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kin cancer detection continues to pose challenges due to the visual similarity between 
the types of lesions and the limitations of traditional diagnostic methods. This study 
presents an extended and improved skin lesion classification framework that combines 

transfer learning with MobileNetV3 and enhanced preprocessing using mathematical 
morphological techniques. These preprocessing methods refine lesion boundaries and 
suppress irrelevant structures in dermoscopic images, thereby improving feature 
discrimination during training. The refined framework is evaluated using the ISIC dataset and 
achieves a notable classification accuracy of 89%, showing superior performance compared to 
baseline models. This extension also examines the generalizability and suitability of the model 
for deployment in low-resource mobile settings. The results validate the effectiveness of 
lightweight architectures paired with morphological enhancements, providing a reliable and 
scalable solution for early skin cancer screening and clinical support. 
Keywords: Skin Cancer Detection, Transfer Learning, MobileNetV3, Mathematical 
Morphology, Dermoscopic Image Classification 
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Introduction: 
Skin cancer is among the most prevalent and life-threatening forms of cancer globally. 

Early identification of skin lesions, particularly melanoma, plays a critical role in reducing 
mortality rates. With increasing exposure to ultraviolet (UV) radiation and lifestyle changes, 
the incidence of skin cancer has increased significantly over the past few decades. Countries 
such as the United States, Australia, and Canada have reported a steep increase in melanoma 
cases, especially among individuals aged 30 and older. In this context, computer-aided 
diagnostic (CAD) systems have become indispensable tools for helping dermatologists detect 
skin cancer through dermoscopic image analysis. These systems offer a noninvasive, efficient, 
and cost-effective approach to early diagnosis, which can greatly improve treatment outcomes. 

Traditional machine learning (ML) methods were among the first solutions introduced 
to automate the detection of skin cancer. These approaches involve manual feature extraction 
techniques, in which texture, shape, color, and size are extracted and passed to classifiers such 
as SVM, KNN, or Naive Bayes [1][2][3][4][5][6][7][8]. Although these systems outperformed 
manual diagnostic accuracy, they required complex preprocessing and domain expertise for 
feature engineering. Techniques such as the Firefly algorithm with KNN [4], GLCM with 
SVM [5], and HOG with LDA [6] have shown promising results. However, these methods 
often struggle with variations in the appearance of the lesion and background noise, reducing 
their reliability in real-world applications. 

With the advent of deep learning (DL), Convolutional Neural Networks (CNNs) 
began to replace traditional techniques due to their ability to perform automatic feature 
extraction. Pre-trained models such as AlexNet, ResNet50, Inception-V3, and VGG19 have 
demonstrated remarkable performance in classifying benign and malignant lesions 
[9][10][11][12][13][14]. Transfer learning further enhanced these architectures by enabling the 
reuse of learned features from large-scale datasets, which is particularly useful when domain-
specific labeled data are limited. However, while CNNs reduce manual intervention, they still 
face issues related to low image contrast, noise, and ambiguous lesion boundaries that affect 
classification performance. 

To address these shortcomings, researchers have explored ensemble learning, multi-
model systems, and attention-based mechanisms. Ensemble strategies that combine the output 
of ResNet, DenseNet, VGG16, and Inception networks have shown superior accuracy, 
reaching up to 98.6% in some studies [15], [16]. Other innovations, such as IoHT-integrated 
CAD systems [12] and attention mechanisms [17], were aimed at improving feature 
discrimination. Furthermore, hybrid systems that combine deep learning feature extraction 
with traditional classifiers have been proposed [18]. However, most existing methods are either 
computationally intensive or not optimized for deployment in mobile and resource-limited 
environments. 

Despite significant progress, current systems still face key limitations. Many deep 
learning models require high-end computing resources, making them unsuitable for real-time 
or mobile-based applications. In addition, some models fail to generalize well due to challenges 
such as varying lesion sizes, poor image quality, and class imbalance in datasets. This study 
aims to bridge these gaps by investigating the following research questions: (1) How can we 
optimize deep learning models for low-resource environments without compromising 
performance? (2) Can mathematical morphology improve dermoscopic image quality for 
improved classification? 

The main objective is to develop an efficient, accurate, and lightweight CAD system 
capable of real-time skin cancer detection. To meet these objectives, we propose a novel 
framework that combines the MobileNetV3 architecture with mathematical morphology-
based preprocessing techniques. MobileNetV3 is selected for its balance between accuracy and 
computational efficiency, making it ideal for mobile deployment. The preprocessing stage 
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enhances the features of the dermoscopic image, allowing the model to learn more effectively 
from the input data. Based on the ISIC dataset, our system achieves a classification accuracy 
of 89% and a recall of 85%, outperforming several existing models. 

The contributions of this research are threefold: (1) design of a lightweight and 
accurate deep learning model, (2) enhancement of image quality using morphological 
operations, and (3) demonstration of a scalable solution for real-time skin cancer diagnosis. 
This work paves the way for future mobile health applications that support dermatologists and 
patients in timely and accurate diagnosis. 

The rest of the paper is organized into various sections: The next section identifies the 
proposed approach in detail. The Result and Discussion section explains the experimental 
results, and the last section concludes the study with future directions. 
Material and Methods: 

In this section, we explain our suggested method in detail, step by step. The pictorial 
view of the suggested methodology is depicted in Figure. 1.  
Preprocessing: 

In the first stage, we applied preprocessing steps on dermoscopic images to remove 
noise and other artifacts so that the resulting images are enhanced and clearer in visibility. 
Therefore, we resized all images from the dataset to fixed dimensions of 224×224×3. Later, 
in all images, we applied the morphological operation, i.e., a dilation followed by the erosion 
operation. This operation removed the extra noise appearing on the dermoscopic images of 
skin cancer. 

After that, the 2D kernel matrix was used to convolve the given dermoscopic image 
to enhance and improve the contrast of the image, as shown in Figure. 2. The kernel matrix is 
the sharpening kernel given below. 

0 −1 0 
Kernel = −1 5 −1 (1) 

0 −1 0 
The equation above (1) shows the kernel matrix used to sharpen the image after 

going through morphological operations. All these preprocessing steps prepare the data to 
be given as input to the deep CNN model. 
MobileNetV3 Architecture: 

MobileNetV3 is a variant of the Convolutional Neural Network (CNN) architecture 
designed for mobile devices. The architecture is characterized by its use of depthwise 
separable convolutions, which help reduce computation and improve performance on 
resource-constrained devices. The general architecture of MobileNetV3 can be divided into 
three main building blocks. The initial block typically includes a single convolutional layer 
and a max pooling layer. The main body of the network is composed of several inverted 
residual blocks. Each block includes a depthwise separable convolution, a pointwise 
convolution, and an optional expansion layer. The final block includes a global average 
pooling layer and a fully connected layer for classification. The architecture diagram of 
MobileNetV3 is shown in Figure. 1  

MobileNetV3 also includes two versions: MobileNetV3-Large, which is a larger, 
more powerful version of the architecture, and MobileNetV3-Small, which is a smaller, 
more efficient version. The main difference between these two versions is the number of 
channels in the inverted residual blocks and the number of blocks in the main body of the 
network. 

Previously, MobileNet-based deep learning architectures have been introduced. In 
the first version, MobileNetV1 [19], depthwise separable convolutions were proposed, 
showing significant improvements over existing architectures. Later, MobileNetV2 [20] 
added the linear bottleneck and inverted residual modules to create more effective layer 
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structures by utilizing the low-rank characteristics of the data. However, in MobileNetV3, 
the authors developed the most efficient methods by employing a mix of efficient layers as 
key components, along with modified swish nonlinearities added to the layers 
[21][22][23].B. Transfer Learning using MobileNetV3. 

 
Figure 1. Process Flow Diagram of the Proposed Methodology. 

 
Figure 2. Results of Preprocessing Operations. 

 
Figure 3. Architecture Diagram of MobileNetV3. 
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Despite having a significant number of trained images, the dataset is still not large 
enough to create a new deep-learning model from scratch. To tackle this challenge, the 
technique of transfer learning is applied to the pre-trained MobileNetV3 architecture due to 
its efficient feature learning capabilities. For this purpose, the pre-trained MobileNetV3 
model [24] is initially loaded. This model was trained on the ImageNet dataset, one of the 
largest image classification datasets available. 

Subsequently, the weights of the initial layers are frozen by setting their trainable 
parameters to false. After freezing the base layers, a flattening layer is added, followed by two 
fully connected (dense) layers. The first dense layer consists of 512 units with the 'ReLU' 
activation function. The final dense layer contains a single unit with the 'sigmoid' activation 
function to perform binary classification. Additionally, a dropout layer with a dropout rate of 
0.25 is inserted between the two dense layers to help prevent overfitting. The loss function 
used for training is binary cross-entropy, as skin cancer classification (malignant vs. benign) 
is inherently a binary classification task. Table I provides the list of hyperparameters 
configured for the model. 

MobileNetV3 is a highly efficient convolutional neural network designed for 
deployment on mobile devices and edge devices. It integrates techniques such as depthwise 
separable convolutions, squeeze-and-excitation blocks, and the hard-swish activation 
function, and employs neural architecture search to enhance both speed and accuracy. The 
development of this architecture stems from earlier versions: MobileNetV1, which 
introduced a lightweight design using depthwise separable convolutions to reduce complexity, 
and MobileNetV2, which refined performance through the use of inverted residuals and 
linear bottlenecks. MobileNetV3 advances these concepts by offering superior performance-
to-efficiency ratios compared to its predecessors. In the context of this study, the use of 
MobileNetV3 as a classifier for skin cancer images is particularly beneficial, as it delivers 
accurate predictions while remaining computationally lightweight, making it ideal for early 
diagnosis through mobile or low-resource platforms. 

The hyperparameter configuration described in Table I was fine-tuned to optimize 
the performance of the model for binary skin cancer classification. The Adam optimizer was 
used because of its adaptive learning rate and robust convergence properties, which are 
particularly beneficial for deep-learning tasks involving medical images. A small learning rate 
of 0.00001 was chosen to ensure gradual and stable weight updates, reducing the risk of 
overshooting minima during training. A batch size of 4 was used to accommodate memory 
limitations and maintain model generalization. Binary cross-entropy was selected as the loss 
function, aligning with the binary nature of the classification task. To mitigate overfitting, a 
dropout rate of 0.25 was applied, randomly deactivating a portion of neurons during training. 
The ReLU activation function was used in the hidden layers for its efficiency and ability to 
handle nonlinearity, while the sigmoid function in the output layer was appropriate for 
generating probability scores in binary classification. The model was trained for 25 epochs, 
which offered a balance between sufficient learning and avoiding overfitting, based on 
validation performance. This hyperparameter setup played a critical role in enhancing both 
the robustness and predictive accuracy of the proposed classification framework. 
Dataset: 

In this research study, a publicly available skin cancer image dataset from Kaggle was 
utilized, containing two categories: malignant and benign. The dataset consists of a total of 
3,297 images, organized into separate training and testing folders. These images were originally 
sourced from the ISIC archive, a well-known repository for skin cancer research. The 
distribution of images — including the number of malignant and benign samples in both the 
training and testing sets — is detailed in Table I. 

Table 1. Data Distribution for Experiments 
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Class Train Test Total 

Malignant 1197 300 1497 

Benign 1197 300 1497 

Total 2637 660 3297 

Performance Metrics: 

The following performance analysis criteria were used to evaluate the model's 
effectiveness: accuracy, precision, recall, F1-score, confusion matrices, and ROC curves. 
Accuracy, one of the most commonly used metrics, assesses the overall correctness of the 
model. However, in cases where the dataset is imbalanced, additional metrics such as 
precision and recall become crucial. Precision measures the model's ability to correctly 
identify positive instances, whereas recall evaluates its ability to capture all actual positive 
instances. A higher recall value indicates better performance in detecting the positive class. 
The F1-score provides a harmonic mean between precision and recall, offering a balanced 
evaluation metric. Additionally, the confusion matrix presents a detailed summary of 
classification results in a compact form. Finally, ROC curves are plotted to further assess the 
model’s diagnostic ability across different thresholds. The mathematical expressions for the 
performance metrics — accuracy (Eq. 2), precision (Eq. 3), recall (Eq. 4), and F1-score (Eq. 
5) — are provided below. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 × 100% (1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 × 100% (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 × 100% (3) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 × 100%  (4) 

Where TP, TN, FP, and FN denote True Positive, True Negative, False Positive, and 
False Negative, respectively. 
The list of Hyperparameter settings is shown in Table 2. 
Results And Discussions: 
In this section, the results obtained from the designed model are presented. 

Table 2. List of Hyperparameter Settings 

Parameter Value 

Weight Optimizer Adam 

Learning Rate 0.00001 

Batch Size 4 

Loss Function Binary Cross-Entropy 

Dropout Ratio 0.25 

Activation Function (Hidden Layer) ReLU 

Activation Function (Output Layer) Sigmoid 

Epochs 25 

Performance Analysis of the Proposed Framework: 
In this section, the effectiveness of the proposed algorithm is evaluated after applying 

the preprocessing steps. The results of the preprocessing phase are illustrated in Figure. 2. 
Initially, the model is trained using the training set, which includes images classified as 
malignant and benign. 

For the MobileNetV3-Large model, the results in the malignant class achieved an 
accuracy of 89%, precision of 92%, recall of 87%, and an F1-score of 89%. In the benign 
class, the corresponding values are 89% for accuracy, 85% for precision, 91% for recall, and 
88% for F1-score. The overall accuracy achieved in this experiment using the Adam 
optimizer is 89%. 
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In comparison, for the MobileNetV3-Small model, the accuracy, precision, recall, 
and F1-score in the malignant class are 87%, 88%, 87%, and 88%, respectively. In the benign 
class, these values are 87% for accuracy, 85% for precision, 86% for recall, and 86% for F1-
score. 

From the overall experimental results, it can be concluded that the MobileNetV3-
Large model outperforms the MobileNetV3-Small model in terms of average accuracy and 
general performance across both classes. 

Table 3 Confusion Matrix of the Proposed Methodologies 

Metric MobileNetV3 Small with 
Mathematical Morphology 

MobileNetV3 Large with 
Mathematical Morphology 

True Positive 260 275 

True Negative 315 314 

False Positive 45 46 

False Negative 40 25 

Table 4. Results of MobileNetV3-Large 

Class Accuracy Precision Recall F1-Score 

Malignant 89% 92% 87% 89% 

Benign 89% 85% 91% 88% 

Table 5. Results of MobileNetV3-Small 

Class Accuracy Precision Recall F1-Score 

Malignant 87% 88% 87% 88% 

Benign 87% 85% 86% 86% 

Table III shows the confusion matrix using the Mo- bileNetV3 Small and Large 
with mathematical morphology. In the case of the MobileNetV3-Large model, 314 samples 
of the malignant class and 275 samples of the benign class were correctly classified from 
the overall test set. However, 46 malignant and 25 benign samples were misclassified. 
More precisely, we individually assessed the performance of the proposed MobileNetV3 
framework across both skin cancer classes—malignant and benign. The detailed performance 
metrics, including accuracy, precision, recall, and F1-score for each class, are provided in 
Tables IV and V. 

Additionally, the training accuracy and loss values were recorded epoch by epoch, as 
illustrated in Figure. 6. From the graph, it can be observed that the training accuracy remains 
high when using the Adam optimizer. Similarly, the second graph displays the loss values, 
where it is evident that the training loss decreases consistently with the Adam optimizer, 
aligning with the trends observed in the accuracy graph. 

Furthermore, when evaluating the proposed model's performance on the test set, it is 
clear that the accuracy values are higher when optimized with Adam. In summary, the 
individual effectiveness of the algorithm for both malignant and benign classes has been 
thoroughly analyzed, demonstrating the robustness of the proposed MobileNetV3-Large 
framework.  

The ROC curve is primarily employed to analyze the categorization model’s efficacy. 
It plots the relationship between true positive rates and false positive rates, providing a 
comprehensive visualization of the model's performance. Furthermore, during training, the 
model exhibits high training accuracy values and very low loss values, indicating effective 
learning. 



                                 International Journal of Innovations in Science & Technology 

Special Issue |CSET 2025                                                                          Page |8 

 
Figure 4. ROC Curve generated by MobileNetV3 Large with Mathematical Morphology. 

 
Figure 5. ROC Curve generated by MobileNetV3 Small with Mathematical Morphology. 

Discussion: 
It is observed from the above-presented results and Table 5, that the designed 

framework shows the best results in terms of accuracy, precision, recall, and F1 Score 

values. The comparison is done only on those approaches that have used the same dataset. 
Further, in an attempt to discuss the suggested model’s evaluation, the results of the 
proposed technique are compared with existing methods. For instance, Manasa et al. [25] 
suggest the Vgg16-based deep learning model and have achieved an 86.6% accuracy. 
Similarly, Bechlli et al. [26] combined the three pre-trained models, namely VGG16, 
ResNet50, and DenseNet, as an ensemble network and achieved 85% accuracy.  

Our proposed model shows an accuracy of 87% and 89% with MobileNetV3Small 
and MobileNetV3Large versions, respectively. The comparison of the proposed and existing 
techniques is tabulated in Table VI. 

Although the proposed skin cancer classification framework shows promising 
performance, several challenges and limitations need to be considered. One of the primary 
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concerns is the potential for overfitting, particularly given the relatively small dataset. Despite 
implementing regularization techniques such as dropout, the model may still overfit to specific 
patterns in the training data, hindering its ability to generalize effectively to unseen examples. 
Furthermore, data imbalance is a common issue in medical imaging datasets, where the 
distribution of malignant and benign cases may not be equal. This imbalance could lead to bias 
in the model predictions, potentially promising the detection of less prevalent cases of skin 
cancer. The small size of the dataset further exacerbates these issues, as the model may not be 
exposed to a sufficiently diverse range of types of lesions and imaging conditions, which 
affects its robustness in practical deployment. To mitigate these challenges, future work should 
consider utilizing larger, more diverse datasets, along with advanced techniques like data 
augmentation or re-sampling, to enhance model generalization and overall performance. 
Conclusion: 

Skin cancer remains one of the deadliest diseases worldwide. The color images of skin 
lesions often show a significant degree of resemblance between different types, such as 
malignant and benign, making accurate identification and diagnosis particularly challenging. 
Timely detection is crucial and requires a reliable automated process for categorizing skin 
cancer, ultimately saving time, effort, and lives.  

In this research article, an attempt was made to provide a deep learning-assisted 
solution based on a transfer learning approach using the MobileNetV3 model. MobileNetV3 
is chosen for its enhanced feature learning capabilities, owing to the specialized design of its 
layers. In addition to the classification results, ROC curves were plotted, as shown in Figures 
4 and 5, for both MobileNetV3-Small and MobileNetV3-Large models, further validating the 
model’s performance. The Receiver Operating Characteristic (ROC) curve helps in visualizing 
the trade-off between true positive and false positive rates, highlighting the robustness of the 
framework. Overall, the proposed framework demonstrates effective performance, achieving 
high values of accuracy, precision, recall, and F1-Score, confirming its reliability for skin cancer 
classification tasks. The findings suggest that this strategy may be an acceptable way to 
diagnose skin cancer early and accurately, providing a practical tool that can be used in real-
time on mobile devices. 

TABLE 6. Comparison of the Proposed and Existing Technique. 

Research paper [reference] Approach Accuracy 

Manasa et al. [23] VGGA16 86% 

Bechelli et al. [26] VGG16, Xception, ResNet50 85% 

Demir et al. [25] ResNet-101 84.09% 

Demir et al. [25] Inception-V3 87.42% 

Proposed MobileNetV3 Small 87% 

Proposed MobileNetV3 Large 89% 

Proposed Average 88% 
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Figure 6. Accuracy and Loss Graphs with Mathematical Morphology: (a) Accuracy, (b) 

Loss. 
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