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Child safety continues to be a major concern in homes, public spaces, and schools. Physical 
barriers and supervision by parents or guardians are often not enough to prevent accidents 
in restricted or high-risk areas such as swimming pools, staircases near sharp objects, 
electrical sockets or places where drugs are stored. This project proposes a real-time 
computer vision-based solution to enhance child safety by detecting the presence of children 
in restricted zones and alerting guardians, caregivers or authorities immediately. The system 
is built using YOLOv8 (You Only LOOK Once version 8) for object detection, combined 
with distance estimation and an alarm-triggering mechanism. A custom dataset containing 
over 30,000 labeled images across eight categories was used for model training and 
validation. The euclidean distance formula was applied to measure the spatial relationship 
between the detected children and nearby hazards, enabling accurate risk assessment in real-
time. The proposed model achieved a mean Average Precision (mAP) of 90% and showed 
high accuracy in detecting critical proximity scenarios instantly. The solution is scalable and 
deployed in various environments, offering a proactive approach to preventing accidents. 
This project aims to deliver and effective system using readily available hardware, making it 
easy to install in both private and public spaces. Early testing demonstrated high levels of 
accuracy, speed, and real-time performance, positioning this system as a potential 
breakthrough in child safety technology. 
Keywords: Computer Vision, YOLOv8, Euclidean Distance, Ultralytics, Annotation, 
Confusion Matrix. 
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Introduction: 
Children’s safety has become a major concern for parents, educators, and 

communities in today's fast-paced and often unpredictable world. Traditional methods of 
ensuring child safety are increasingly challenged by the complexities of modern 
environments, where many domestic accidents involve children coming into contact with 
dangerous objects such as electrical sockets, stairs, or sharp items. Conventional child safety 
practices mainly rely on passive protections, like installing barriers, which are not always 
effective. Since the launch of YOLOv1 in 2015, the YOLO series of algorithms has gained 
significant attention due to its innovative approach of treating object detection as an end-to-
end regression problem. This method differs sharply from two-stage detection approaches, 
simplifying the process and noticeably increasing detection speed, making YOLO ideal for 
real-time detection applications such as video monitoring and autonomous driving [1]. 

Thus, we selected the YOLO architecture for our work. In addition to object 
detection, we integrated a distance estimation algorithm to calculate the spatial relationship 
between a child and nearby hazards. The system uses Euclidean distance calculations 
between the centers of detected bounding boxes, a widely used method in computer vision 
for estimating object proximity [2]. This enables real-time identification of potential threats 
based on predefined safety thresholds. Distance estimation techniques have been extensively 
studied in vision-based monitoring systems, proving their effectiveness in fields such as 
autonomous navigation and safety monitoring [3]. 

The objective of this research is to develop a computer vision based real-time 
solution that continuously monitors the distance between the child and surrounding hazards 
triggering an alarm when a critical proximity threshold is crossed to help prevent accident 
[4]. Our system is designed to activate an alert mechanism whenever the calculated distance 
falls below the set limit providing timely warnings to caregivers and enhancing child safety. 
Literature review: 

In today's rapidly-evolving world, child monitoring has become a significant concern 
for parents, making it an increasingly area of research. Traditional methods such as baby-
proofing, hiring caregivers for constant supervision, and installing physical barriers have 
often proven to be insufficient. However, with the rapid advancements in technology—
particularly in artificial intelligence and computer vision-there is growing potential to develop 
intelligent systems that significantly enhance child safety. Several studies have explored 
object detection models. Notably, YOLO (You Only Look Once), introduced by Redmon 
and Farhadi [5], is a real-time object detection algorithm known for achieving high accuracy. 
Hybrid object detection approaches have also been investigated to improve both speed and 
accuracy. For example, in [6], a combined YOLOv5 and Faster R-CNN model was proposed 
for vehicle detection and traffic density estimation, achieving 90% accuracy on a dataset of 
40,000 images. The study revealed that YOLOv5 performed better in low-object-density 
scenarios, while Faster R-CNN was more effective in high-density environments. In terms of 
processing speed, YOLOv5 required only 7.5 seconds per prediction compared to 18.5 
seconds for Faster R-CNN. These findings support the selection of YOLO-based 
architectures for real-time applications due to their superior efficiency. 

YOLOv8 [7], the latest version, offers further improved performance and is 
particularly well-suited for child safety applications due to its ability to detect multiple 
objects in dynamic environments. Distance estimation is another critical component of 
hazard detection. Many researchers have employed Euclidean distance calculations to 
measure the proximity between detected objects. During the COVID-19 pandemic, several 
studies demonstrated the effectiveness of combining YOLO models with distance 
estimation to monitor social distancing [8]. Similar techniques have been applied in vehicle 
safety systems to estimate distances between vehicles on highways, helping to prevent 
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collisions [9]. Inspired by these approaches, our system aims to minimize risk by integrating 
YOLOv8 with real-time distance measurement. 

Furthermore, real-time alert mechanisms have been widely implemented across 
various domains, including surveillance, vehicle detection, and healthcare. The integration of 
computer vision with alarm systems as suggested in [10], ensures immediate user alerts in the 
presence of potential dangers. 

This review highlights the importance of combining object detection, distance 
estimation, and alert generation into a unified framework for enhancing child safety. Our 
research builds upon these advancements by leveraging YOLOv8, proximity measurements, 
and real-time alert systems to develop a scalable and robust child safety solution. In addition, 
existing studies on child monitoring have proposed using robots [11], wearable sensors [12], 
and smart cameras [13]. However, most of these solutions fall short in delivering real-time 
hazard detection and accurate distance estimation. Our approach addresses these limitations 
by integrating state-of-the-art YOLOv8 object detection with real-time spatial analysis 
offering a more effective solution for child protection. 
Methodology: 
Dataset preparation: 

To develop an accurate child safety detection model, this dataset combines custom 
images from different real-world environment such as rooms, staircases and outdoor areas 
along with sources like Kaggle and Roboflow. It includes various lightning conditions, 
different object angles and various background types. This enhances the model’s ability to 
generalize across real-world situations. The dataset consisting of over 32,000 images for 
training and more than 5,000 images for validation across 8 classes. The annotation process 
was carried out using the CVAT (Computer Vision Annotation Tool) to ensure the precise 
labeling of babies and hazardous objects including as pools, broken glass, knives, stairs, 
sockets, drugs, and reptiles. 

Table 1. Contains class name, class id and total dataset 

No Class name Class ID Dataset size 

1 Baby 0 7000 images + annotations 

2 Pool 1 5000 images + annotations 

3 Stairs 2 5000 images + annotations 

4 knife 3 4000 images + annotations 

5 Broken glass 4 5000 images + annotations 

6 Electrical socket 5 5000 images + annotations 

7 drugs 6 4000 images + annotations 

8 reptiles 7 4000 images + annotations 

Table 1 provides an overview of the dataset. It consists of annotated images covering 
eight classes relevant to child safety scenarios. The "Baby" class includes 7000 annotated 
images, while hazardous objects, such as pools, stairs, broken glass, and electrical sockets, 
each have 5,000 images. Additionally, the classes for knives, drugs, and reptiles are 
represented with 4,000 images each.  
Directory structure: 

Figure 1, shows the directory structure in YOLO format There are two main folders 
i.e images and labels. Inside the images folder, there are two sub folders: train and val. The 
train folder contains 80% of the total dataset, for training while the val folder holds 20% of 
the dataset for validation. Similarly the labels folder mirrors this structure and contains the 
annotations for all the images. 
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Figure 1. Directory structure to train the model 

Model training: 
After preparing the dataset we trained a YOLOv8 large model on Google Colab using 

an Nvidia A100 GPU with 70 compute units. We used YOLOv8 large model for its optimal 
trade-off between accuracy and real-time capabilities. While smaller version offers faster 
interference, our primary objective was reliable detection of small objects like knife, broken 
glass, drugs and socket, which requires better feature representation. The Command showen 
in Figure 2, was used to train the mode. 

 
Figure 2. Code use to train the model 

After training the model we used the best.pt file (which corresponds to the model 
that achieved the best evaluation metric) to test the model’s accuracy on random images and 
videos. 
Distance estimation: 

We loaded YOLOv8 model using Ultralytics [14] and run inference on an image to 
detect objects. The model identifies bounding boxes for detected objects, extracting 
coordinates ( , , , ). The center of each detected object is computed using equation 
(1). 

,                  (1) 

This determines the exact location of baby and the hazard.) 
The Euclidean distance between the baby and a hazard is computed as: 

                             (2) 
In Equation (2), (   ,  ) represents the center of the baby's bounding box, and (  , 

 ) represents the center of the hazard's bounding box. Therefore Equation (2) provides an 
accurate measure of the proximity between the child and the hazardous object.  
Threshold based safety: 

A critical distance threshold is defined, if the distance is less than the critical 
threshold, the system displays a warning message (WARNING: Baby too close to hazard!) 
“Otherwise”, a "Safe" status is shown. The system annotates the image with bounding 
boxes, using a blue box for the baby and green boxes for hazards. The processed image is 
then displayed using Matplotlib [15]. 
 
 

dataset images train 
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labels trai
n 
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Alert system: 
When the system detects a hazardous situation, it immediately triggers an alert using 

a GSM module (e.g., SIM800L). A predefined warning message is sent via SMS to the 
caregiver’s phone, notifying them of the potential danger. At the same time, a buzzer sounds 
to provide an immediate on-site warning. This ensures that even if the caregiver is not 
physically present, they are instantly informed and can take the necessary action to protect 
the child. 
Phase flow chart: 

 Figure 3, shows the five phases of our framework, which include data collection, 
preprocessing, classification and detection, distance estimation and evaluation. 

 
Figure 3. Project framework 

Results:  
Figure 4, shows the confusion matrix of the model. The model demonstrates strong 

performance in detecting most classes with highest accuracy observed for the “Pool” class, 
where predictions were 100% correct. Other classes also exhibit high correct classification 
rates including “Broken glass” (94%), “Drug” (93%), “Socket (87%), and “Stairs” (85%). 
The “baby” was correctly identified in 86% of the cases but also shows some 
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misclassification on the background and with minor confusion into “Reptile” (1%). Slight 
confusion was noted between certain classes. For example, “knife” was correctly classified 
84% of the time, but was misclassified as “Reptile” and “background” in 16% of cases. Class 
“Reptile” has also slightly lower true positive rate of 81%. Despite these challenges the 
matrix overall illustrates strong multi-class detection performance and confirms the model 
reliability in distinguishing diverse object in complex scenes 

 
Figure 4. Confusion matrix of model 

Figure 5, shows the box loss, classification loss and DFL loss all of which are 
effectively decreasing indicating successful learning, it also presents precision and recall 
metrics both of which show an upward trend meaning the model is improving in correctly 
identifying objects. Additionally, the mAP50 and mAP50-95 metrics are also improving 
further indicating enhanced detection performance. From Figure 5, the training box loss 
decreased from initial value of 3.0 to 0.6 approximately, while the classification loss dropped 
for 4.0 to 1.0. The dfl loss also declined from 3.6 to around 1.1 over 50 epochs. Similar 
trends were reflected in the validation losses, indicating that the model generalized well to 
unseen data and showed no sign of overfitting. In parallel with the loss reduction, 
performance metrics steadily improved. The precision improved from 0.2 to approximately 
0.89, and the recall rose from 0.35 to around 0.86. These quantitative confirms the model’s 
stable convergence and its growing capability to accurately detect and classify across training 
iterations. 
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Figure 5. Different curves of the model 
Figure 6, shows the model’s detection, where it identifies the baby and various 

hazards. The bounding boxes are colour-coded as follows blue for the baby, light green for 
the knife, purple for the stairs, white for broken glass, pink for the socket and red for the 
drugs. The model detects the baby and hazards with great accuracy.  

 
Figure 6. Detection of baby and single hazard 

Figure 7, shows that the model performs well even with multiple objects. In the 
figure, the baby is near several hazards, such as socket and knife, socket and broken glass, 
and knife and drugs. The model accurately detects both the baby and the hazards in each 
scenario. 

 
Figure 7. Detection of baby and multiple hazards 

Figure 8, presents two scenarios: one where the baby is far from the hazard (knife 
and socket) and one where the baby is near the hazard. The model calculates the Euclidean 
distance between the baby and the hazard. When the baby is far from the hazard and, the 
critical distance exceeds the threshold of 700 pixels, the system generates a “Safe” message 
in green indicating that the baby is safe. If the critical distance is less than the threshold, the 
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system generates a “WARNING: Baby too close to knife”” or WARNING: Baby too close 
to socket” message in red indicating potential danger. 

 
Figure 8. Baby near and far from hazard 

Figure 9, shows baby is near different hazard such as broken glass, socket, stairs and 
the warning message is generated. The results show the model is trained very fine and it 
detects when the baby is close to hazard with accuracy and at same time generates the alert. 
Discussion: 

To evaluate our model effectiveness, we compared our results with existing object 
detection system used in related child safety and hazard detection studies. Traditional 
approaches often relied on wearable sensors [12] or child monitoring robot [11], which 
lacked dynamic detection and real time alerting. In contract our system leverages YOLOv8 
architecture to perform accurate, multiclass object detection in real time, with recorded mean 
average precision (mAP) of 90%. This significantly exceeds the performance of earlier 
YOLOv5-based systems used in COVID distancing studies [7], where typical mAP ranged 
between 70%-80%. Furthermore, our Euclidean distance estimation for dynamic alert 
triggering introduces a novel layer of safety which absent in previous works. The use of 
diverse dataset and real-world hazard classes ensures greater generalization capabilities, 
making our approach more adaptable and reliable in uncontrolled environment. 

 
Figure 9. Baby near different hazards 
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Conclusion: 
The project aims to enhance child safety in situations where parental supervision 

may not be available. A system was developed to detect potential hazards and accurately 
identify the presence of children, allowing for timely alerts to mitigate risks. The results show 
that the model achieves high accuracy in recognizing both children and hazardous objects, 
establishing it a reliable tool for safety monitoring in various environments. This work is 
particularly relevant to home security and public spaces, where child safety remains a critical 
concern. By providing a proactive approach to monitoring, the system has the potential to 
significantly reduce the risk of accidents and support caregivers in maintaining a safer 
environment.  Despite these promising results, certain limitations remain such as occasional 
false positives and sensitivity to changes in lighting conditions. Future research should focus 
on improving detection robustness and enhancing real-time processing efficiency. In 
conclusion, this study highlights the valuable role that artificial intelligence can play in 
advancing child safety solutions in both private and public settings. 
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