
 International Journal of Innovations in Science & Technology

May 2025|Vol 07 | Issue 02 Page |817

Automated HMI Generation via Component-Based Virtual
Engineering

Abdul Basit1, Izhar Ul Haq1, Muhammad Usman Qadir1
1Department of Mechatronics Engineering (University of Engineering & Technology,
Peshawar).
* Correspondence: abdul.basitglt15@gmail.com and izhar@uetpeshawar.edu.pk
Citation| Basit. A, Haq. I. U, Qadir. M. U, “Automated Generation via Component-Based
Virtual Engineering”, IJIST, Vol. 7, Issue. 2 pp 817-829, May 2025
Received| April 17, 2025 Revised| May 13, 2025 Accepted| May 14, 2025 Published|
May 15, 2025.

s system complexity rises and the demand for shorter time-to-market grows, there is
a need to change our traditional methods of building automation systems. Developing
code for Programmable Logic Controllers (PLCs) and HMIs is often a challenging

and time-consuming part of designing automation systems. Typically, PLC and HMI codes
are developed using vendor-specific tools and IEC-based languages. Secondly, code reuse
usually involves a lot of manual copy-pasting, which is prone to errors. This method lacks
proper version control and direct integration between PLC and HMI, making updates and
maintenance not only challenging but also costly. This research provides a novel method to
create an Auto HMI for component-based production machines by utilizing their associated
virtual models. The production machine is initially modelled in Computer-Aided Design
(CAD) tools and commissioned inside an emulated engineering environment to test and
optimize the control behaviour. A methodology is presented to reuse the control data in the
virtual models to build an Auto HMI. At last, the suggested solution is executed and verified
on a conveyor-built system rig to demonstrate its feasibility.
Keywords: Human Machine Interface, Virtual Commissioning, Component-Based Automation,
Programmable Logic Controller, Agile Manufacturing.

A

mailto:abdul.basitglt15@gmail.com
mailto:izhar@uetpeshawar.edu.pk

 International Journal of Innovations in Science & Technology

May 2025|Vol 07 | Issue 02 Page |818

Introduction:
Manufacturing industries are increasingly confronted with challenges due to the

relentless pressures of globalization, environmental concerns, economic instability, and rapid
technological advancements. To remain viable within such a business climate, companies must
develop an affordable approach for rapid and effective adaptation of their resources to suit
the requirements of shifting marketplaces and client expectations without sacrificing
production efficiency [1][2].

Manufacturing industries, specifically the automotive industry, are fully automated.
However, the standard development process involves mechanical, electrical, and control
engineering, each designed separately in a sequential manner. These components are integrated
only during the final phase of commissioning. This normally leads to finding irregularities
during the last phase, resulting in a protracted ramp-up period [3]. To meet the needs of mass
customization, there is a considerable need for new types of production systems. Despite of
sequential procedure, vendor-specific tools decrease ramp-up time and create complexity. As
industries aim for better responsiveness, the drawbacks of using standalone tools in different
departments are becoming increasingly obvious. These limitations lead to duplicated efforts,
information loss, inconsistent data formats, and a lack of coordination across various
engineering disciplines.

To minimize development duration, the manufacturing industry significantly depends
on Virtual Commissioning (VC). VC requires developing and modelling a 3D design of the
manufacturing machine. This technique allows control engineers to start coding the control
unit before the machine development process. The control algorithms may then be evaluated
using the three-dimensional virtual simulator to verify the control performance before the
actual construction of the machine [4][5][6].

Generating auto code for PLC and HMI using a virtual engineering approach is an
effective and error-free solution, eliminating the need for the conventional manual approach.
The virtual model, created using an Integrated Engineering Tool, features predefined control
behaviours, allowing for the reuse and transformation of the same data into the required
control programming [7]. This method enhances the intuitiveness of control system
programming by defining behaviours at a higher level, thereby reducing the challenges of low-
level coding.
This research focuses on constructing a self-configurable HMI that reuses the data from virtual
models. The HMI is constructed with many displays that serve as a graphical interface for
operators to monitor and operate industrial operations. These displays are built utilizing a
template-based technique, where the templates are filled with data specific to the machine
retrieved from the virtual model.
Research Limitation and Scope:

The proposed concept has the potential to be implemented in various sectors,
including Automotive Manufacturing, body-in-white manufacturing, airport baggage handling,
and warehouse automation. Although this study primarily focused on generating code for
Siemens, Schneider Electric, and PLCopen platforms, the methodology can also be modified
for other platforms that use distributed systems and Service-Oriented Architecture (SOA).
Literature Review:

Recent studies have highlighted the importance of adopting HMI-based industrial
automation systems. The structure of traditional PLC-based systems for data control and
monitoring has been thoroughly examined [1][2][3][4][8][9][10]. In these systems, the HMI
usually functions as a PC-based application that connects with the machine’s PLC control
system. The PLC is responsible for managing communication with the HMI, as well as
handling input/output (I/O) signals for sensors and actuators through proprietary control
networks. Data transfer between these components often depends on the Open Platform

 International Journal of Innovations in Science & Technology

May 2025|Vol 07 | Issue 02 Page |819

Communications (OLE for Process Control) gateway, which enables the flow of data from
the PLC to the HMI system [11][12]. HMI systems are typically programmed using specialized
tools provided by the software vendor. These systems interact with the PLC control network
to relay low-level PLC register data, which is then utilized to represent the machine's real-time
status.

The HMI station features a lookup database that translates this raw machine data into
human-readable descriptions, which are shown on interface screens. However, traditional
development methods and maintenance can be quite complex and resource-heavy,
necessitating highly skilled personnel to create and modify. When changes to the system are
required, end users and Original Equipment Manufacturers (OEMs) often face difficulties, as
engineers must first grasp the programmer’s unique style before they can troubleshoot
machine issues. The HMI and diagnostics frequently operate separately from the main control
program and may not align with it’s sequence. As a result, if the PLC program is altered, the
HMI program might not be updated, leading to incorrect or outdated messages that reduce
the system's effectiveness and usability.
In [11][13], Edward et al. presented a component-based control strategy aimed at replacing
conventional PLC/PC systems in the automotive engine manufacturing sector. The approach
for creating HMI systems involves configuring HMI templates within the Process Definition
Engineering toolset. To ensure a consistent and unified design, the end-user establishes a
template that details both the PLC program structure and the HMI screen design, which must
be followed by all machine builders. Although this approach ensures no inconsistencies
between machine control logic and HMI system, but it does not offer adequate version control
between PLCs and HMIs.

Chalmers University has conducted research focused on creating a system that reuses
mechanical design data from a production unit to automatically generate PLC and HMI code.
The framework is designed to identify sections of control code that can be created using data
obtained from robot simulations and the design of the production cell. These components are
arranged as function blocks, with each block corresponding to a specific device within the
system. Although the primary focus of this research is to automate the control process, it does
not address other aspects of control code, i.e., manual mode and integration of HMI [12][14].

Rockwell Automation has concentrated on creating a distributed platform that is
adaptable and reconfigurable, supporting agent-based automation systems that are plug-and-
play. PLC's flagship product, Logix™ control, is used to execute the agent-based method using
real-time control agents and facilitate information sharing among the agents. Tags may be used
to store and distribute data in the agent controls interface. Through an OPC communication
bridge and their unique Java-based interface, external resources can access these tags. Using
their proprietary implementation, the current industrial visualization systems based on HMI
panels also work with these PLC tag values [15]. The limitations of tag-based representation
necessitate re-loading and re-compiling the HMI program while undergoing reconfiguration,
as noted in [15][16].

Bergert [17] created a method for auto HMI code generation using digital process data
from production cells modelled in DELMIA Process Engineer. The process plan is sifted to
keep the PLC-related information only and remove all extra information. Next, the filtered
data is modified into a Sequential Function Chart (SFC) specifically suitable for use in Unity
Pro. The resource library function blocks are then connected to this SFC via resource-specific
modules using Unity Pro, including I/O signals, which define the performance of the different
manufacturing resources. However, despite its potential, Bergert's research remains mostly
theoretical with limited real-world application. The generated program still needs further
manual adjustment before it can be deployed, because it still relies on the corresponding
function blocks to map the SFC. Furthermore, the study is focused on the automation of

 International Journal of Innovations in Science & Technology

May 2025|Vol 07 | Issue 02 Page |820

production cycles only; as diagnostics, mode control, and HMI integration are other important
parts of comprehensive control programming, they are not considered.

In [18][19], Volvo Car Corporation used the automation designer tool from Siemens,
used for virtual commissioning, to generate auto PLC and HMI code. The main objective was
to produce code and screens early in the commissioning process and to reuse the data from
process simulations stored in the database. However, some limitations were identified. The
code was generated according to Volvo’s standards but lacked overall sequencing, which
complicated the validation process [5]. While the HMI screens followed the intended layout,
the tag and screen naming conventions did not comply with the manufacturer’s specified
standards. While it was possible to change the names manually in the HMI software, the
corresponding data blocks still needed to be maintained.
Novelty Statement:

Conventional methods for machine HMI systems often fail to address the needs of
agile manufacturing. Key challenges include lengthy development timelines, no direct
integration between PLC and HMI, and the requirement for highly skilled professionals,
leading to greater chances of error-prone, time-consuming, and increasing complexity and
obstacles among engineering collaborators in the machine development process. To overcome
these challenges, this research provides a novel method to create an Auto HMI for
component-based production machines by utilizing their associated virtual models to reuse
the data, test, and optimize the control behaviour. For any changes and additions to the system,
the changes are required in a virtual model only. Because the HMI software is designed
generically, no direct changes are required in the HMI application. When a connection to the
PLC is established, the HMI screens are automatically updated to reflect the latest changes in
the Control Data Model (CDM), ensuring real-time synchronization with the system
configuration.
Research Objectives:
1. To review existing approaches to HMI development in various sectors, including
body-in-white manufacturing, airport baggage systems, and warehouse automation, to identify
key limitations and time constraints.
2. To create and implement an approach for the auto-generation and integration of HMI
Screens.
3. To evaluate the approach and analyze the time-saving impact of auto code generation
compared to manual coding, using an automated test rig.
Methodology:
PLC Code Generation:

Figure 1 below illustrates the process of generating PLC code using the Integrated
Engineering Tool (IET). After a production unit is successfully validated through virtual
simulation, its data is transferred to the analyzer or Mapper in an open XML-based format. It
offers an intuitive interface for configuring control logic, simplifying the process of defining
I/O address mappings and assigning standardized function blocks to the actuators and sensors
within the manufacturing cell. After configuring the sensors and actuators, control data is
generated via Mapper by processing the given information. After that, control data is linked
automatically with the PLC code specified by the end-user to produce an executable PLC
program. In this case SIMATIC S7-400 PLC was chosen, therefore, the generated code was
transferred in multiple plain text formats. The detail is shown in Table 1 below.

Table 1. Generated code as a plain text file

File Name languages File Format

I/O variables.asc NA ASC
UDT&DB.awl Statement List AWL

FBs.scl Structured Control Language SCL

 International Journal of Innovations in Science & Technology

May 2025|Vol 07 | Issue 02 Page |821

OB1.awl Statement List AWL

Figure 1. Auto PLC Code Generation Framework

HMI Generation:
The proposed framework for automated HMI generation, depicted in Figure 2, is built

upon a virtual engineering approach and comprises three core components. While this section
focuses exclusively on the HMI portion, it is worth noting that the PLC segment has been
discussed earlier and is beyond the current scope.
Data Tags:

Data tags represent variables that may be either internal or external to the system.
These tags establish a communication link between the HMI and external devices, enabling
real-time data exchange essential for effective HMI operation. During runtime, external tags
are dynamically retrieved from the Control Data Model (CDM). This ensures seamless
synchronization and interaction between the PLC and HMI, enabling automated HMI
generation and real-time system monitoring.
Screen Templates:

These are pre-defined user interface layouts that serve as standardized blueprints for
machine monitoring and control. Templates are created once and dynamically updated using
real-time data sourced from the CDM. This approach not only enhances consistency across
HMI displays but also significantly reduces development time and manual configuration
efforts.
Screen Generator:

The Screen Generator module is responsible for rendering operational screens used
for machine control and diagnostics. When a screen is requested by an HMI device, the
generator fetches the corresponding template and populates it with context-specific data from
the CDM. This mechanism enables the real-time deployment of accurate and up-to-date
graphical interfaces, facilitating efficient human-machine interaction.

Figure 2. HMI System Development Tool Architecture

This paper primarily focuses on the automatic generation of HMI (Human-Machine
Interface) screens, offering a detailed explanation of the underlying code generation process.
In addition to the HMI screen creation framework, it introduces a complete methodology for

 International Journal of Innovations in Science & Technology

May 2025|Vol 07 | Issue 02 Page |822

implementing the operator interface of a production unit through a virtual modeling approach,
as illustrated in Figure 3.

Figure 3. Flow Diagram of Methodology

HMI Generation Using a Virtual Model Approach:
A 3D CAD model of the test setup was initially created in SolidWorks and exported

as VRML format to VueOne Editor. For the next design phase, the model is further
commissioned (components behaviour and sequence of operation) and enhanced using the
VueOne editor tool, allowing for a component-based representation suitable for virtual
commissioning. Then the virtual model is exported as an XML format to VueOne Mapper.
Further processing is discussed in the PLC code generation section. The data format is
highlighted in red colour. The methodology adopted is based on a generic template approach,
aimed at automating the creation of HMI screens.

To implement this approach, predefined screens such as the home screen, manual
position screen, and logic tracking screen were created using the WinCC tool. These screens
serve as template-based interfaces within the HMI generation framework.
The screen templates are classified into two main categories:
1. Generic Screens – These include standard layouts like the home screen, which are
designed and integrated early during the template preparation stage. They are reused across
different machines without modification.
2. Machine-Specific Screens. These are dynamically generated at runtime using the
HMI Data Model (HDM) and an associated mapper function. These screens are tailored to
the specific requirements of individual machine cells, ensuring adaptability and consistency
within the overall HMI system.

The manual mode operator screens are uniquely configured for each manufacturing
cell, giving each system its distinct identity. Typically, these screens contain pairs of
pushbuttons corresponding to each actuator. Operators can interact with these buttons to
move actuators from their home positions to their operational positions, enabling manual
control over the system.

 International Journal of Innovations in Science & Technology

May 2025|Vol 07 | Issue 02 Page |823

The code generator is designed to handle only the state behavior of actuator
components, as these are the elements requiring manual operation. Once the screen templates
are finalized, the mapper function is generated. This function links the HDM to the tags used
in the screen templates, ensuring automatic tag mapping between template elements and the
data model.

Following the deployment of the HMI software and its connection with the PLC, the
system retrieves the necessary control data to populate and render context-specific HMI
screens. These include interfaces for real-time monitoring, diagnostics, and manual operation.
As changes occur in the data model, the HMI detects and reflects these in real-time, allowing
the interface to reconfigure itself dynamically and maintain synchronization with the
underlying control logic.
Case Study: Double Conveyor Test Setup:

The Double Conveyor test setup, as shown in Figure 4, serves as a representative case
study to demonstrate the effectiveness of the proposed automatic HMI code generation
approach. This setup was chosen for its suitability in illustrating the contrasts between auto-
generated and traditional HMI coding methods. It simulates a typical transportation and
manufacturing process, involving: Two conveyors, an ejector, A blocker, A gantry system for
transporting processed items to storage.

These components collectively support material handling, inspection, and part
processing within a simulated production environment.

For hardware implementation, the Siemens SIMATIC S7-400 PLC and WinCC HMI
devices were selected due to their compatibility and industrial relevance.
To support virtual commissioning, the development process was divided into two key phases:
1. Component Development Phase – Focused on designing individual elements of
the setup.
2. Assembly Development Phase – Emphasized the integration of components into
a cohesive system.

This structured approach ensured both system flexibility and the seamless transition
from virtual modeling to physical deployment, reinforcing the viability of automatic HMI
generation in modern manufacturing environments.

Figure 4. Real and virtual model of the Test setup

Component Architecture and Virtual Modeling:
The test apparatus comprises a total of 14 components, including 7 actuators and 4

sensors. The development process begins with the construction of these components and their
associated function blocks, which define their behavior and control logic. When multiple
components share identical or similar state behaviors, they can utilize a common function
block, thereby simplifying code reuse and modularization. Figure 5 presents an example of
this modular design, showcasing the function block implementation for a pusher actuator.
Once the components have been defined, a virtual model of the test rig is assembled to

 International Journal of Innovations in Science & Technology

May 2025|Vol 07 | Issue 02 Page |824

represent the complete system. This process entails assembling the individual components
and integrating them through process logic, essentially a state-transition diagram that dictates
the system’s operational sequence and task flow.

Figure 5. component – Pusher

Once the virtual modeling and validation process is complete, the corresponding PLC
code is automatically generated and deployed to the Siemens SIMATIC PLC. In parallel, a
standard SIMATIC WinCC project is created according to the architecture described in the
methodology section. This project includes predefined HMI screen templates, which are then
transferred to the HMI device.

Upon establishing a connection between the HMI and the PLC, the HMI screens are
generated automatically based on the predefined templates and real-time data from the HMI
Data Model (HDM). Figure 6 represents the created screens, i.e, Home Screen, Manual control
Screen, and logic monitoring screen. Operation modes, controlling, and navigating to the other
screens can be done via the Home Screen.

As a standard display page, it does not require automatic generation and remains
consistent across all production machines. State transition diagrams, as outlined in the IET,
dictate how many pushbuttons are needed for manual control operation. The HMI displays a
specific number of rows, which is determined by the static locations of the actuator. The
pusher is used as an example, as shown in Figure 7. Since the pusher has two positions, only
a single row is generated.

Figure 8 illustrates how the PLC and HMI interact in real-time. We can illustrate this
concept using a pusher. When the pushbutton on the HMI is activated to set the pusher in its
work position, a command is sent from the HMI to the relevant manual control model, which
then communicates with the Runtime Component (RC). After the RC receives the command,
it processes the instruction and updates the relevant output variable, initiating the pusher’s
movement. Throughout this process, the RC continuously monitors the actuator’s status and
sends real-time updates.

 International Journal of Innovations in Science & Technology

May 2025|Vol 07 | Issue 02 Page |825

Figure 6. HMI Display Pages

Figure 7. Auto Auto-generated manual mode display to reflect the state behavior of relevant

components
To implement any necessary adjustments, the virtual model must be reconfigured first.

After completing the reconfiguration in the IET unit, the new system information is
reimported into the mapper. Once the essential input-output arrangement and Runtime
Component analysis are completed, the CDM automatically updates to reflect the changes
made to the system in the data model, ensuring accurate tracking and synchronization. Because
the HMI software is designed generically, no direct changes are required in the HMI
application. When a connection to the PLC is established, the HMI screens are automatically
updated to reflect the latest changes in the CDM, ensuring real-time synchronization with the
system configuration.
Results:

A comprehensive assessment of time consumption for both auto code generation and
traditional manual coding was carried out to evaluate the efficiency and feasibility of
implementing automated code generation in automation systems. The development and

 International Journal of Innovations in Science & Technology

May 2025|Vol 07 | Issue 02 Page |826

Reconfiguration timelines for manual programming and auto-generated code were
meticulously recorded and broken down into individual activities. This breakdown is essential
to understanding the impact of automation on the engineering workflow, particularly in the
context of component-based HMI systems.

Figure 8. HMI system operation sequence overview

Development Time: Manual vs Auto Code Method:
The recorded time durations for both approaches, using the same set of control

functionalities, are presented in Tables 2 and 3.
Table 2. Time Utilization in Manual Code Development

Activity Time Duration (hr)

Design and implementation of templates 1.5
Creating Function Blocks and Data Blocks, and testing 9
I/O allocation or mapping 0.5
Creating a Sequential Function Chart 9
HMI Screen development 5
Commission and installation 9
Total time 34

Table 3. Time Utilization in Auto Code Generation

Activity Time Duration (hr)

Design and implementation of templates 2
RCs development and testing 9
Specifying control logic and behaviour in VueOne 4
Virtual commissioning 1
I/O and RCs allocation 1
Commission and installation 1
Total time 18

Reconfiguration Time: Manual vs Auto Code Method:
Table 4 provides a side-by-side comparison of the time required for reconfiguration

in both methods.

 International Journal of Innovations in Science & Technology

May 2025|Vol 07 | Issue 02 Page |827

Table 4. Reconfiguration Time

Manual Code approach Auto Code generation approach

Activity Time(hr) Activity Time(hr)
Modification of PLC
programming

1 Reconfiguration of the
virtual model

0.7

Modification of HMI 0.4 Virtual commissioning 0.4
Recommissioning and
installation

0.6 Recommissioning and
installation

0.1

Total time 2 18 1.2

Discussion:
The manual method involved several time-intensive steps, such as designing templates,

creating function blocks, testing, HMI development, and commissioning. A total of 34 hours
was spent on the entire cycle. On the other hand, auto code generation reduces development
time. A total of 18 hours was recorded for this process.

These findings suggest that the auto code generation method resulted in a time saving
of approximately 16 hours, a reduction of nearly 47% in the total development timeline. From
Tables 2 and 3, it is clear that the Auto code generation method significantly reduced
installation and commissioning times compared to the traditional manual programming
approach. The main reason for this was the validation of control logic during the virtual
commissioning phase, which utilized the VueOne editor tool and was carried out offline. This
approach helped to enhance the project's critical path. Since the screens are generated
automatically, therefore no need to develop when any modification is required. This
improvement is particularly impactful in fast-paced manufacturing environments where time-
to-market is a key success factor.

The auto-generated system required only 1.2 hours for reconfiguration, compared to
2 hours needed for the manual method. Although the difference may appear small in absolute
terms, in cumulative large-scale applications or frequent reconfiguration scenarios, this 40%
time saving translates into major efficiency gains.

The results demonstrate that auto code generation significantly reduces the overall
engineering effort, with a time saving of nearly 47% in initial development and 40% during
reconfiguration tasks.
Conclusion:

This paper examines a new approach to creating HMI screens in component-based
automation systems. Conventional methods for machine HMI systems often fail to address
the needs of agile manufacturing. Key challenges include lengthy development timelines and
the requirement for highly skilled professionals, leading to an obstacle among engineering
collaborators in the machine development process.

From the direct-integration perspective, any modifications made to the Control
System Data Model are instantly updated in all three sections of the control software. Initially,
the Double Conveyor test setup was developed and tested within a virtual three-dimensional
platform. Generated and implemented screens automatically for HMI using a verified and
validated virtual model, eliminating the need for manual changes.

The case study emphasizes the benefits of adopting a dynamic HMI development
approach as opposed to traditional static methods. It allows for greater flexibility across
multiple platforms and is simpler to implement. This strategy is expected to enhance virtual
commissioning by decreasing the software development time in automation systems.
Additionally, this strategy boosts responsiveness, versatility, and reusability, allowing it to
better address user needs in today’s business world.
Acknowledgments: We would like to express our sincere gratitude to the Department of
Mechatronics, University of Engineering and Technology, Peshawar, Pakistan, for their

 International Journal of Innovations in Science & Technology

May 2025|Vol 07 | Issue 02 Page |828

invaluable support throughout this research. Our deepest appreciation goes to Dr. Izhar ul
Haq, whose expertise and guidance greatly contributed to this study. We also thank our
colleagues and participants for their cooperation and insights, which were instrumental in
shaping our findings.
Conflict of interest: The authors declare that there is no conflict of interest regarding the
publication of this manuscript in the IJIST.
References:
[1] M. R. Anwar, O. Anwar, S. F. Shamim, and A. A. Zahid, “Human machine interface

using OPC (OLE for process control),” Student Conf. Eng. Sci. Technol. SCONEST
2004, pp. 35–40, 2004, doi: 10.1109/SCONES.2004.1564766.

[2] S. Da’na, A. Sagahyroon, A. Elrayes, A. R. Al-Ali, and R. Al-Aydi, “Development of a
monitoring and control platform for PLC-based applications,” Comput. Stand.
Interfaces, vol. 30, no. 3, pp. 157–166, Mar. 2008, doi: 10.1016/J.CSI.2007.08.008.

[3] C. Şahin and E. D. Bolat, “Development of remote control and monitoring of web-
based distributed OPC system,” Comput. Stand. Interfaces, vol. 31, no. 5, pp. 984–993,
Sep. 2009, doi: 10.1016/J.CSI.2008.09.027.

[4] G. DiFrank, “Power of automation: An overview, technology, and implementation,”
IEEE Ind. Appl. Mag., vol. 14, no. 2, pp. 49–57, Mar. 2008, doi:
10.1109/MIA.2007.914275.

[5] E. H. Mikael Andersson, “Automatic generation of PLC programs using Automation
Designer Based on simulation studies and function block libraries,” Prod. Eng.
Chalmers Univ. Technol. Göteborg, Sweden, 2010, [Online]. Available:
https://publications.lib.chalmers.se/records/fulltext/133762.pdf

[6] Joakim Davidson and Tobias Sennö, “INTERACTIVE CONTROL OF A VIRTUAL
MACHINE,” Lund Univ. Dep. Ind. Electr. Eng. Autom. Sweden, 2005, [Online].
Available: https://www2.iea.lth.se/publications/MS-Theses/Short
article/5208_Smf_Interactive_Control_of_a_Virtual_Machine.pdf

[7] B. Ahmad, X. Kong, R. Harrison, J. Watermann, and A. W. Colombo, “Automatic
generation of Human Machine Interface screens from component-based
reconfigurable virtual manufacturing cell,” IECON Proc. (Industrial Electron. Conf.,
pp. 7428–7433, 2013, doi: 10.1109/IECON.2013.6700369.

[8] K. H. Lee, E. C. Tamayo, and B. Huang, “Industrial implementation of controller
performance analysis technology,” Control Eng. Pract., vol. 18, no. 2, pp. 147–158,
Feb. 2010, doi: 10.1016/J.CONENGPRAC.2009.09.011.

[9] H. C. Lin, “A remote monitoring and control-based precise multilocation riveting
system,” Comput. Appl. Eng. Educ., vol. 13, no. 4, pp. 316–323, Jan. 2005, doi:
10.1002/CAE.20057.

[10] M.-J. Y. Vu Van Tan, Dae-Seung Yoo, “A Novel Framework for Building Distributed
Data Acquisition and Monitoring Systems,” J. Softw., vol. 2, no. 4, 2007, [Online].
Available:
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=638b831d922b2
5af6347a64c49f7d3153afd4b39

[11] E. W. Mellor, A. A. West, and R. Harrison, “A Component-Based Human Machine
Interface System for Automotive Manufacturing Machines,” Proc. 7th Bienn. Conf.
Eng. Syst. Des. Anal. ESDA 2004, vol. 2, pp. 361–366, Nov. 2008, doi:
10.1115/ESDA2004-58368.

[12] J. Richardsson and M. Fabian, “Automatic generation of PLC programs for control of
flexible manufacturing cells,” IEEE Int. Conf. Emerg. Technol. Fact. Autom. ETFA,
vol. 2, no. January, pp. 337–344, 2003, doi: 10.1109/ETFA.2003.1248719.

[13] E. Normanyo, F. Husinu, and O. R. Agyare, “Developing a Human Machine Interface

 International Journal of Innovations in Science & Technology

May 2025|Vol 07 | Issue 02 Page |829

(HMI) for Industrial Automated Systems using Siemens Simatic WinCC Flexible
Advanced Software,” 2014.

[14] S. Garbrecht, “The Benefits of Component Object-Based Supervisory System
Application Development versus Traditional HMI Development in Water Systems
Operations Management,” Proc. Water Environ. Fed., vol. 2008, no. 8, pp. 7358–7370,
Sep. 2012, doi: 10.2175/193864708788809365.

[15] P. Vrba et al., “Rockwell automation’s holonic and multiagent control systems
compendium,” IEEE Trans. Syst. Man Cybern. Part C Appl. Rev., vol. 41, no. 1, pp.
14–30, 2011, doi: 10.1109/TSMCC.2010.2055852.

[16] Process-Industry-News, “Rockwell Automation launches signal conditioners as first
process component offering,” Assem. Autom., vol. 30, no. 3, pp. 59–63, Aug. 2010,
doi: 10.1108/AA.2010.03330CAD.002/FULL/XML.

[17] M. Bergert, C. Diedrich, J. Kiefer, and T. Bär, “Automated PLC software generation
based on standardized digital process information,” IEEE Int. Conf. Emerg. Technol.
Fact. Autom. ETFA, pp. 352–359, 2007, doi: 10.1109/EFTA.2007.4416789.

[18] Volvo Car Corporation, “Programming Instructions for PLC Systems,” Simatic, 2008.
[19] K. Güttel, P. Weber, and A. Fay, “Automatic generation of PLC code beyond the

nominal sequence,” IEEE Int. Conf. Emerg. Technol. Fact. Autom. ETFA, pp. 1277–
1284, 2008, doi: 10.1109/ETFA.2008.4638565.

Copyright © by authors and 50Sea. This work is licensed under
Creative Commons Attribution 4.0 International License.

