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he increasing integration of renewable energy sources into hybrid Microgrid presents 
challenges such as power fluctuations, system complexity, and high operational costs. 
This paper proposes an optimized energy management framework that combines the 

Hybrid Yellow Saddle Goatfish Optimization Algorithm (HYSGA) with Sequential Quadratic 
Programming (SQP) to improve system efficiency, stability, and cost-effectiveness. The 
HYSGA approach efficiently manages energy distribution among solar photovoltaic (PV) 
systems, Battery Energy Storage Systems (BESS), and the power grid, ensuring reliable and 
cost-effective operation. HYSGA quickly identifies near-optimal solutions for complex energy 
management issues, while SQP fine-tunes these solutions to improve precision and 
convergence speed. Extensive simulations and cost comparisons confirm the framework's 
performance. In the baseline scenario, the hybrid Microgrid incurs an annual operational cost 
of $26,900. In Case I, this cost drops to $13,800, achieving 49% savings. Further optimization 
with HYSGA reduces the cost to $13,430.08, resulting in a 50.118% savings. Additionally, 
comparative evaluations show that HYSGA outperforms traditional techniques like Mixed-
Integer Nonlinear Programming (MINLP) in terms of cost savings, computational efficiency, 
and solution accuracy. This study provides a detailed analysis of the research methodology, 
solution approach, and performance evaluation, ensuring clarity. The results demonstrate that 
the HYSGA framework is a scalable, computationally efficient, and economically viable 
solution for hybrid Microgrid energy management. The proposed method offers a promising 
approach for enhancing energy efficiency and reducing costs in modern smart grid 
applications. 
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Introduction: 
A Microgrid is a local power network that combines power-consuming devices and 

small-scale energy sources. It operates independently, responding quickly to grid demands, 
and can be tailored to meet specific user needs. Benefits of Microgrid include improved 
reliability, reduced feeder losses, voltage support, efficient use of waste heat, voltage sag 
correction, and uninterrupted power supply [1]. The U.S. Department of Energy defines 
Microgrid as networks of connected loads and distributed energy resources (DERs) with clear 
electrical boundaries. A Microgrid operates under a single control unit, demonstrating the 
ability to function both on and off the grid [2]. With rising power demand, the need for 
renewable energy sources grows to ensure energy expansion and sustainability. Microgrid 
support decentralized energy management, facilitating efficient coordination between 
consumers and generation units. By integrating local energy resources, they improve resilience 
and support the transition to greener energy [3]. Microgrid control systems help manage energy 
distribution, ensuring power is supplied at minimal operational costs [4]. 

Various control methods are used to optimize Microgrid performance by enabling 
intelligent management of energy resources and power loads [5]. However, sub-optimal 
Microgrid energy management under unpredictable conditions remains a challenge for 
techniques like mixed-integer linear programming, linear programming, and dynamic 
programming. These methods struggle with high-dimensional systems and are not adaptable 
to changes like fluctuating load demands and renewable energy patterns [6], [7]. To address 
this, metaheuristic techniques such as Particle Swarm Optimization (PSO) and Genetic 
Algorithms (GA) are often combined. However, these methods have long processing times, 
making them unsuitable for real-time applications, and they lack the ability to retain knowledge 
for future tasks, reducing their computational efficiency over time [8], [9]. Furthermore, their 
performance is compromised without accurate models and proper forecasting methods. 
Metaheuristic techniques are often combined with linear techniques to leverage their 
complementary strengths [10]. 

Energy management in Microgrid involves advanced optimization techniques like 
linear, non-linear, Mixed-integer, and robust programming. Common metaheuristic 
algorithms include PSO, GA, Artificial Bee Colony, and Bacterial Foraging. Additionally, 
intelligent methods such as Fuzzy Logic and Evolutionary Algorithms enhance performance, 
while approaches like Dynamic Programming, Game Theory, Model Predictive Control, and 
Multi-Agent Systems help improve decision-making for effective energy resource management 
[11]. Microgrid integrate distributed generators and loads to operate as a single controllable 
unit, but managing hybrid Microgrid is complex due to renewable variability and cost-
efficiency demands. This article addresses hybrid Microgrid energy management by combining 
Hybrid Yellow Saddle Goatfish Optimization with Sequential Quadratic Programming 
(HYSGA-SQP). This method optimizes decision variables, reducing the total operating cost 
of the Microgrid [12]. The article follows a structured format, with Section III presenting the 
mathematical modeling of the problem, Section IV explaining the HYSGA-SQP algorithm, 
Section V showing simulation results, and Section VI concluding the study. Section VII 
provides acknowledgements. 
Objectives: 

This study focuses on implement Cost-Effective Energy Management of a Microgrid 
Using a Hybrid Yellow Saddle Goatfish Optimization Algorithm. A Hybrid Yellow Saddle 
Goatfish Optimization Algorithm is proposed to address the Cost-Effective Energy 
Management of a Microgrid problem. Objectives of the Study are: 
1. To implement the YSGFA algorithm tailored for cost-effective energy management 
in a hybrid microgrid. 



                                     International Journal of Innovations in Science & Technology 

Special Issue | ICTIS25                                                                          Page |160 

2. To integrate the developed YSGFA algorithm with SQP for enhanced optimization 
of energy management in microgrid systems. 
3. To evaluate the performance of the proposed algorithm through simulation studies 
and compare its effectiveness against existing optimization techniques. 
Novelty Statement: 

This study introduces a novel hybrid optimization framework combining the Hybrid 
Yellow Saddle Goatfish Optimization Algorithm (HYSGA) with Sequential Quadratic 
Programming (SQP) for efficient energy management in hybrid microgrids. Unlike 
conventional methods, the proposed HYSGA-SQP approach leverages the global search 
capabilities of HYSGA and the refinement accuracy of SQP to achieve superior performance 
in cost reduction, convergence speed, and operational reliability. The integration of these two 
algorithms presents a new, scalable solution that outperforms traditional techniques such as 
Mixed-Integer Nonlinear Programming (MINLP), demonstrating enhanced computational 
efficiency in 25 runs and 50.1180% cost savings in real-world microgrid scenarios. 
Problem Formulation: 
Objective Function: 

Cost minimization for residential Microgrid involves two key cost components: 

Ƈℊ𝑟𝑖𝑑(𝜏) and Ƈ𝑏𝑎𝑡(𝜏), which are mathematically defined as an optimization problem in this 

study [12]. The primary goal is to minimize system costs related to energy consumption at 
various nodes across different time periods. The mathematical representation of this formula 
is shown below: 

f(x)  = 𝑚𝑖𝑛 ∑ [Ƈℊ𝑟𝑖𝑑(𝜏) + Ƈ𝑏𝑎𝑡(𝜏)]𝜏=24
𝜏=1  (1) 

The operational cost optimization model outlined in equation (1) calculates the total 
expenses for both battery storage and grid power over a 24-hour period. Equations (2) to (6) 
estimate the battery costs while accounting for factors such as the battery's depth of discharge 
and charging state, as well as their impact on battery operation duration and grid system 
communication. 

            Ƈ𝑏𝑎𝑡
 𝜏  =  − (Ƈ𝙳𝑂𝐷∆𝓅(𝜏)∆𝜏)   (2) 

Ƈ𝙳𝑂𝐷 = Ƈ𝒾𝒸𝒾 |
1

Լ(𝙳OD2)
−

1

Լ(𝙳OD1)
| ∆𝓅(𝜏)∆𝜏 (3) 

where, ∆𝓅(𝜏) is the battery power measured in kW and ∆𝜏 in hours. 

𝙳O𝙳(𝜏) = 1 − 𝚂OC(𝜏) (4) 

Ƈℊ𝑟𝑖𝑑(𝜏) = −(Ɠ𝜏(𝜏)𝒫𝑝(𝜏). ∆𝜏 − 𝜐Ɠ𝜏(𝜏)𝒫𝑠(𝜏). ∆𝜏) (6) 

The state space set (S) includes all possible system states at each time step τ, as shown 

in equation (7). The state variable 𝔰𝜏 in equation (8) represents the system's conditions at time 
τ, incorporating factors such as PV power output, SOC values, grid prices, and load 
requirements. Equation (9) defines the complete state space, covering all system states 
throughout the entire time period. Equation (10) calculates the net load demand by accounting 
for the power generated by the PV system and determining the remaining load requirements. 
The SOC management system, detailed in equations (11) and (12), controls battery energy 
delivery by calculating residual load needs and forecasting future SOC values, ensuring that 
SOC restrictions are respected [12]. 

𝚂 = {𝚂𝜏} (7) 

𝔰𝜏 = {𝜏, 𝒫𝜏
𝑃𝑉, 𝚂OC𝜏,Ɠ𝜏,

𝒫𝑙,𝜏}   (8) 

𝒮 = 𝔰0 ∪ 𝔰1 ∪ 𝔰2 ∪ … … ∪ 𝔰𝑇−1 (9) 

𝒫𝑙𝑑,𝜏
𝑁𝐸𝑇 = 𝑚𝑎𝑥((𝒫𝑙𝑑,𝜏 − 𝒫𝜏

𝑝𝑣), 0) (10) 

𝒫𝑙𝑑,𝜏
𝑅𝐸𝑀 = 𝑚𝑎𝑥 ( 𝒫𝑙𝑑,𝜏

𝑁𝐸𝑇 − (𝚂𝑂𝐶𝜏 − 𝚂𝑂𝐶𝑚𝑖𝑛). Ę , 0) (11) 
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𝚂𝑂𝐶𝜏
𝑁𝐸𝑋𝑇 = 𝑚𝑖𝑛 (𝚂𝑂𝐶𝑚𝑎𝑥 , (𝑚𝑎𝑥(𝒫𝜏

𝑝𝑣 − 𝒫𝑙𝑑,𝜏 , 0) +

          𝑚𝑎𝑥 (
(𝚂𝑂𝐶𝜏−𝚂𝑂𝐶𝑚𝑖𝑛).Ę−𝒫𝑙𝑑,𝜏

𝑁𝐸𝑇

Ę
 , 0)) (12) 

𝐴𝑐𝑡𝑖𝑜𝑛𝔰𝜏
 =  {−𝒦∆𝓅, . . . , −∆𝓅, 0, ∆𝓅, . . . , 𝒦∆ 𝓅 } (13) 

                  𝐵𝐸𝑆𝑆(𝒜𝜏) = {−
𝒦(𝒜𝜏)

Ę
  , 𝑖𝑓 𝒜𝜏 = 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 

𝒦(𝒜τ)

Ę
 ,            if 𝒜τ = charge } 

(14) 

At each time step τ, the grid cost is updated through equation (15), which incorporates 
information about remaining load requirements and the functions of the battery energy storage 
system (BESS). Equation (16) adds the remaining load and BESS discharge into the cost 
calculation, factoring in the grid price multiplier. The battery cost, as calculated in equation (17), 
accounts for net load requirements and State of Charge (SOC) constraints to ensure alignment 
with grid pricing within the battery's operational boundaries. Equation (18) introduces the 
opportunity cost from SOC limit deviations, applying penalties for excessive charging or 

discharging. Finally, the reward function for states 𝔰𝜏 and actions 𝒜𝜏 is determined in equation 
(19), encompassing all cost components. 

       Ƈℊ𝑟𝑖𝑑
 𝜏 = −(𝒫𝑙𝑑,𝜏

𝑅𝐸𝑀 +  𝐵𝐸𝑆𝑆(𝒜𝜏). Ę). Ɠ𝜏 (15) 

Ƈ𝑝
 𝜏 = 𝒫𝑙𝑑,𝜏

𝑅𝐸𝑀 +  𝐵𝐸𝑆𝑆(𝑎𝜏.𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒). Ę). Ɠ𝜏. 𝜐 (16) 

Ƈ 𝑏
𝜏 = {𝒫𝑙𝑑,𝜏

𝑁𝐸𝑇 . Ɠ𝜏      𝑖𝑓 𝒫𝑙𝑑,𝜏
𝑁𝐸𝑇 ≤ (𝚂OC𝜏 − 𝚂OC𝑚𝑖𝑛).Ę 

else (𝚂𝑂𝐶𝜏 − 𝚂𝑂𝐶𝑚𝑖𝑛). Ɠ𝜏. Ę } 
(17) 

Ƈ𝑜
 𝜏 = {−((𝚂𝑂𝐶𝜏 + 𝒦(𝒜𝜏) − 𝚂𝑂𝐶𝑚𝑎𝑥). Ɠ𝜏. Ę 

if (𝚂𝑂𝐶𝜏 + 𝒦(𝒜𝜏) > 𝚂𝑂𝐶𝑚𝑎𝑥 

−(|𝒦(𝒜𝜏)| −(𝚂𝑂𝐶𝜏 + 𝚂𝑂𝐶𝑚𝑎𝑥)). Ɠ𝜏. Ę 

else if (𝚂𝑂𝐶𝜏 + 𝒦(𝒜𝜏) < 𝚂𝑂𝐶𝑚𝑖𝑛 
else 0 } 

(18) 

ℛ(𝔰𝜏, 𝒜𝜏) = Ƈℊ𝑟𝑖𝑑
 𝜏  + Ƈ𝑏𝑎𝑡

 𝜏 + Ƈ𝑏
 𝜏 + Ƈ𝑜

 𝜏 (19) 

Equation (20) defines the value function  𝒱𝜏
п(𝔰), which represents the cumulative 

reward starting from state 𝔰𝜏 and action 𝒜𝜏, discounted over future time steps. This value 
function evaluates the long-term effectiveness of different strategies by summing immediate 
rewards and future discounted rewards. It helps guide the optimization process toward 
maximizing overall performance and cost efficiency [12]. 

 𝒱𝜏
п(𝔰) = ℛ(𝔰𝜏, 𝒜𝜏) + ∑ ϒ𝑖. ℛ(𝔰𝜏+1, 𝒜𝜏+1)∞

𝑖=1  (20) 
Yellow Saddle goatfish optimization algorithm: 

Zaldivar et al. [13] introduced the Yellow Saddle Goatfish Optimization Algorithm 
(YSGA) in 2018. The Yellow Saddle Goatfish displays a unique cooperative behavior, which 
is one of the most fascinating aspects of their collaborative hunting strategy. In this strategy, 
the fish are divided into smaller groups that evenly cover the entire exploitation area. Each 
sub-population works together in dual roles as Chasers and Blockers to carry out the hunt. 
The YSGA mathematical model, developed by the authors, utilizes objective function 

variables Ƈℊ𝑟𝑖𝑑
 𝜏  and Ƈ𝑏𝑎𝑡

 𝜏  to effectively manage Microgrid costs. 

First Phase: Exploration: 

The goatfish population ƥ consists of 𝓍 individuals {ƥ1, ƥ2, ƥ3 … , ƥ𝓍}, uniformly 

distributed within a 𝓎-dimensional search space defined by upper boundary ℬ𝒽𝒾ℊ𝒽 and lower 

boundary ℬℓ𝒪𝓌. Each individual ƥ𝒾 is represented as a vector of decision 

variables {ƥ𝒾
1, ƥ𝒾

2, ƥ𝒾
3 … , ƥ𝒾

 𝓍}. The initialization is defined by Equation (21). 
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ƥ𝒾
𝒿

= 𝑟𝑎𝑛𝑑. (ℬ𝒿
𝒽𝒾ℊ𝒽

− ℬ𝒿
ℓ𝒪𝓌) + ℬ𝒿

ℓ𝒪𝓌 (21) 

𝒾 = 1,2, … . , 𝓍;    𝒿 = 1,2, … , 𝓎 
 

Where 𝑟𝑎𝑛𝑑 is a random number among [0,1]. 

Equation (22) calculates the squared error between 𝜇ℓ and the data points {ƥ1, ƥ2, ƥ3 … , ƥh}in 

cluster 𝒞ℓ, using the goatfish population P as the data set. 

ę(𝒞ℓ) = ∑ ∥ ƥℊ − 𝜇ℓ ∥2
ƥℊ

⋳𝒞ℓ  (22) 

ℊ = 1,2, … , 𝒽;     ℓ = 1,2, … , қ 
The goal of k-means is to minimize the objective function, which represents the total 

sum of squared errors across all k clusters, as shown in Equation (23). 

Ę(𝒞) = ∑ ę(𝒞ℓ)қ 
ℓ=1  (23) 

In a goatfish school, there is one chaser fish 𝜑ℓ ∈ ƥ, responsible for leading the 
pursuit, chosen based on its fitness value. Within each group, the particle with the highest 
fitness value is the closest to the solution, a behavior demonstrated through Lévy flight. This 
is a non-Gaussian random process that uses a Lévy stable distribution for random walks. The 
chaser fish uses random walks to change its position, aiming to find hidden prey in crevices. 
Equation (24) determines the new position of the chaser fish. 

𝜑ℓ
𝜏 +1 = 𝜑ℓ

𝜏 + ɑ ⊕ Lévy(ɓ) (24) 

0 < ɓ ≤ 2 

The chaser fish's new and current positions are represented by 𝜑ℓ
𝜏 +1 and 𝜑ℓ

𝜏, 

respectively. ɑ denotes the step size, ⊕ indicates element-wise multiplication, and ɓ is the 
Lévy index, which controls the shape of the probability distribution, especially its tail. Equation 
(25) defines the value of β\betaβ. 

ɓ = 1.99 +
0.001𝜏

𝜏𝑚𝑎𝑥 10⁄
 (25) 

Typically, each group ignores other sub-populations and focuses solely on the group 
that captures the best prey. This behavior is expressed in Equation (26). 

𝑆 = ɑ ⊕ Lévy(ɓ)~ɑ(
𝒰

 | 𝒱|1 ɓ⁄ )(𝜑ℓ
𝜏 − 𝜑𝑏𝑒𝑠𝑡

𝜏 ) (26) 

In this scenario, 𝑆 represents the random step, while 𝜑𝑏𝑒𝑠𝑡
𝜏  denotes the most successful 

chaser fish among all the clusters. Using Ґ as the Gamma function, the parameters ℴ𝒰 and ℴ𝒱 
are formulated in Equation (27). 

ℴ𝒰 = {
Ґ(1+ɓ)sin

пɓ

2

Ґ(
1+ɓ

2
)ɓ2(ɓ−1) 2⁄

}1 ɓ⁄     , ℴ𝒱 = 1 (27) 

 
On behalf of given statements, the revised location of the chaser fish outlined in (24) 

can be updated in (28). 

𝜑ℓ
𝜏+1 = 𝜑ℓ

𝜏 + S (28) 
 

Consequently, the new position of the best chaser fish is computed using (29). 

𝜑ℬℯ𝓈𝓉
𝜏+1 = 𝜑ℬℯ𝓈𝓉

𝜏 + S′ (29) 

Where, S′ is formulated in (30) 

S′ = ɑ(
𝒰

 | 𝒱|1 ɓ⁄ ) (30) 

The strategy employed by blocker fish Φℊ ∈ ƥ during hunting is to encircle the corals, 

cutting off escape routes for prey, while chaser fish attempt to capture the prey. The fish use 
a spiral algorithm to capture prey. Equation (31) calculates the new position of the blocker 

fish Φℊ
𝜏+1 based on the spiral algorithm. 
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Φℊ
𝜏+1 = 𝒟ℊ . 𝔢𝔟ρ. cos2пρ + 𝜑ℓ (31) 

In this context, the distance between the blocker and chaser fish along the spiral path 
is determined by the random number ρ, which falls within the range of [a, 1]. To enhance 
exploitation, a linearly decreases from -1 to -2 as the iteration count increases. The parameter 

𝔟 is a fixed value that controls the form and orientation of the spiral; for this method, 𝔟 is set 

to 1. Equation (32) calculates the distance 𝒟ℊ between the current position of the blocker fish 

Φℊ
𝜏  and the chaser fish in the cluster 𝒞ℓ 

𝒟ℊ = |𝓇. 𝜑ℓ − Φℊ
𝜏 | (32) 

{𝜑ℓ , Φℊ
𝜏 } ⋳  𝒞ℓ  

Where 𝓇 is a random number in the range of [-1, 1].  
Once the hunting area is fully depleted, the group moves to a new location in search 

of more prey. The YSGA model includes an over-exploitation parameter (ƛ), if no better 

solution is found after ƛ iterations, the hunt is considered successful, prompting the goatfish 
in the cluster to relocate. This is described in Equation (33). 

ƥℊ
𝜏+1 =

𝜑ℬℯ𝓈𝓉+ƥℊ
𝜏

2
 (33) 

Methodology: 
The proposed methodology integrates the Goat Fish Algorithm (GFA), a nature-

inspired population-based optimization technique, with the deterministic Sequential Quadratic 
Programming (SQP) method to achieve a robust hybrid optimization framework. Initially, the 
algorithm begins by reading the test system data and initializing the Goat Fish population 
within the defined search space. During the exploration phase, the fitness of each individual 
is evaluated, and the population is partitioned into clusters consisting of Chaser Fish and 
Blocker Fish. These roles are dynamically updated based on relative fitness to encourage 
effective exploration and diversification. In the exploitation phase, promising solutions are 
refined by updating the global best fish and employing a counter-based mechanism to escape 
local optima when stagnation is detected. To further enhance convergence accuracy and fine-
tune the best solution obtained from GFA, the method incorporates SQP, which 
approximates the objective function using a second-order Taylor expansion. This leads to the 
formulation and solution of a quadratic programming (QP) subproblem, followed by line 
search and Hessian matrix updates. The algorithm iteratively continues until the maximum 
number of iterations is reached, at which point the global best solution is reported. Figure 1 
illustrates an optimization framework for a Microgrid test system, combining the Yellow 
Saddle Goatfish Optimization Algorithm (YSGA) with Sequential Quadratic Programming 
(SQP) [14]. It depicts both exploration and exploitation phases to enhance energy 
management, optimize power distribution, and improve system efficiency. This hybrid 
approach ensures optimal decision-making for reliable Microgrid operations. 
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Figure 1. Flow Chart of HYSGA with SQP 

Table I defines the decision variables and constants used in the optimization process for the 
cost-effective energy management of Microgrid. 

Table 1. Optimal Decision Variable Values for HYSGA 

Parameter Value 

Ƈtotal
 τ  13430.08 $/Year 

Cost Saving 50.118% 

EBESS 12 KWh 

Ƈbat
 τ  $2280 

ɳc, ɳd 89% 

DOD(τ) 20% - 80% 
Battery Lifetime 7 Years 

Ƈℊrid
 τ  13430.08 $/Year 

Payback Period 2 Months 
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ROI 589% 
T 24Hours/day 
Δt 1 Hour 

𝚂OCτ 20% - 90% 

𝒫τ
PV 5 KW 

𝒫l,τ 40 KW 

𝒫ld,τ
NET 15 - 30 KWh 

𝒫ld,τ
REM 5 - 15 KWh 

ᴦτ $0.07 -$0.22/KWh 

υ 10.8% 

CSC $7.55/Month 

Results: 
This section evaluates the cost-effective energy management of a Hybrid Microgrid by 

combining the Hybrid Yellow Saddle Goatfish Optimization Algorithm (HYSGA) with 
Sequential Quadratic Programming (SQP) to assess its performance in energy management 
tasks. The total operating cost of the Microgrid is minimized by optimizing the decision 

variables Ƈℊ𝑟𝑖𝑑(𝜏) and Ƈℊ𝑟𝑖𝑑(𝜏). The effectiveness of HYSGA-SQP is also compared with 

other established optimization algorithms, highlighting its reliability in solving optimization 
challenges. 

Figure 2 shows a hybrid Microgrid consisting of a Power Grid, PV array, BESS, and 
Load. It demonstrates efficient power flow between these components. The PV array powers 
the Load and charges the BESS. The BESS stores excess energy and supplies it when needed. 
The Grid supports the Load and BESS during periods of low solar output. This setup ensures 
continuous and reliable power delivery, with bidirectional flow between the BESS and the grid 
offering added flexibility. The system enhances efficiency and supports the integration of 
renewable energy. 

 
Figure 2. Microgrid Test System 

Figures 3a and 3b highlight important aspects of cost-effective energy management in 
hybrid Microgrid. Figure 3a shows that as energy costs increase, savings decrease, emphasizing 
the importance of using low-cost renewables like solar and wind, along with efficient energy 
storage, to improve flexibility. Figure 3b illustrates a significant reduction in computational 
time with each optimization iteration, demonstrating improved algorithm efficiency and faster 
convergence for real-time decision-making. Together, these figures underline the need to 
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lower costs and enhance computational performance for the sustainable operation of hybrid 
Microgrid. 

 

 

(a) (b) 
Figure 3. (a) Cost of Energy vs Savings Percentage (b) Iteration Number vs Computational 

Time 
Figure 4 shows the relationship between energy costs and savings percentage across multiple 

optimization iterations in hybrid Microgrid management. The blue curve represents energy 
costs, while the red curve shows savings. Their fluctuations highlight the algorithm's efforts to 
balance cost minimization with savings maximization, showcasing the challenge of finding 
equilibrium. This dynamic behavior emphasizes the need for adaptive energy dispatch strategies 
that account for load demand and renewable energy availability. Overall, the figure 
demonstrates improved responsiveness and performance in hybrid Microgrid operations. 

 
Figure 4. Iteration Number vs Cost of Energy and Savings Percentage 

Figure 5 illustrates the savings percentage during hybrid Microgrid optimization, 
ranging from 49% to 51.5%. These fluctuations reflect the algorithm's adaptive approach in 
searching for cost-effective solutions, a characteristic of heuristic methods that use iterative 
energy dispatch adjustments. Despite the small oscillations, the overall high savings suggest a 
strong energy management strategy. The results highlight the trade-offs in cost optimization 
while maintaining system stability and demonstrate the system’s responsiveness to changing 
load and energy availability. Ultimately, the process aims for reliable and economical operation. 
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Figure 5. Iteration Number vs Savings Percentage 

Figure 6 displays the baseline load profile of a hybrid Microgrid over 34 hours, 
highlighting fluctuations in daily demand. These peaks and valleys are essential for effective 
demand-side management. During high-demand periods, using storage or renewable energy 
sources can reduce reliance on the grid, while low-demand times are ideal for charging batteries 
or shifting loads. Understanding these patterns aids in forecasting and planning, aligning 
energy use with demand to enhance cost-efficiency and reliability. 

 
Figure 6. Baseline Load Profile vs Time of Day 

Figure 7 shows variations in power output within a hybrid Microgrid, highlighting dynamic 
energy usage. A dip near zero between the 15th and 20th points suggests load shedding or 
reliance on stored energy. These fluctuations guide decisions to minimize generation or switch 
to more cost-effective sources. Analyzing these trends aids in cost-effective energy planning, 
optimizing the use of renewables and battery storage to ensure availability and reduce costs. 

 
Figure 7. Power vs Time (32 Data Points) 

Figure 8 shows the fitness values from different optimization runs for hybrid Microgrid 
energy management, highlighting performance variability. Higher fitness values indicate more 
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effective energy strategies; run 7 achieves the highest value (13514.6), while run 16 shows the 
lowest (13358.0), reflecting less efficiency. This variation underscores the algorithm's stochastic 
nature. Multiple simulations foster convergence toward optimal solutions, enhancing decision-
making for cost savings and system performance, emphasizing the importance of robust 
optimization in hybrid Microgrid management. 

 
Figure 8. Fitness Value Vs Number of Runs 

Discussion:  
This section interprets the results, comparing HYSGA-SQP’s effectiveness against 

existing optimization methods. Table II shows that HYSGA-SQP outperforms YSGA, 
reducing costs from $13,800 to $13,430.08 and increasing savings from 49 percent to 50.118 
percent. Table III provides a run-wise comparison, confirming the algorithm’s consistent 
performance with slight fluctuations due to its heuristic nature. Results affirm that integrating 
renewable sources, efficient storage, and intelligent optimization enhances microgrid 
sustainability, reducing reliance on high-cost grid power. HYSGA-SQP achieves faster 
convergence rates, ensuring quicker responses to real-time energy fluctuations, which is 
essential for practical applications requiring rapid optimization. 

Table 2. Annual Energy cost and cost savings associated with baseline, Case 1, 
YSGA algorithm, and proposed Hysgs with SQP. 

Parameter Energy Cost ($/Year) Cost Savings (%) 

Baseline 26900 [10] - 
CASE 1 
YSGA 

13800 [15] 
13447.16 

49% [15] 
50.06% 

Proposed HYSGA with SQP 13430.08 50.118% 

Table 3. Run-Wise Cost to Savings Comparison for Baseline and Case I for [15] vs Proposed 
HYSGA with SQP 

Run No Parameter Baseline CASE 1 HYSGA with SQP 

1 
Energy Cost ($/Year) 

Cost Savings (%) 
26900 

- 
13800 
49% 

13429.16 
50.12% 

2 
Energy Cost ($/Year) 

Cost Savings (%) 
26900 

- 
13800 
49% 

13434.32 
50.10% 

3 
Energy Cost ($/Year) 

Cost Savings (%) 
26900 

- 
13800 
49% 

13438.12 
50.09% 

4 
Energy Cost ($/Year) 

Cost Savings (%) 
26900 

- 
13800 
49% 

13385.76 
50.25% 

5 
Energy Cost ($/Year) 

Cost Savings (%) 
26900 

- 
13800 
49% 

13479.0 
49.99% 

6 
Energy Cost ($/Year) 

Cost Savings (%) 
26900 

- 
13800 
49% 

13422.12 
50.16% 
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Run No Parameter Baseline CASE 1 HYSGA with SQP 

7 
Energy Cost ($/Year) 

Cost Savings (%) 
26900 

- 
13800 
49% 

13437.28 
50.07% 

8 
Energy Cost ($/Year) 

Cost Savings (%) 
26900 

- 
13800 
49% 

13473.96 
49.95% 

9 
Energy Cost ($/Year) 

Cost Savings (%) 
26900 

- 
13800 
49% 

13416.92 
50.15% 

10 
Energy Cost ($/Year) 

Cost Savings (%) 
26900 

- 
13800 
49% 

13412.32 
50.18% 

11 
Energy Cost ($/Year) 

Cost Savings (%) 
26900 

- 
13800 
49% 

13451.60 
50.04% 

12 
Energy Cost ($/Year) 

Cost Savings (%) 
26900 

- 
13800 
49% 

13412.72 
50.19% 

13 
Energy Cost ($/Year) 

Cost Savings (%) 
26900 

- 
13800 
49% 

13360.04 
50.36% 

14 
Energy Cost ($/Year) 

Cost Savings (%) 
26900 

- 
13800 
49% 

13426.12 
50.11% 

15 
Energy Cost ($/Year) 

Cost Savings (%) 
26900 

- 
13800 
49% 

13375.52 
50.29% 

16 
Energy Cost ($/Year) 

Cost Savings (%) 
26900 

- 
13800 
49% 

13438.68 
50.09% 

17 
Energy Cost ($/Year) 

Cost Savings (%) 
26900 

- 
13800 
49% 

13467.88 
49.99% 

18 
Energy Cost ($/Year) 

Cost Savings (%) 
26900 

- 
13800 
49% 

13495.20 
49.91% 

19 
Energy Cost ($/Year) 

Cost Savings (%) 
26900 

- 
13800 
49% 

13425.16 
50.15% 

20 
Energy Cost ($/Year) 

Cost Savings (%) 
26900 

- 
13800 
49% 

13472.12 
49.94% 

Table 2 compares energy management strategies for a Microgrid, showing that the 
baseline scenario incurs a cost of $26,900, while Case I reduces this to $13,800, achieving 49% 
savings, the proposed Hybrid Yellow Saddle Goatfish Optimization Algorithm (HYSGA) with 
Sequential Quadratic Programming (SQP) yields the best optimal results, decreasing energy 
costs to $13,430.08 and maximizing savings at 50.118%.. Table III highlights the cost-to-
savings ratios over 25 iterations, with the HYSGA using SQP performing the best, lowering 
costs to $13,430.08 and achieving maximum savings of 50.118%. These results confirm the 
algorithm’s effectiveness and establish HYSGA with SQP as the optimal strategy. 
Conclusion:  

The proposed research presents a cost-effective energy management system (EMS) 
for hybrid Microgrid, using the Hybrid Yellow Saddle Goatfish Optimization Algorithm 
(HYSGA) combined with Sequential Quadratic Programming (SQP). This system optimizes 
energy scheduling under stochastic conditions, taking into account battery degradation costs 
and Time of Use (ToU) grid tariffs in a unified cost function. The performance of HYSGA 
with SQP is compared to the baseline scenario, where the grid is the sole energy supplier. In 
the baseline case, relying entirely on grid power incurs an annual energy cost of $26,900. The 
Microgrid retrofit in Case I reduces the energy cost to $13,800, achieving 49% savings. The 
proposed HYSGA with SQP algorithm further reduces the energy cost to $13,430.08, resulting 
in 50.118% savings. These results demonstrate that the HYSGA with SQP algorithm 
significantly enhances cost-effectiveness in the management of Microgrid energy systems. 
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