
                             International Journal of Innovations in Science & Technology 

Special Issue |ICTIS 2025                                                                                   Page |62 

 

 

HLCE: Framework for Enhanced Stock Price Forecasting 
Yaser Ali Shah1, Nimra Waqar1, Wasiat Khan2, Amaad Khalil3 
1Department of Computer Science, COMSATS University Islamabad, Attock Campus, 
Attock, Punjab, Pakistan 
2Department of Software Engineering, University of Science & Technology, Bannu, Khyber 
Pakhtunkhwa Pakistan. 
3Department of Computer Systems Engineering, University of Engineering and Technology, 
Peshawar 25000, Pakistan  
*Correspondence: Yaser Ali Shah, yaser@cuiatk.edu.pk 
Citation| Shah. Y. A, Waqar. N, Khan. W, Khalil. A, “HLCE: Framework for Enhanced 
Stock Price Forecasting”, IJIST, Vol. 07 Special Issue. pp 62-79, May 2025 
Received| April 06, 2025 Revised| May 03, 2025 Accepted| May 05, 2025 Published| 
May 07, 2025. 

accurate stock price forecasting is a key element of risk management and investment 
decision-making. A key element of this study is the introduction of a Hybrid LSTM-
Conventional Ensemble (HLCE) model, which addresses the limitations of traditional 

models in capturing nonlinear financial patterns. Utilizing the advantages of both deep learning 
and conventional forecasting techniques, the HLCE framework combines Long Short-Term 
Memory (LSTM) networks with traditional statistical models and machine learning methods, 
including Random Forest, XGBoost, and Support Vector Regression (SVR). The model is 
assessed using important performance metrics, such as Root Mean Squared Error (RMSE), 
Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and R-squared (R²), 
in a case study using Apple Inc. (AAPL) stock data, where MinMaxScaler is utilized for data 
preprocessing. With an RMSE of 0.16, MAE of 0.16, MAPE of 0.12%, and R² of 0.95, the 
HLCE model performs better than individual models, according to experimental results, 
demonstrating its greater capacity to identify intricate financial patterns. By contrast, isolated 
models exhibit far lower predictive efficiency and much higher error rates. These results 
highlight the promise of ensemble and hybrid approaches in financial forecasting, offering a 
more reliable and accurate framework for predicting stock prices. The work adds to the 
expanding body of research supporting the combination of deep learning and conventional 
techniques to enhance risk assessment and financial market analysis. 
Keywords: Stock Price Prediction; Hybrid LSTM-Conventional Ensemble (HLCE); Time 
Series Forecasting; Financial Forecasting; Forecasting Accuracy. 
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Introduction: 
The intricacy and volatility of financial markets, impacted by numerous variables like 

investor behavior, political events, and economic statistics, make it difficult to predict stock 
values. Although traditional time series models such as GARCH, ETS, and ARIMA are good 
at capturing linear trends and volatility, they struggle to detect nonlinear market dynamics. 
Recent developments in deep learning, particularly Long Short-Term Memory (LSTM) 
networks, have shown promise in overcoming these limitations by modeling nonlinear 
interactions in financial data. However, LSTMs alone might not adequately capture the 
complexities of volatile markets. 

This challenge is addressed by the Hybrid LSTM-Conventional Ensemble (HLCE) 
model, which provides a more accurate and balanced forecast by combining LSTM with 
conventional time series models, including ARIMA, ETS, and GARCH. By combining 
forecasts from each model using an optimal weighting method, the HLCE model leverages 
each model's unique capabilities to improve overall forecasting accuracy. 
With sections on "Related Work", "Material and Methods," "Result and Discussion," and 
"Conclusion," the article offers a thorough examination of the proposed model’s efficacy and 
identifies potential avenues for further research. 

The findings show that HLCE outperforms standalone models in stock price 
prediction by identifying complex patterns and producing more accurate forecasts. The study 
offers several significant insights. It presents the HLCE model, which improves stock price 
forecasting by integrating LSTM with traditional models. To enhance predictive accuracy, the 
model combines forecasts using an optimal weighting method. The HLCE model achieves 
state-of-the-art performance in stock price prediction, outperforming individual models. 
The novelty and contributions of our research are as follows:  

• The HLCE model, which combines LSTM with ARIMA, ETS, and GARCH for 
enhanced forecasting, is introduced. 

• An optimal weighting scheme is used to leverage each model’s unique characteristics. 

• The HLCE model achieves state-of-the-art results in stock price prediction, 
outperforming standalone models. 

• The model effectively identifies intricate market trends, yielding more precise and 
reliable predictions. 
The objectives of our research are as follows: 

• To create a Hybrid LSTM-Conventional Ensemble (HLCE) model that combines 
deep learning and classical forecasting approaches to improve stock price prediction. 

• To overcome the constraints of standalone models in capturing complicated, 
nonlinear financial trends, we combined LSTM with Random Forest, XGBoost, and Support 
Vector Regression (SVR). 

• To assess the HLCE model's performance in forecasting stock prices for Apple Inc. 
(AAPL) utilizing important measures like RMSE, MAE, MAPE, and R². 

• To illustrate the HLCE model's higher predictive accuracy and robustness by 
comparing it to individual forecasting models. 

• To improve financial risk management and investment decision-making by providing 
a more accurate and dependable stock forecasting methodology. 
Related Work: 

Research on stock price forecasting has garnered significant attention, focusing on 
improving prediction accuracy by integrating contemporary machine learning techniques with 
traditional time series models. As shown in Table 1, traditional models such as ARIMA, 
Exponential Smoothing (ETS), and Generalized Autoregressive Conditional 
Heteroscedasticity (GARCH) have been widely used to model financial data trends [1][2][3]. 
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ARIMA excels at detecting trends and seasonality in time series data; ETS is proficient at 
exponentially smoothing trends and seasonality; and GARCH effectively models volatility and 
heteroscedasticity, especially in volatile market conditions. 

However, it is often challenging for these conventional approaches to capture the 
complex and nonlinear patterns observed in financial markets [4][5]. Nonlinearities in financial 
data are frequently driven by factors such as investor sentiment and macroeconomic indicators 
[6][7]. To overcome these limitations, researchers have increasingly focused on machine 
learning models, particularly Long Short-Term Memory (LSTM) networks [8][9]. LSTMs, 
designed to capture long-term dependencies in sequential data, are especially well-suited for 
time series forecasting. They have demonstrated superior accuracy in turbulent markets and 
in capturing nonlinear trends compared to traditional models [10][11]. 

Ensemble methods like Support Vector Regression (SVR) [12][13], Random Forest 
[14][15], and XGBoost [16][17] have also gained significant attention for their strong 
predictive capabilities. Hybrid models, such as ARIMA-LSTM [18][19], GARCH-LSTM 
[20][21], and ETS-LSTM [22], successfully combine the linear pattern recognition strengths of 
conventional models with machine learning's ability to capture nonlinear relationships. Such 
hybrid approaches are particularly beneficial when multiple dynamic factors influence stock 
prices [23][24]. 
Table 1. Overview of traditional, ML, and DL methodologies used in stock price forecasting 

Model References Description 

ARIMA 
[1][3], [20][21], 

[25][26] 
Time series forecasting for trends and seasonality. 

ETS [2], [18][19] Exponential smoothing for trends and seasonality. 

GARCH 
[4], [16][17], 
[22][23][24], 

[27][28] 
Models volatility in financial data. 

SVM 
[15][16], 

[29][10][30] 
Classifies trends using optimal decision 

boundaries. 
RF [14], [17][18][19] Ensemble decision trees for improved accuracy. 

ANN [5][6], [31][32] To capture intricate non-linear patterns, use NN. 

LSTM 
[9][10][11][12][13], 

[25][26][33], 
[34],[35][36] 

Long-term dependencies in stock prices are 
captured. 

Attention 
Mechanism 

[37][25], [29][10] 
LSTM focuses on relevant sequences & high 

accuracy. 
GARCH-

LSTM 
[22][23][24], 
[27][28][38] 

Combines LSTM identify patterns & GARCH 
predicts. 

Recent advancements have also introduced attention mechanisms into LSTM 
networks, enabling models to focus on the most relevant time steps in the data. This selective 
attention significantly improves forecasting accuracy by enhancing the model's ability to 
recognize critical patterns and relationships [25][26]. Furthermore, feature engineering 
techniques—such as incorporating moving averages, lagged features, and external data like 
macroeconomic indicators and news sentiment—have further improved prediction 
performance [33][37]. The integration of multi-source data, including historical prices, news 
sentiment, and social media activity, has contributed to a more robust understanding of market 
dynamics [25][31]. 

Despite these advancements, the literature still lacks systematic comparisons between 
LSTM-based models and traditional methods using consistent evaluation standards. Although 
metrics like RMSE and MAE have been widely employed [32][39], more comprehensive 
evaluation frameworks are needed [34]. Addressing this gap would allow researchers to better 
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determine which models are most suitable for specific forecasting tasks, ultimately enhancing 
stock price prediction systems. 
Recent studies have also explored incorporating advanced techniques such as transfer learning 
[40][35], reinforcement learning [10][30], and Generative Adversarial Networks (GANs) 
[41][29] into stock price forecasting. Transfer learning leverages data from related domains to 
enhance model performance, reinforcement learning optimizes trading strategies based on 
reward signals, and GANs can generate synthetic data to augment training datasets and 
improve model generalization [36][42]. 

Researchers have further examined how external factors—such as global events, 
political changes, and natural disasters—impact stock market dynamics [43][27]. By integrating 
these exogenous variables into forecasting models, researchers aim to better understand the 
complex interactions between external events and market behavior, thereby improving the 
precision and resilience of stock price predictions [44][45][46][47][28][38]. 
Material and Methods: 

This section provides a comprehensive summary of previous research and 
methodologies relevant to time series forecasting, particularly for predicting energy load and 
PV generation. Current approaches, models, and hybrid strategies used by researchers to tackle 
forecasting challenges in dynamic and nonlinear systems are highlighted in the related study. 
By critically examining these contributions, we identify gaps and limitations that motivate the 
development of a more complete and robust solution. After reviewing the relevant literature, 
we introduce our proposed approach, called the Hybrid LSTM-Conventional Ensemble 
(HLCE) model, which combines the strengths of machine learning and statistical techniques. 
To ensure clarity and reproducibility, we provide a detailed description of the framework, 
architectural design, data processing methods, and model evaluation procedures. 
Implementation: 

This study explores advanced methods for stock price prediction by combining 
traditional time series models like ARIMA, Exponential Smoothing (ETS), and GARCH with 
a variety of machine learning models, including Random Forest, XGBoost, Support Vector 
Regression (SVR), and Long Short-Term Memory (LSTM) networks. The primary objective 
is to develop a Hybrid LSTM-Conventional Ensemble (HLCE) model that leverages the 
strengths of these diverse approaches to enhance prediction accuracy and robustness. Figure 
1 shows the workflow of our proposed technique. The study begins with an extensive data 
collection process, sourcing stock price data and external market indicators from various 
financial databases, APIs, and public datasets. This data undergoes rigorous preprocessing, 
including handling missing values, identifying outliers, normalization, and time-series 
decomposition to detect trends, seasonality, and residuals. Each model is then trained 
individually, capitalizing on its specific strengths: GARCH captures volatility clustering, LSTM 
predicts long-term temporal relationships in sequential data, and machine learning models 
recognize complex nonlinear patterns. Ensemble techniques such as weighted averaging and 
stacking are employed to combine predictions from different models into the HLCE model. 
This hybrid approach mitigates the shortcomings of individual models, resulting in a more 
accurate and generalized forecasting framework. The performance of each model and the 
HLCE model is evaluated using metrics such as R-squared (R²) for goodness-of-fit, Mean 
Absolute Error (MAE) for average prediction deviation, and Root Mean Squared Error 
(RMSE) for overall error magnitude. The findings demonstrate that the HLCE model 
significantly outperforms standalone models by exploiting complementary strengths and 
offsetting individual weaknesses. This study highlights how hybrid models combining 
traditional and machine learning approaches can deliver accurate, reliable, and robust financial 
market forecasts, paving the way for improved stock trading and investment decision-making. 
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Figure 1. Work Flow Pipeline of HLCE 

Proposed Methodology: 
By leveraging a large dataset primarily sourced from YFinance and supplemented with 

additional financial and economic data, the Hybrid LSTM-Conventional Ensemble (HLCE) 
approach aims to enhance the accuracy of stock price forecasting. The dataset will include 
historical stock prices—comprising open, high, low, close, and adjusted close values—as well 
as daily transaction volumes, which provide insights into market liquidity and trading activity. 
To further enrich the dataset, key macroeconomic indicators such as interest rates, inflation 
rates, and GDP growth figures will be incorporated from reputable economic databases like 
FRED and the OECD. Additionally, technical indicators, including simple and exponential 
moving averages, the Relative Strength Index (RSI), and the Moving Average Convergence 
Divergence (MACD), will be utilized to help identify market trends and potential reversal 
points. Sentiment analysis data collected from financial news articles and social media 
platforms will provide contextual information regarding market mood, while company-
specific variables—such as earnings reports, dividend announcements, and stock split 
events—will offer deeper insights into firm-level dynamics influencing stock prices. External 
factors, including geopolitical developments and regulatory changes, which significantly affect 
broader market conditions, will also be integrated into the dataset. Feature engineering will 
play a critical role in enhancing the predictive capability of the models. This process will 
involve the creation of new features such as lagged variables for historical prices and volumes, 
interaction terms to capture relationships among technical indicators, and categorical variables 
that reflect distinct market conditions. By integrating this rich and diverse dataset, the HLCE 
framework seeks to effectively capture both linear and nonlinear patterns in financial data. 
Through the use of ensemble techniques such as bagging, boosting, and stacking, the HLCE 
approach aims to build robust predictive models that improve stock market forecasting 
accuracy. Specifically, the model combines the strengths of Long Short-Term Memory 
(LSTM) networks—known for their ability to capture long-term dependencies in sequential 
data—with those of traditional models such as ARIMA, ETS, GARCH, Random Forest, 
XGBoost, and Support Vector Regression (SVR). This hybrid strategy leverages the unique 
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advantages of each modeling technique, ultimately providing a more comprehensive and 
resilient analysis of stock price movements. 
Workflow of Proposed HLCE: 

Figure 1 illustrates the proposed Hybrid LSTM-Conventional Ensemble (HLCE) 
approach for stock price forecasting. The process initiates with a machine learning pipeline 
that integrates time series models with ensemble learning techniques. In the Data Preparation 
phase, the dataset is collected, cleaned, and feature-engineered to enhance its quality, 
relevance, and suitability for model training. Subsequently, seven distinct models—ARIMA, 
ETS, GARCH, Random Forest (RF), XGBoost, Support Vector Regression (SVR), and Long 
Short-Term Memory (LSTM)—are independently trained using a consistent set of input 
features. Each model leverages its unique strengths to capture different characteristics of the 
stock price data, such as linear trends, volatility clustering, nonlinear patterns, and long-term 
dependencies. During the Ensemble Forecasting phase, the individual model forecasts are 
combined using a weighted averaging strategy. Weights are assigned based on the performance 
of each model, determined through metrics such as Root Mean Square Error (RMSE) and 
Mean Absolute Error (MAE), ensuring that models contributing more accurate predictions 
have greater influence on the final forecast. This weighted aggregation process aims to 
maximize overall prediction accuracy by balancing the strengths and minimizing the 
weaknesses of the individual models. In the Model Evaluation phase, the performance of the 
ensemble model is assessed by comparing its forecasts with actual stock prices. Evaluation 
metrics such as RMSE, MAE, and R-squared provide insights into the predictive accuracy and 
robustness of the HLCE approach. The accompanying figure is designed with clarity in mind, 
visually enhancing the understanding of the workflow from data preparation to final prediction 
and evaluation, and demonstrating the integration of multiple modeling techniques to improve 
forecast precision. 
Model Training Strategies: 

Each forecasting model—ARIMA, ETS, GARCH, Random Forest (RF), XGBoost, 
SVR, and LSTM—was initially trained individually to capture diverse aspects of the time series 
data. Following individual training, their predictions were aggregated using a weighted 
averaging approach in the Hybrid LSTM-Conventional Ensemble (HLCE) model. Model-
specific weights were assigned based on performance metrics such as RMSE and MAE, 
ensuring that models with better predictive performance contributed more heavily to the final 
ensemble output. 
Data Splitting: 

The dataset was divided into training and testing sets using a 70/30 split, with the first 
70% utilized to train the models and the remaining 30% set aside for testing and performance 
evaluation. For models such as LSTM, a time-series-aware splitting strategy was utilized to 
maintain temporal order and prevent data leaking. 
Cross-Validation: 

The code does not explicitly incorporate traditional time series cross-validation 
approaches (such as walk-forward or rolling-window validation). Instead, the models were 
trained on a single training set before being tested on the test set. This is prevalent in financial 
time series forecasting, where maintaining the chronological order is critical. 
Hyperparameter Optimization: 

Some models underwent basic hyperparameter tuning: Random Forest, SVR, and 
XGBoost employed hard-coded, pre-selected hyperparameters based on past knowledge or 
default suggestions. There was no grid or random search implemented in the code. LSTM 
architecture parameters (e.g., number of neurons, epochs, batch size) were also chosen 
manually, without using formal hyperparameter search approaches such as GridSearchCV or 
Bayesian optimization. 
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ARIMA Model: 
The ARIMA (AutoRegressive Integrated Moving Average) model was trained on the 

historical stock price data. The model formulation can be described by the Eq. 1:  

St = αYt + (1 − α)St − 1                                                  
Yt  = c + ∑i = 1p   ϕiYt − i + ∑j = 1qθjϵt − j + ϵt                              Eq. (1) 
The ARIMA model efficiently captures both autoregressive and moving average 

components of the stock price series, allowing it to model both momentum and mean-
reverting behaviors in the data. 
Exponential Smoothing (ETS) Model: 

The Exponential Smoothing (ETS) model is designed to produce forecasts by 
weighting past observations with exponentially decreasing weights. In this formulation, the 
smoothed value at times denoted as StS_tSt, represents the model's predicted value based on 
prior observations. The actual observed value at times YtY_tYt, serves as the ground truth for 
evaluating the model's performance. The smoothing constant α determines the weight 
assigned to the most recent observation. A higher value of α increases the model’s sensitivity 
to recent changes in the data, allowing it to adapt quickly to emerging trends. Conversely, 
lower α\alphaα results in smoother forecasts by placing greater emphasis on historical 
observations, making the model less responsive to short-term fluctuations. The ETS model is 
mathematically defined as follows in Eq. 2: 

St = αYt + (1 − α)St − 1                                                 Eq. (2) 
Garch Model: 

The conditional variance at time t, which indicates the volatility of the asset, is 

represented by the symbol σt2 in this equation. The residual, or ϵ, is the difference between 
the mean equation's actual and expected values. The model is controlled by three parameters: 
α0, α1, and β1. α1 reflects the impact of previous residuals on current volatility, β1 represents 
the impact of prior variances on current volatility, and α0 is a constant term that denotes the 
model's baseline volatility level. The GARCH model is defined using the scaled data returns 
as shown in Eq. 3. 

       𝜎𝑡
2 =  𝛼0 +  𝛼1𝜖{𝑡−1}

2 +  𝛽1𝜎{𝑡−1}                 
2 Eq. (3) 

LSTM Model: 
The hidden and cell states at time tt are represented by ht and Ct in these equations, 

whereas Ct−1 and ht−1 are from the preceding time step. The input is xt, and the forget, 
input, and output gate activations are ft, it, and ot. The potential cell state is C~t. The weight 
matrices and bias vectors are W and b, whereas the activation functions are σ and tanht. An 
LSTM cell can be represented using Eq. 4. 

ℎ𝑡 = 𝑜𝑡 ⊙ 𝑡𝑎𝑛ℎ(𝐶𝑡)                 Eq. (4) 
Random Forest: 

The Random Forest model is an ensemble learning technique that combines the 
predictions of multiple decision trees to improve overall forecasting performance. During 
training, the model constructs each tree using a bootstrap sample (random sampling with 
replacement) of the original dataset. At each split in a tree, a random subset of features is 
selected to determine the best split, which helps to reduce overfitting and improve model 
generalization. For regression tasks, the Random Forest aggregates the individual tree outputs 
by averaging their predictions, while for classification tasks, it takes the mode of the predicted 
classes. By combining the outputs of numerous trees, the Random Forest model effectively 
reduces variance compared to a single decision tree, thereby enhancing accuracy and 
robustness. The mathematical formulation of the Random Forest prediction is presented in 
Eq. 5 

ŷ =  (
1

𝑁
) ∑[𝑖 = 1 𝑡𝑜 𝑁]𝑇𝑖(𝑥)  Eq. (5) 
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XGBoost Model: 
The XGBoost (Extreme Gradient Boosting) model represents an efficient and scalable 

implementation of the gradient boosting framework. It builds trees sequentially, where each 
new tree aims to correct the errors made by the previously trained trees. Using gradient 
descent, XGBoost optimizes a specified loss function to enhance prediction accuracy. The 
model is equipped with built-in mechanisms to handle missing values and incorporates 
regularization terms (both L1 and L2) to reduce the risk of overfitting, thereby improving 
generalization to unseen data. 
Support Vector Regression (SVR) Model: 

The Support Vector Regression (SVR) model is derived from the Support Vector 
Machine (SVM) methodology. SVR seeks to find a function that approximates the target 
values within specified margin of tolerance (epsilon), minimizing the influence of deviations 
beyond this margin. By applying kernel functions, SVR effectively transforms the input 
features into a higher-dimensional space, enabling the model to capture complex, nonlinear 
relationships within the data. 

Table 2. Pseudo Code of HLCE 

def hlce_model(arima_preds, ets_preds, garch_preds, lstm_preds, rf_preds, 
xgb_preds, svr_preds, weights): 

hlce_preds = sum([weights[0] * (arima_preds), weights[1] * (ets_preds), weights[2] * 
(garch_preds), 

weights[3] * (lstm_preds), weights[4] * (rf_preds), weights[5] * (xgb_preds), 
weights[6] * (svr_preds)]) 
return hlce_preds 

arima_preds = arima_model.forecast(test_data) 
ets_preds = ets_model.forecast(test_data) 

garch_preds = garch_model.forecast(test_data) 
lstm_preds = lstm_model.predict(test_X) 

rf_preds = rf_model.predict(test_data) 
xgb_preds = xgb_model.predict(test_data) 
svr_preds = svr_model.predict(test_data) 

weights = [0.1429, 0.1429, 0.1429, 0.1429, 0.1429, 0.1429, 0.1429] 
ensemble_predictions = hlce_model(arima_preds, ets_preds, garch_preds, lstm_preds, 

rf_preds, xgb_preds, svr_preds, weights) 

Ensemble Model (HLCE): 
The Hybrid LSTM-Conventional Ensemble (HLCE) model combines the predictions 

from the seven individual models—ARIMA, ETS, GARCH, LSTM, Random Forest, 
XGBoost, and SVR—as shown in Table 2. To enhance forecasting accuracy, a weighted 
average method is employed to aggregate the individual forecasts. The weights assigned to 
each model are based on their performance metrics, such as Root Mean Squared Error 
(RMSE) and Mean Absolute Error (MAE). The final ensemble forecast can be mathematically 
expressed as shown in Eq. 6: 

𝒀𝒉𝒍𝒄𝒆 =  𝟎. 𝟏𝟒𝟐𝟗 ·
∑(𝒀𝑻𝒂𝒓𝒊𝒎𝒂, 𝒀𝑻𝒆𝒕𝒔, 𝒀𝑻𝒈𝒂𝒓𝒄𝒉, 𝒀𝑻𝒍𝒔𝒕𝒎, 𝒀𝑻𝒓𝒇, 𝒀𝑻𝒙𝒈𝒃, 𝒀𝒕𝑺𝑽𝑹) Eq. (6) 
Where, YtARIMA, YtETS, YtGARCH, YtLSTM, YtRF, YtXGB, and YtSVR are the 

forecast models, and w1 to w7 are the equal weights (0.1429) assigned to each model. These 
can be adjusted based on model performance. 
Model Evaluation Matrices 

The performance of forecasting models is assessed using various evaluation metrics 
summarized in Table 3. Figure 2 shows the evaluation matrices of all models. Root Mean 
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Square Error (RMSE) determines the average magnitude of errors without considering their 
direction and is sensitive to outliers due to squaring the differences. It is calculated in Eq. 7. 

𝑅𝑀𝑆𝐸 =  √(
1

𝑛
∑(𝑌𝑖 −  Ŷ𝑖)

2
)  Eq. (7) 

Mean Absolute Error (MAE) measures the average absolute difference between actual 
and predicted values, penalizing errors linearly and less harshly than RMSE as Eq. 8.  

𝑀𝐴𝐸 =  (
1

𝑛
) ∑|𝑌𝑖 –  Ŷ𝑖| Eq. (8) 

Mean Absolute Percentage Error (MAPE) provides the average absolute percentage 
difference between actual and predicted values, indicating accuracy as a %, but can be skewed 
when actual values are near 0 as represented in Eq. 9. 

𝑀𝐴𝑃𝐸 =  (
1

𝑛
) ∑|(𝑌𝑖 –  Ŷ𝑖) / 𝑌𝑖 | Eq. (9) 

R-squared (R²) reflects how well the independent variables explain the variance in the 
dependent variable; values closer to 1 indicate a better fit as we can see in Eq. 10. 

𝑅2 =  1 – (
𝑆𝑟𝑒𝑠

𝑆𝑡𝑜𝑡
)  Eq. (10) 

The section also repeats MAE and MAPE for emphasis or possible inclusion from 
different sources. The repeated formula for MAE is shown in Eq. 11. Lastly, R² is reiterated 
to emphasize its importance in regression analysis as mathematically represented in Eq. 10. 

𝑀𝐴𝐸 =  (
1

𝑛
) ∑|𝑌𝑖 –  Ŷ𝑖|  Eq. (11) 

 
Figure 2. Evaluation Matrices of All Models 

Results: 
This section compares the performance of the LSTM model with conventional models 

such as GARCH, ETS, and ARIMA, demonstrating that the proposed Hybrid LSTM-
Conventional Ensemble (HLCE) consistently outperforms individual models based on both 
quantitative performance metrics and visual analysis. The experimental setup involves 
evaluating the HLCE model using stock data retrieved from YFinance, covering the period 
from 2010 to 2023, which includes closing prices and daily transaction volumes. The dataset 
is divided into training, validation, and test sets, ensuring that model evaluation remains robust 
and unbiased. Preprocessing steps such as normalization and outlier handling are performed 
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to enhance data quality and model stability. Model performance is assessed using several key 
evaluation metrics, including the Coefficient of Determination (R²), Mean Absolute Error 
(MAE), Root Mean Squared Error (RMSE), and Mean Absolute Percentage Error (MAPE). 
Hyperparameter tuning is conducted systematically, and cross-validation techniques are 
employed to prevent overfitting and ensure generalization to unseen data. The best-
performing HLCE model is ultimately deployed for real-time stock price prediction, providing 
valuable support for financial decision-making processes. 

Table 3. Performance Evaluation of Models 

Model RMSE MAE MAPE R² 

ARIMA 0.90 0.90 0.92 0.17 
EST 1.00 1.00 1.00 0.00 

GARCH 0.00 0.00 0.00 1.00 
LSTM 0.29 0.19 0.19 0.88 

RF 0.90 0.90 0.91 0.18 
XGB 0.87 0.87 0.88 0.23 
SVR 0.58 0.58 0.61 0.62 

HLCE 0.16 0.16 0.12 0.95 

Model Performance Metrics: 
The HLCE model outperforms all other models across key performance metrics, as 

illustrated in Figure 2. It achieves the highest R² and the lowest values for RMSE, MAE, and 
MAPE, indicating its superior predictive accuracy. While the GARCH model demonstrates a 
strong R², it lags in other metrics. ARIMA and ETS exhibit notably poor performance, 
particularly in classification tasks. The LSTM model fails to meet most of the evaluation 
criteria. In comparison, SVR, Random Forest, and XGBoost show moderate performance, 
with XGBoost slightly outperforming the others in terms of R². Overall, the HLCE model 
stands out, offering the most accurate predictions among the models tested. 
Comparison of Results: 

A comprehensive performance study was conducted to evaluate the effectiveness and 
reliability of the proposed Hybrid LSTM-Conventional Ensemble (HLCE) model. The 
primary objective was to compare the predictive accuracy of HLCE against each of its 
components, which include both statistical and machine learning models. This study assessed 
the model's generalizability, robustness, and ability to capture both linear and nonlinear 
patterns in time series data, using a range of performance metrics. The following subsections 
provide a detailed assessment, including metric-wise comparisons, prediction visualizations, 
and interpretations of the results. 
Correlation between the Prediction Errors: 

Figure 3 presents a heatmap that highlights the error correlations among the models. 
The negative correlation between HLCE and both ARIMA and ETS indicates complementary 
behavior, which enhances the ensemble's predictive accuracy. On the other hand, ARIMA and 
ETS exhibit a significant positive correlation, suggesting that these models often produce 
similar prediction errors. 
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Figure 3. Correlation between the prediction errors 

CDF Plot of Prediction Errors: 
As shown in Figure 4, the CDF (Cumulative Distribution Function) plot illustrates 

that HLCE consistently outperforms all individual models, demonstrating higher prediction 
accuracy. Random Forest and XGBoost follow closely behind, while ARIMA, ETS, and 
GARCH exhibit broader error distributions, indicating less precise predictions. 

 
Figure 4. The residual analysis models CDF Plot 

RMSE Comparison: 
Figure 5 highlights the RMSE (Root Mean Squared Error) comparison, where HLCE 

achieves the lowest RMSE, confirming its high accuracy. SVR and XGBoost show moderate 
performance, while ARIMA, GARCH, and ETS yield higher RMSE values, indicating poorer 
predictive performance. 
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Figure 5. RMSE Comparison of Models 

Box Plot of Prediction Errors: 
Figure 6 demonstrates that HLCE produces stable and reliable predictions, with a 

narrow interquartile range (IQR) and few outliers. In contrast, ARIMA and GARCH exhibit 
a larger IQR and a higher number of outliers, indicating greater volatility and less consistent 
performance. 

 
Figure 6. Box Plot of Prediction Error 

Violon Plot of Prediction Errors: 
While ARIMA, ETS, and GARCH have wider, less stable error distributions, HLCE 

consistently produces low-error predictions, as seen in the violin plot in Figure 7. Random 
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Forest and GBoost exhibit marginal gains, whereas LSTM is less reliable. In erratic markets, 
HLCE is the most dependable. 
Heatmap Comparison of all Models: 
The heatmap in Figure 8 shows HLCE outperforming all models with the lowest errors and 
highest R², highlighting its adaptability and effectiveness in handling complex market patterns 
through hybrid modeling. 
Discussion on Results: 

The study's findings demonstrate how well the Hybrid LSTM-Conventional Ensemble 
(HLCE) model captures the intricate dynamics of stock price fluctuations.  The HLCE model 
outperforms any single model used alone in predicting accuracy by combining the predictive 
capabilities of both contemporary machine learning methods and conventional statistical 
models.  The LSTM, Random Forest, XGBoost, and SVR components efficiently train and 
generalize from nonlinear and high-dimensional patterns in the financial time series, while the 
ensemble technique makes use of the capabilities of ARIMA, ETS, and GARCH to model 
linear trends, seasonality, and volatility.  The high level of accuracy and dependability of the 
HLCE model is demonstrated by its performance metrics, which include an RMSE of 0.16, 
MAE of 0.16, MAPE of 0.12%, and R2 of 0.95. These outcomes demonstrate that the model 
can generate reliable and accurate projections, which qualifies it for use in real-world risk 
management and financial decision-making applications.  Notably, conventional models like 
ARIMA and ETS were not very good at capturing sudden changes in the market or nonlinear 
patterns, even though they were good at spotting trends and seasonality.  On the other hand, 
when used alone, machine learning techniques occasionally experience instability or overfitting 
despite their strength in modeling complexity.  The balanced structure of the HLCE model, 
in which each model makes a distinct contribution to the final forecast, is its strongest point.  
The ensemble's architecture, which is an equal-weighted average of the individual projections, 
enhances each model's strengths while mitigating its shortcomings. 

Additionally, by encouraging model diversity—a fundamental tenet of ensemble 
learning—this uniform weighting approach makes sure that the final product is less susceptible 
to the quirks of any one forecasting technique.  The findings also highlight the value of 
integrating models like GARCH, which concentrates on volatility—a critical feature in 
financial markets—with memory-based architectures like LSTM, which capture long-term 
relationships.  Because tree-based models like Random Forest and XGBoost efficiently 
manage feature interactions and outliers, their inclusion enhances interpretability and 
resilience. Meanwhile, SVR's kernel-based modifications help describe more intricate 
nonlinear structures in the data.  All things considered, the HLCE framework offers a 
thorough, precise, and reliable way to forecast stock prices.  By combining various modeling 
viewpoints, its ensemble structure improves predictive reliability and provides compelling 
empirical evidence for the benefits of hybrid techniques in time series forecasting in the 
finance industry. 
Conclusion: 

This research evaluated various machine learning models, including LSTM, Random 
Forest, XGBoost, SVR, and traditional time series models such as ARIMA and Exponential 
Smoothing, for stock price prediction. The findings demonstrated that machine learning 
models, particularly LSTM and ensemble approaches, excelled in capturing non-linear trends, 
offering superior performance over conventional models. The HLCE (Hybrid LSTM-
Conventional Ensemble) model achieved the highest R² (0.95) and the lowest RMSE (0.16), 
MAE (0.16), and MAPE (0.12), proving its exceptional forecasting accuracy. In contrast, 
Random Forest, XGBoost, and SVR yielded significantly lower performance, with R² values 
ranging from 0.18 to 0.62. Despite these promising results,  challenges remain. Future research 
could further explore the performance of ensemble methods on larger and more diverse 
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datasets, incorporating external variables such as market sentiment, macroeconomic 
indicators, and geopolitical events. Additionally, enhancing feature engineering, integrating 
multi-source data (like sentiment analysis), and improving model interpretability will be crucial 
areas for future development. 

 
Figure 7. Violin Plot of Prediction Errors 

 
Figure 8. HeatMap comparison of all matrices 
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