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omato leaf diseases pose a serious threat to crop yield and quality, necessitating timely 
and accurate detection for effective management. Traditional visual inspection 
methods are subjective, labor-intensive, and inefficient, highlighting the need for 

automated solutions. This study explores the use of transfer learning and fine-tuning of deep 
learning models, ResNet-50 and Vision Transformers (ViT), for tomato leaf disease detection. 
A novel hybrid model integrating ResNet-50 and ViT through feature-level fusion is proposed 
to enhance classification accuracy. While ResNet-50 and ViT achieved accuracies of 95.20% 
and 98%, respectively, the hybrid model outperformed both with 99.07% accuracy. These 
results demonstrate the effectiveness and scalability of the hybrid model for early disease 
detection, offering a promising solution to enhance crop health and agricultural productivity.  
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Introduction: 
Globally, among the top three broadly traded vegetables, one of them is Tomatoes, 

which play a crucial part in the international vegetable market [1]. As part of the daily increase 
in the demand for tomatoes, their production on the worldwide level plus the area of 
cultivation keeps growing. At the same time, the preferences of consumers are shifting towards 
eco-friendly and high-quality products, which results in the increased need to improve the 
standards of food quality. However, the production and quality of tomatoes are often 
compromised due to various diseases that lead to a significant reduction in yield and, 
eventually, economic losses for poor farmers [2]. Plant diseases and insect damage are among 
the leading causes of agricultural losses globally. Estimations suggest that the losses in annual 
production are mostly due to pests and diseases, which have been substantial since the start 
of the 21st century [3]. On the other hand, plant diseases alone specifically contribute to the 
annual losses of 15% to 17% (approximately) of the total crop, which is a highly alarming 
figure! [4]. An estimated amount of 68% of the total annual production of the crop is lost due 
to factors such as pests, weeds, and plant leaf diseases [5], which causes a major economic 
setback. To address these challenges, there is a requirement to integrate advanced crop 
protection and enhancement strategies, utilizing and maximizing the latest global practices and 
emerging technologies. To ensure that the yield and quality of tomatoes are significant not 
only for food security but also for global economic trade. Conventionally, the identification of 
tomato leaf disease relied on manual visual inspection done visually by field workers, a method 
prone to subjectivity, inefficiency, and low accuracy. Considering these limitations, it is 
essential to develop efficient and automated methods for detecting tomato leaf diseases and 
pests using modern technology. In response to these challenges, we propose: 

• To develop a robust tomato leaf disease detection model that generalizes well to real-world 
conditions, we enhanced the existing dataset using extensive data augmentation techniques, 
including variations in lighting, orientation, and background noise. This improved diversity 
allows the model to perform robustly under practical agricultural scenarios, significantly 
boosting the reliability of automated disease detection for effective crop health management. 

• Existing tomato leaf disease datasets often lack diversity, limiting model generalization and 
real-world accuracy. By creating a more diverse and representative dataset, we aim to improve 
the model's adaptability across different environmental conditions. 

• Traditional CNNs primarily capture local features, while Vision Transformers (ViTs) focus 
on global dependencies, limiting their standalone effectiveness in fine-grained disease 
detection. To address this, we fine-tuned pre-trained CNN and ViT models using transfer 
learning and proposed a hybrid CNN-transformer model that combines local and global 
feature extraction. This fusion leverages the strengths of both architectures, significantly 
enhancing classification performance for tomato leaf disease detection. 

• By integrating CNN and Transformer models and augmenting the dataset 
comprehensively, this study introduces a novel approach that significantly improves fine-
grained disease detection accuracy, ensuring better real-world deployment in agricultural 
practices. 
Related Work: 

Many studies have explored plant disease detection, particularly in tomato leaves, but 
limitations persist. Traditional methods rely on principal component analysis, using a single 
sample leaf as a reference, and texture-based segmentation techniques [6][7], which struggle in 
real-time scenarios [8][9]. To address these challenges, [10] introduced PLPNet, which tackles 
intraclass variability and similarity, key factors in disease classification. Object detection 
techniques were emphasized to improve accuracy, particularly in cases where soil backgrounds 
obscure infected leaf edges. Building on this, [11] proposed TomatoDet, integrating Swin-
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DDETR’s self-focus mechanism, Meta-ACON launch, and an improved bidirectional 
weighted feature pyramid network (IBiFPN) to enhance small-target disease identification and 
reduce false detections. Transformer-based approaches were further explored in [12] with the 
NanoSegmenter model, incorporating lightweight techniques such as quantization and sparse 
attention to optimize efficiency. It achieved a precision of 0.98, recall of 0.97, and more of 
0.95, with an inference speed of 37 FPS, making it viable for real-time agricultural applications. 
In [13], traditional image classification models were compared with the YOLO object 
detection framework, where optimized feature layers and attention mechanisms improved 
real-time decision-making for early pest detection and crop loss reduction. Beyond tomato 
crops, deep learning has been applied to plant disease detection more broadly.  

In [14], transfer learning was used to train a deep CNN on cassava disease images, 
achieving up to 98% accuracy for certain diseases. A comparison of machine learning models 
found that SVM outperformed others in four out of six disease categories. Lastly, [15] 
highlighted the importance of deep learning in food security, training a deep CNN on a public 
dataset of 14 crop species and 26 diseases. While the model achieved high accuracy, 
performance dropped under varying environmental conditions, underscoring the need for 
diverse training data. Despite limitations, increasing smartphone accessibility presents 
opportunities for AI-driven disease detection to aid farmers and enhance crop management. 
Proposed Methodology: 
The proposed framework comprises four key stages: Data Acquisition (for collecting labeled 
disease images), Pre-processing (to standardize and normalize inputs), Augmentation (to 
increase dataset diversity and generalization), and Classification (using deep learning models). 
The complete workflow is illustrated in Figure 1. 

 
Figure 1. Proposed Methodology 

Data Acquisition: 
The dataset of tomato leaf diseases consists of images collected from public sources 

and agricultural research databases, reflecting variations in leaf conditions due to factors like 
climate, soil, and farming practices. The dataset includes ten disease classes: Early Blight, Late 
Blight, Septoria Leaf Spot, Bacterial Spot, Target Spot, Leaf Mold, Yellow Leaf Curl Virus, 
Mosaic Virus, Powdery Mildew, and Healthy Leaves. Key features include lesion texture, 
shape, color, and leaf structure, which are critical for accurate disease classification. This 
dataset facilitates early disease detection, enabling timely interventions to reduce yield losses. 
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The dataset’s diversity strengthens machine learning models, making them scalable and 
adaptable for better crop management. Sample images are shown in Table 1. Although the 
images were collected from multiple sources and captured under varying lighting, 
backgrounds, and environmental conditions, this diversity was intentionally retained to 
enhance the model's generalization capability in real-world scenarios. 
Data Pre-Processing: 

To ensure the dataset’s consistency and suitability for deep learning, several pre-
processing techniques were applied. The images were systematically renamed based on their 
respective class, appending an incremental numeric identifier (e.g., "EarlyBlight_1," 
"EarlyBlight_2"). All images were resized uniformly to 224×224 pixels to maintain consistent 
input dimensions for deep learning models. In the final step, pixel values were normalized to 
a [0,1] range by dividing by 255, optimizing model performance during training and evaluation. 
The original images were generally of high quality. While no specific denoising filters were 
applied, basic noise inspection was conducted. Preserving natural image variations was a 
priority, and the resizing and normalization steps helped standardize input distributions for 
model stability. 

Table 1. Sample Pictures of tomato Leaf Disease dataset 

 
Augmentation: 

To improve the robustness of the dataset, various data augmentation techniques were 
applied. These included random rotation (from -30 to 30 degrees) and horizontal flipping, 
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which increased viewpoint diversity, as well as brightness and contrast adjustments to simulate 
varying lighting conditions. Additionally, subtle variations and random cropping simulated 
zooming effects. Gaussian noise (mean 0, std 25) was also added to introduce minor noise, 
further enhancing dataset diversity and improving the model's adaptability to real-world 
conditions. Sample augmented images are shown in Table 2. 

Table 2. Sample Pictures of Augmentation 

 
Classification Model: 

This study utilizes and implements a deep learning-based classification framework for 
the detection of Tomato Leaf Disease by the integration of ResNet-50, Vision Transformer 
(ViT-B_16), and a Feature-Level Fusion Hybrid Model. ResNet-50 (Figure 2) is a model that 
is fine-tuned to capture the patterns that are disease-specific, such as texture variations and 
discoloration, employing transfer learning to hold its general feature extraction while 
performing the processes to refine deeper layers for precise recognition of disease. The 
robustness of the model was enhanced with a custom classification head, along with dynamic 
learning rate scheduling, regularization, and data augmentation. 

 
Figure 2. ResNet-50 Architecture 
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Figure 3. Vision Transformer Architecture 

 
Figure 4. Feature-Level Fusion Hybrid Model Architecture 

It also prevents overfitting, ensuring reliable detection of disease [16]. ViT-B_16 
(Figure 3) uses a mechanism of self-attention to capture global dependencies and intricate 
disease features. Fine-tuned on the dataset of tomato leaves, ViT-B_16 can effectively 
distinguish between healthy and diseased leaves, enabling intervention at an early stage. Task-
specific layers and dynamic hyperparameter tuning further improve the accuracy of 
classification, making the model highly adaptable to complex disease patterns [17]. 

To utilize the strengths of both architectures, a Feature-Level Fusion Hybrid Model 
(Figure 4) integrates ResNet-50 and ViT-B_16. ResNet-50 extracts fine-grained spatial details, 
while ViT-B_16 captures long-range dependencies that provide a comprehensive 
understanding of the symptoms of the disease. The fusion of feature representations through 
specialized layers enhances the accuracy of classification, which ensures robustness in the 
identification of disease for effective protection of the crop. 
Experimental Setup: 

The model was implemented using Kaggle’s GPU environment for efficient training. 
The dataset was split into 70% for training, 15% for validation, and 15% for testing. Key 
hyperparameters included 15 epochs, a 0.0005 learning rate, and a batch size of 32. Images 
were resized to 224x224x3 for standardization. A custom learning rate scheduler optimized 
convergence, while overfitting detection determined epoch limits. Gamma adjustment and a 
step schedule-controlled learning rate decay. For multi-class classification, class-specific 
weighting and a hybrid loss function (Categorical Cross-Entropy) improved generalization. 
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The Adam optimizer, enhanced with dynamic learning rate adjustments and gradient 
smoothing, ensured stable and efficient training, leading to strong classification performance 
[18]. 
Result and Analysis: 

For Tomato Leaf Disease Detection, all three models demonstrated consistent 
improvement over 15 epochs. ResNet-50 achieved a training accuracy increase from 61.23% 
to 97.03%, with validation accuracy rising from 81.87% to 94.67%, while training and 
validation losses decreased to 0.0075 and 0.0092, respectively (Figure 5). ViT-B_16 
outperformed ResNet-50, with training accuracy improving from 65.74% to 99.63% and 
validation accuracy stabilizing at 97.60%, alongside a steady decline in training and validation 
losses to 0.0014 and 0.0026, respectively (Figure 6). The hybrid model exhibited the most 
robust performance, leveraging both architectures to enhance feature representation. It 
achieved a training accuracy increase from 78.66% to 99.97%, with validation accuracy 
stabilizing at 98.70%. Training and validation losses steadily declined to 0.0196 and 0.0516, 
respectively (Figure 7). 

 
Figure 5. Training and Validation Accuracy and Loss ResNet-50 

 
Figure 6. Training and Validation Accuracy and Loss Vision Transformer 
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Figure 7. Training and Validation Accuracy and Loss Hybrid Model 

Performance metrics in Table 3 further validate these findings. ResNet-50 achieved an 
accuracy of 95%, with recall, precision, and F1-score all at 95%, indicating reliable 
classification. ViT-B_16 demonstrated superior performance, achieving 98% across all 
evaluation metrics. The hybrid model outperformed both, achieving the highest accuracy of 
99%, along with 99% recall, precision, and F1-score. It is also important to highlight that the 
dataset exhibited moderate class imbalance, with some disease classes represented by fewer 
samples. To address this, targeted data augmentation techniques were applied to increase the 
sample size of underrepresented classes. Additionally, all reported metrics are macro-averaged 
to ensure that the performance evaluation remains unbiased and reflective of all classes equally. 
This approach prevents the model from favoring majority classes and ensures robust and fair 
classification across the entire dataset. 

Table 3. Macro-averaged classification performance 
Model Recall Precision F1-Score Accuracy 

Resnet-50 95% 95% 95% 95% 

ViT B_16 98% 98% 98% 98% 

Hybrid Model 99% 99% 99% 99% 

Confusion Matrix: 
For Tomato Leaf Disease Detection, ResNet-50 achieved 95.2% accuracy but showed 

minor misclassifications, particularly between Early Blight and Septoria Leaf Spot (Figure 8). 
ViT-B_16 improved accuracy to 98.0%, enhancing class differentiation, though slight 
confusion remained in closely related diseases (Figure 9). The Hybrid model successfully 
achieved the highest accuracy of 99.07%, with a classification that is near-perfect and has 
minimal misclassifications in diseases that are visually similar (Figure 10). The results 
highlighted the superior precision of the hybrid model, which makes it highly effective for the 
early detection of disease in precision agriculture. 



                                 International Journal of Innovations in Science & Technology 

Special Issue |ICTIS 2025                                                                         Page |46 

 
Figure 8. ResNet-50 Confusion Matrix 

 
Figure 9. Vision Transformer Confusion Matrix 

 
Figure 10. Hybrid Model Confusion Matrix 
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Discussion: 
To evaluate the effectiveness of our proposed hybrid CNN-Transformer model, we 

compared its performance with that of established deep learning models, specifically ResNet-
50 and Vision Transformer (ViT), as reported in prior studies. As summarized in Table 4, the 
ResNet-50 model in [19] achieved notably high accuracy (99.97%), recall (99.87%), and 
precision (99.86%). However, this model was trained without data augmentation, which may 
have resulted in overfitting and limited its generalizability to real-world conditions. Although 
it utilized the same ten-class tomato leaf disease dataset, the absence of image variability 
restricted its robustness. In contrast, the ViT model reported in [20] obtained a significantly 
lower accuracy of 90.99%, with a precision of 90.9% and recall of 89.3%. This reduction in 
performance suggests that ViT alone may struggle with detailed local feature extraction, which 
is critical for distinguishing subtle visual differences between disease categories. It is also 
important to highlight key differences in methodologies and preprocessing practices across 
these studies. The ResNet-50 and ViT models in the referenced works either lacked or applied 
minimal augmentation and normalization, leading to inconsistent image exposure and limited 
diversity in training data. In our study, we employed class-balanced data augmentation 
strategies, including brightness and contrast adjustment, flipping, rotation, and Gaussian noise, 
to simulate real-world variability. Additionally, all images were uniformly resized to 224×224 
pixels and normalized to a [0,1] scale, ensuring consistency and improved training 
convergence. These methodological improvements contributed significantly to the enhanced 
robustness and generalization capability of our hybrid model. Our proposed hybrid model 
addresses the individual limitations of CNNs and Transformers by integrating local and global 
feature extraction capabilities. It achieved a classification accuracy of 99.07%, along with 
balanced precision, recall, and F1-score values of 99%, as shown in Table 4. These results 
indicate that our model not only matches the high accuracy of CNNs but also enhances 
robustness through better generalization a benefit derived from combining architecture types 
and applying comprehensive data augmentation. Overall, the comparative analysis highlights 
the strength of our hybrid approach in achieving high accuracy while maintaining 
generalization across diverse input conditions. This makes it a promising solution for practical 
deployment in automated crop disease detection systems. 

Table 4. Comparative Analysis 
Model Recall Precision F1-Score Accuracy 

[19] 99.87% 99.86% 99.88% 99.97% 

[20] 89.3% 90.9% 90.7% 90.99% 

Hybrid Model 99% 99% 99% 99.07% 

Conclusion: 
For Tomato Leaf Disease Detection, ResNet-50 achieved 95.2% accuracy but showed 

minor misclassifications, particularly between Early Blight and Septoria Leaf Spot (Figure 8). 
ViT-B_16 improved accuracy to 98.0%, enhancing class differentiation, though slight 
confusion remained in closely related diseases (Figure 9). The Hybrid model successfully 
achieved the highest accuracy of 99.07%, with a classification that is near-perfect and has 
minimal misclassifications in diseases that are visually similar (Figure 10). The results 
highlighted the superior precision of the hybrid model, which makes it highly effective for the 
early detection of disease in precision agriculture. 
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