAR) and spectral channels (IR, SAR). These can assist with a future 
improvement in detection accuracies, such as: 
Multi-Modal Fusion: Merging optical images with thermal images for even better feature 
learning. 
3D Object Detection: A version of DETR would be applied to the case for predicting 
bounding boxes in 3D, thus improving spatial localization. 
Multi-Spectral Deep Learning: Using hyperspectral and infrared channels together for 
object discrimination. 
Automated Labeling & Dataset Expansion: Creating large-scale annotated aerial 
datasets is time-consuming and costly. Future work may focus on self-supervised 
learning, where frameworks like SimCLR and BYOL generate strong feature 
representations with minimal supervision. Active learning pipelines can be implemented 
using AI- AI-equipped annotation tools to automate dataset labeling. Additionally, 
crowdsourced annotation through human-in-the- loop approaches can help refine model 
training datasets efficiently. 
Final Remarks: 

In the research article, the power of transformer-based object detection was shown 
with high-resolution aerial images. Although an anchor-free detection pipeline is provided 
by DETR without coding, it still does not prove helpful for computational efficiency or 
small object detection. Future improvements in hybrid transformer architectures, optimized 
self-attention techniques, and real-time deployment strategies will increase the applicability 
of DETR for different aerial applications. 

Continuous research and optimization can make DEEP learning a stronger tool in the 
future for autonomous aerial surveillance, environmental monitoring, and disaster response 
systems: a true foundation for next-generation geospatial AI models. 
References: 
[1] D. L. Ziyi Chen, Huayou Wang, Xinyuan Wu, Jing Wang, Xinrui Lin, Cheng Wang, 

Kyle Gao, Michael Chapman, “Object detection in aerial images using DOTA dataset: 
A survey,” Int. J. Appl. Earth Obs. Geoinf., vol. 134, p. 104208, 2024, doi: 
https://doi.org/10.1016/j.jag.2024.104208. 

[2] Z. Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted 
Windows,” Proc. IEEE Int. Conf. Comput. Vis., pp. 9992–10002, 2021, doi: 
10.1109/ICCV48922.2021.00986. 

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” 
Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2016-December, pp. 



                                 International Journal of Innovations in Science & Technology 

Special Issue |ICTIS 2025                                                                         Page |94 

770–778, Dec. 2016, doi: 10.1109/CVPR.2016.90. 
[4] T. Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie, “Feature 

pyramid networks for object detection,” Proc. - 30th IEEE Conf. Comput. Vis. Pattern 
Recognition, CVPR 2017, vol. 2017-January, pp. 936–944, Nov. 2017, doi: 
10.1109/CVPR.2017.106. 

[5] L. S. D. Peng Zhou, Xintong Han, Vlad I. Morariu, “Learning Rich Features for Image 
Manipulation Detection,” arXiv:1805.04953, 2018, doi: 
https://doi.org/10.48550/arXiv.1805.04953. 

[6] X. Zhu, W. Su, L. Lu, “Deformable DETR: Deformable Trans- formers for End- to-
End Object Detection,” arXiv:2010.04159, 2021, doi: 
https://doi.org/10.48550/arXiv.2010.04159. 

[7] N. H. Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, 
Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg 
Heigold, Sylvain Gelly, Jakob Uszkoreit, “An Image is Worth 16x16 Words: 
Transformers for Image Recognition at Scale,” arXiv Prepr. arXiv2010.11929, 2020, doi: 
https://doi.org/10.48550/arXiv.2010.11929. 

[8] K. He, X. Chen, S. Xie, Y. Li, P. Dollar, and R. Girshick, “Masked Autoencoders Are 
Scalable Vision Learners,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., 
vol. 2022-June, pp. 15979–15988, 2022, doi: 10.1109/CVPR52688.2022.01553. 

[9] L. Wang and A. Tien, “Aerial Image Object Detection With Vi- sion Transformer 
Detector (ViTDet),” MITRE Corp. McLean,VA,USA, 2023, doi: 
https://doi.org/10.48550/arXiv.2301.12058. 

[10] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko, “End-
to-End Object Detection with Transformers,” Lect. Notes Comput. Sci. (including Subser. 
Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 12346 LNCS, pp. 213–229, 2020, 
doi: 10.1007/978-3-030-58452-8_13. 

[11] J. Redmon and A. Farhadi, “YOLOv3: An Incremental Improvement,” Apr. 2018, 
Accessed: Nov. 15, 2023. [Online]. Available: https://arxiv.org/abs/1804.02767v1 

[12] X. Chen, H. Fang, T. Wang, “PaDiM: A Patch Distribution Modeling Framework for 
Anomaly Detection,” Int. Conf. Learn. Represent., 2021. 

 

 

Copyright © by the authors and 50Sea. This work is licensed under 
the Creative Commons Attribution 4.0 International License.  

 


