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Skin cancer and other skin diseases are significant health concerns, and early diagnosis is 
essential for effective treatment. Traditional diagnostic methods, such as clinical examination 
and histopathological analysis, are time-consuming, require specialized expertise, and often 
cause delays in treatment. AI models have the potential to transform this process. While 
previous research has primarily focused on skin cancer or specific skin diseases, this study 
takes a broader approach by introducing a novel multiclass classification model. We created a 
unique dataset combining images from publicly available datasets and new images collected 
using mobile cameras. The dataset consists of three types of skin cancer and six categories of 
skin diseases, with both mobile camera and dermoscopic images included. In total, we gathered 
6,820 skin lesion images, 4,957 from public datasets, and 1,863 new images to enhance the 
dataset. Various deep learning models, including VGG16, ResNet50, DenseNet121, 
MobileNet, and a custom CNN, were tested. While these models performed well with 
dermoscopy images, they struggled with mobile images. To address this, we implemented a 
new classification model, YOLOv11, for multiclass classification. This model achieved an 
impressive 97.5% overall accuracy, with an F1 score of 0.97503, and 99% accuracy for each 
class, handling both dermoscopy and mobile images effectively. 
Keywords: Skin Cancer; Skin Diseases; Deep Learning; Multi-Class classification; AI; Medical 
Diagnosis; YOLOv11 
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Introduction: 
Skin lesions are one of the most common health problems worldwide, posing 

significant challenges to healthcare systems [1]. These conditions affect millions of people each 
year, with skin cancer being one of the most concerning. Skin cancer occurs when skin cells 
grow uncontrollably, often due to exposure to ultraviolet (UV) radiation from the sun or 
artificial sources like tanning beds. UV radiation damages DNA in skin cells, leading to 
mutations that disrupt normal cell function. If not detected early, these mutations can lead to 
skin cancer [2]. The World Health Organization (WHO) reports that melanoma alone causes 
over 300,000 new cases annually and results in more than 60,000 deaths each year [3]. 
According to the Global Cancer Observatory (GCO) [4], melanoma mortality is highest in 
Europe, with 26,180 deaths, followed by Asia with 13,147 deaths, Latin America and the 
Caribbean with 5,842 deaths, Africa with 2,859 deaths, and Oceania with the lowest number 
of deaths at 1,902. Additionally, non-melanoma skin cancers, such as squamous cell carcinoma 
and basal cell carcinoma, contribute significantly to the cancer burden in other parts of the 
world. 

Beyond skin cancer, other skin diseases like eczema, psoriasis, leishmaniasis, warts, 
and fungal infections also affect a large portion of the population, causing pain, discomfort, 
and distress. Delayed or inefficient diagnosis of these conditions can lead to serious 
complications, making early detection essential. Traditional diagnostic methods, such as 
clinical inspection, dermoscopy, and histopathology, are effective but time-consuming and 
require specialized skills [5]. Moreover, limited access to dermatologists often delays diagnosis 
and treatment. The advancements in AI and deep learning have opened the door to computer-
aided systems for detecting and classifying skin conditions, addressing the need for faster, 
more accessible dermatological services. AI models can accurately classify skin lesions and 
provide real-time diagnostic support, even in remote areas. Convolutional Neural Networks 
(CNNs) have shown promising results in classifying skin lesions from dermoscopic images. 
However, most studies have focused separately on skin cancer or skin diseases, with limited 
research on unified multiclass classification. Publicly available datasets, like ISIC [6] and 
HAM10000 [7], primarily contain dermoscopic images, which don’t capture the variability in 
image quality and lighting that real-world images present. 

To address these challenges, we created a novel dataset that combines images of both 
skin cancer and skin diseases. This dataset includes images taken with mobile cameras, as well 
as dermoscopic images. We gathered data from several publicly available skin disease and skin 
cancer datasets, supplemented by mobile captured images to increase diversity. To achieve 
multiclass classification, we trained several state-of-the-art models, such as VGG16, ResNet50, 
DenseNet121, MobileNet, and a custom CNN. While these models performed well with 
traditional dermoscopy image datasets, their accuracy dropped significantly when tested with 
real-world mobile images, highlighting the need for more robust solutions. To enhance 
accuracy and generalizability, we trained the YOLOv11 [8] model for the multiclass 
classification of skin diseases and cancers. YOLOv11 outperformed conventional methods, 
making it a viable solution for real-world dermatological diagnosis. 
Literature Review: 

Skin cancer is a significant global health issue, with its incidence rates steadily 
increasing over recent decades. Early and accurate detection is crucial for improving patient 
prognoses and enabling less invasive treatments [9]. Traditional skin cancer and skin disease 
diagnoses are heavily dependent on dermatological expertise, which can be time-consuming 
and subject to variability [10]. However, advancements in artificial intelligence (AI), 
particularly deep learning and computer vision, have opened new possibilities for accurate skin 
lesion diagnosis and classification[9], [11]. Several deep learning models have been explored 
for classifying skin diseases and cancers, particularly using convolutional neural networks 
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(CNNs) due to their proficiency in image processing [12], [13], [14], [15]. For example, Ahmad 
Naeem et al. developed a model combining VGG16 and CNNs for the multiclass classification 
of melanoma, melanocytic nevi, basal cell carcinoma, and benign keratosis, achieving 96.91% 
accuracy on the ISIC 2019 dataset [14]. This performance surpassed other pre-trained 
classifiers such as ResNet50, Inception v3, AlexNet, and VGG19. Ehsan Bazgir et al. [16] 
proposed an automated skin cancer classification system using a deep neural network-based 
model with an optimized InceptionNet architecture, enhanced by data augmentation and 
preprocessing techniques. Their model achieved 84.39% accuracy using the Adam optimizer 
and 85.94% with the Nadam optimizer. Similarly, Sobia Bibi et al. [13] designed MSRNet, a 
deep model applying contrast enhancement techniques with modified DarkNet-53 and 
DenseNet-201 models, achieving accuracy rates of 85.4% and 98.80% on ISIC2018 and 
ISIC2019, respectively. They also suggested using genetic algorithms for hyperparameter 
selection and marine predator optimization for feature selection. 

Neven Saleh et al. [17] tackled skin cancer classification by applying several CNNs, 
including AlexNet, Inception V3, MobileNet V2, and ResNet 50. They combined machine 
learning classifiers with optimization methods, such as Grey Wolf Optimization (GWO), 
resulting in 51 different models. The combination of AlexNet with GWO provided the highest 
classification accuracy of approximately 94.5% on the ISIC 2017 dataset. However, one 
limitation of this study was overfitting due to complex model combinations and reliance on a 
single dataset. In addition to VGG and ResNet, several other pre-trained models have been 
fine-tuned for skin cancer classification. For instance, Vipin Venugopal et al. [18] used a pre-
trained EfficientNetV2-M, surpassing other state-of-the-art models for both binary and 
multiclass classification, utilizing transfer learning and data augmentation techniques to 
improve performance on a dataset of 58,032 dermoscopic images. Similarly, Muhammad Zia 
Ur Rehman et al. adapted MobileNetV2 and DenseNet201 to classify benign and malignant 
lesions, achieving 95.50% accuracy [19]. Pronab Ghosh et al. introduced SkinNet-16, achieving 
an accuracy of around 99.19% for benign vs. malignant classification after preprocessing steps 
like hair and background removal, image enhancement, and feature extraction [20]. 

The quality and availability of training data are crucial to the performance of AI models 
in skin cancer classification. Existing publicly available datasets, such as ISBI 2017, ISIC 2018, 
PH2, and ISIC 2019, have been widely used for comparing AI models [10], [11]. However, 
these datasets vary in terms of image quality, lesion types, and patient demographics, which 
can pose challenges for developing robust and generalizable models. The lack of sufficient 
representation of certain skin types and lesion subtypes in public datasets may introduce biases, 
limiting the models' applicability in clinical practice. Another challenge is the class imbalance 
present in skin cancer datasets, where benign lesions outnumber malignant lesions by a 
significant margin [21]. This imbalance can bias deep learning models toward the majority 
class, resulting in reduced performance in detecting less common but potentially more 
dangerous malignant lesions [21]. To address this, Talha Mahboob Alam et al. used data 
augmentation to balance the dataset and employed AlexNet, InceptionV3, and RegNetY-320 
for classification. RegNetY-320 performed best on this balanced dataset. Maryam Tahir et al. 
used SMOTE Tomek to handle class imbalance in their DSCC-Net model [22], while other 
studies have used oversampling and cost-sensitive learning approaches [23], leading to 
improved classification accuracy. The effectiveness of these approaches depends on the 
dataset and model used. 

In this study, we present a systematic approach to address these challenges. Section 
III outlines our methodology, including the dataset used and the system proposed. Section IV 
describes the experimental setup, from data preprocessing to network training and 
performance evaluation. Section V provides a detailed analysis of the results, discussing the 
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performance and implications of our proposed system. Finally, Section VI concludes the 
paper, summarizing the key findings, contributions, and future directions. 
Objective: 

The primary objective of this research was to develop a multiclass classification model 
for skin cancer and skin diseases that can accurately classify skin lesions in both dermoscopic 
and mobile-captured images and to address the challenge of limited availability of mobile-
captured images, we also developed a novel dataset containing both dermoscopic and mobile-
captured images. 
Methodology: 
Employed Dataset: 

To develop an effective multi-class classification model for skin cancer and skin 
diseases, we first assembled a diverse dataset by merging publicly available sources with newly 
acquired images. The dataset consists of nine classes: three skin cancer classes (melanoma, 
basal cell carcinoma, and squamous cell carcinoma) and six skin disease classes (eczema, 
psoriasis, leishmaniasis, acne, tinea, and warts molluscum). 

Our dataset was compiled from several public datasets, including ISIC [6], HAM10000 
[7], med images Computer Vision Project [24], skin cancer Computer Vision Project [25], Skin 
diseases Segmentation Computer Vision Project [26], skin Computer Vision Project [27], and 
the New Mod Computer Vision Project [28], in addition to images sourced from mobile phone 
cameras. Initially, we collected 3,957 skin disease images and 1,000 skin cancer images from 
these public databases. To enhance the diversity of the dataset and improve model 
generalization, we supplemented the collection with an additional 1,000 skin disease images 
and 863 skin cancer images. This expanded dataset is one of the largest multi-class collections 
of skin condition images available, ensuring robust representation of a wide variety of skin 
disorders. 

Random samples from the skin cancer and skin disease classes are shown in Figure 1 
and 2, which illustrate the dataset’s diversity and heterogeneity. A summary of the class-wise 
distribution of images is provided in Table 1. This comprehensive dataset is designed for 
training deep learning models, especially those focused on classification, offering a more 
accurate and realistic representation of skin disorders as they would appear in real-world 
clinical settings. 

 
Figure 1. Random Sample Images of Skin Cancer 
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Figure 2. Random Sample Images of Skin Diseases 

Table 1. Distribution of Publicly Available and Self Captured Images across Classes 

Class 
Images Distribution Per Class 

Total Images Publicly Available Self-Captured 

BCC 553 300 253 

Melanoma 844 594 250 

SCC 439 293 146 

Acne 688 554 134 

Eczema 1219 1070 149 

Leishmaniosis 216 171 45 

Tinea 591 470 121 

Warts Molluscum 763 608 155 

Psoriasis 1480 1084 396 

Total 6820 4957 1863 

YOLO-v11 
The YOLOv11 [8] model represents a significant advancement in the YOLO series, 

particularly for classification tasks, building upon the developments of earlier versions such as 
YOLOv8, YOLOv9, and YOLOv10. While YOLOv11 is traditionally associated with object 
detection, it also performs exceptionally well in classification tasks due to its efficient feature 
extraction and processing capabilities. Key components such as the C3K2 and C2PSA blocks, 
as illustrated in Figure 3, enhance the processing of spatial information. The C3K2 block uses 
small 3x3 kernels to maximize computational efficiency while improving feature 
representation. Meanwhile, the C2PSA block utilizes attention mechanisms to focus on salient 
areas within an image, which is crucial for detecting fine-grained details. 

Unlike the detection model, YOLOv11-cls (the classification-specific version) omits 
the neck (e.g., the SPFF module), as multi-scale feature aggregation is unnecessary for 
classification. Instead, the backbone directly extracts high-level features, which are passed to 
the classification head. This results in an efficient and lightweight design. The classification 
head then projects these extracted features into class probabilities, enabling the model to make 
accurate predictions with a fast and resource-efficient architecture. As a result, YOLOv11 is a 
state-of-the-art image classification model, that combines strong performance with an efficient 
design. 
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Figure 3. Yolo-v11 Object Classification Architecture 

Proposed Framework: 
The proposed study adopts a uniform approach for multi-class classification of skin 

cancer and skin diseases using the YOLOv11 model. The pipeline as shown in Figure 4 begins 
with data collection, followed by preprocessing, hyperparameter tuning, and evaluation using 
standard metrics. The best-performing model is then selected for multiclass classification. The 
process begins by capturing a skin lesion image using a smartphone, which is then fed into the 
model for preprocessing. This preprocessing step includes resizing, normalization, and data 
augmentation to enhance the model's robustness. Once the image is preprocessed, it is passed 
through the YOLOv11 classification model, which extracts important features related to the 
skin condition from the image. If the model’s confidence in the detected area is below a 
threshold of 0.5, the image undergoes additional preprocessing and is re-evaluated. If the 
confidence value meets or exceeds the 0.5 threshold, the extracted features are mapped to 
classify the image into one of the nine classes, which include three skin cancer types and six 
skin conditions. 
The final output of the system is the class label of the lesion, enabling accurate diagnosis. The 
system ensures iterative refinement by reprocessing uncertain cases until confident 
classification is achieved, thus improving diagnostic accuracy and real-world applicability. The 
operational workflow of the system is illustrated in Figure 5. 

 
Figure 4. Flow Diagram of Detailed Methodology 
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Figure 5. Block Diagram of Proposed Workflow 

Experimental Setup: 
Data Pre-processing: 

The dataset was split into training, validation, and test sets in a 70:15:15 ratio. 
Extensive preprocessing was performed on the dataset before training to ensure high-quality 
input for the model. This preprocessing included the removal of duplicate, low-quality, and 
noisy images to enhance model performance. Techniques such as rotation, flipping, brightness 
adjustment, contrast normalization, and data augmentation were applied to increase dataset 
diversity and improve the model's resilience. Data labeling was carried out manually through 
renaming. Additionally, the images were resized and normalized to meet the input 
requirements of the YOLOv11 classification model. 
Networks training: 

The system proposed in this research was developed and tested on a computer with 
an Intel Core i7-10700 processor running Windows 10 at 2.90 GHz, paired with an NVIDIA 
GeForce RTX 3060 GPU with 12 GB of VRAM, and 16 GB of system RAM. The 
implementation was carried out using Python 3.12, with the PyTorch framework serving as 
the primary deep-learning library. A summary of the training parameters for classification is 
provided in Table 2. 

Table 2. Training Parameters 

No. 
Parameters for Classification Model 

Hyperparameters Details 

1 Picture size 640 x 640 

2 Epochs 100 

3 Batch size 16 

4 Workers 8 

5 Patience 40 



                              International Journal of Innovations in Science & Technology 

Special Issue | ICTIS25                                                                         Page |323 

Analysis of Computational Efficiency: 
A YOLO-based image classification pipeline was implemented and evaluated in two 

phases: inference and training. During inference, a custom script processed a structured test 
dataset, where each subdirectory represented a distinct class, to compute top classification 
predictions. The pipeline achieved an average processing time of approximately 12 ms per 
image, with 8.7 ms for preprocessing, 3.3 ms for inference, and negligible postprocessing 
time, as shown in Table 3. 

Table 3. Per-Image Computational Performance 

Metric 
Computational Efficiency at 640×640 Resolution 

Preprocess (ms) Inference (ms) Postprocess (ms) Total (ms) 

Minimum 6.4 2.5 0.0 8.9 

Maximum 17.5 10.4 0.1 28.0 

Average 8.7 3.3 ≈ 0.01 12.0 

Evaluation Metrics: 
To comprehensively evaluate the effectiveness of the proposed classification model, a 

range of assessment criteria were employed, including Accuracy, F1-Score, Precision, Recall, 
and the Confusion Matrix. These metrics provide a thorough performance analysis of the 
model's ability to accurately classify diverse categories. Accuracy measures the overall 
classification correctness, while Precision and Recall assess the model's ability to classify 
positive cases and minimize false positives and false negatives, respectively. The F1-Score 
computes the weighted average of Precision and Recall, offering a balanced evaluation metric 
for imbalanced classes. The Confusion Matrix provides a detailed breakdown of true positives, 
true negatives, false positives, and false negatives, offering insights into the model's 
classification bias. The selection of these measures ensures a comprehensive assessment of the 
model’s performance, addressing class imbalance and misclassification issues. The final 
performance analysis was conducted on diverse datasets to evaluate the model’s 
generalizability and robustness. 
Accuracy: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
   Eq (1) 

Where: 
• TP: Stands for True Positive. 
• TN: Stands for True Negative. 
• FP: Stands for False Positive. 
• FN: Stands for False Negative. 
F1-Score: 

𝐹1 = 2 ∗
𝑃∗𝑅

𝑃+𝑅
  Eq (2) 

Where: 
• P: Stands for Precision. 
• R: Stands for Recall. 

Precision: 

𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 Eq (3) 

Recall: 

𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 Eq (4) 

Results:  
Using the proposed dataset, the performance of different classification models 

exhibited significant variations, as shown in Table 4. Among all the models, YOLOv11 
achieved the highest accuracy of 97.5%, with precision, recall, and F1-Score all reaching 0.97, 
making it the best model for skin disease and cancer classification. The accuracy for each class 
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was consistently around 99%, demonstrating the model's reliability across various skin 
conditions. The confusion matrix, shown in Figure 6, illustrates the classification performance 
and misclassification patterns. In contrast, the VGG16 and custom CNN models performed 
poorly, with accuracies of 79.5% and 23%, respectively, indicating their limited generalization 
ability on this diverse dataset. These results emphasize the advantage of utilizing advanced 
architectures like YOLOv11 for real-world dermatological classification. The training and 
validation loss curves, shown in Figure 7, indicate the model's stability during training. 
Additionally, Figure 8 presents the test results on unseen images, highlighting YOLOv11's 
efficiency in accurately classifying various skin conditions. 

Table 4. Test Results of the Classification Models 

Model 
Performance Evaluation Metrics for Classification 

Accuracy F1 Score Precision Recall 

YOLO v11 97.5% 0.9750 0.9753 0.9751 

YOLO v8 94.6% 0.9455 0.9472 0.9461 

DenseNet 121 81.2% 0.8114 0.8180 0.8126 

MobileNet 82% 0.8208 0.8243 0.8209 

ResNet 50 87.4% 0.8745 0.8774 0.8747 

VGG 16 79.5% 0.7950 0.8102 0.7950 

Custom CNN 23% 0.0949 0.1508 0.2308 

 

 
Figure 6. Confusion Matrix 

 
Figure 7. Training and Validation Loss Curve 
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Figure 8. Performance of the Proposed System on Unseen Images 

Discussion: 
The experimental results demonstrate the superior performance of the proposed 

YOLOv11-based framework for the multi-class classification of skin cancer and skin diseases. 
As highlighted in Table 5, the proposed model achieved an accuracy of 97.5%, outperforming 
several state-of-the-art models applied on benchmark dermoscopic datasets. For instance, 
Ahmad Naeem et al. [14] employed VGG16 with CNNs on the ISIC 2019 dataset and 
achieved an accuracy of 96.91%, whereas Neven Saleh et al. [17] used AlexNet optimized with 
the Grey Wolf Optimizer (GWO) and reported 94.5% accuracy. Similarly, Vipin Venugopal 
et al. [18] used EfficientNetV2-M on the ISIC 2019 and HAM10000 datasets and reported 
accuracies of 95.49% and 94.80% respectively across different classes. Although these models 
performed well on dermoscopic images, they did not incorporate real-world mobile-captured 
images, which limits their practical applicability in diverse clinical environments. 

In contrast, our study uniquely combines dermoscopic and mobile-captured images, 
addressing real-world scenarios where high-end dermoscopic equipment may not be available. 
This enhances the model’s adaptability in low-resource or remote settings, which is a 
significant advancement over prior work. Notably, our model also supports multi-class 
classification (covering both three types of skin cancer and six common skin diseases), 
whereas most prior works focused solely on binary or limited multi-class cancer classification. 

Additionally, earlier models like those proposed by Ehsan Bazgir et al. [16] using 
InceptionNet (85.94% accuracy) and Zia Ur Rehman et al. [19] using MobileNetV2 with 
DenseNet201 (95.50% accuracy) did not consider mobile image sources or extensive disease 
variety. These comparisons underscore the novelty and strength of our model in terms of 
both accuracy and versatility. 

Table 5. Comparative Analysis of Proposed Work with Existing Studies 

Research 
work 

Dataset Model Results 
Dermoscopic 

Image 
Classification 

Mobile Image 
Classification 

Multi-
Class 

(Cancer + 
Diseases) 

This Study 

(6820 Images) 
Dermoscopic + 

Mobile Captured 
Images 

Yolo v11 97.5% Yes Yes Yes 

Ahmad 
Naeem et al. 

ISIC 2019 
Dermoscopic 

VGG16 with 
CNNs 

96.91% Yes Nil Nil 
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[14] Images 

Ehsan Bazgir 
et al. [16] 

Custom Dataset 
Dermoscopic 

Images 
InceptionNet 85.94% Yes Nil Nil 

Neven Saleh 
et al. [17] 

ISIC 2017 
Dermoscopic 

Images 

AlexNet with 
GWO 

94.5% Yes Nil Nil 

Vipin 
Venugopal et 

al. [18] 

ISIC 2019 
HAM10000 

Dermoscopic 
Images 

EfficientNetV2-
M 

95.49 
94.80 

Yes Nil Yes 

Zia Ur 
Rehman et al. 

[29] 

ISIC Archive 
Dermoscopic 

Images 

MobileNetV2 
and 

DenseNet201 
95.50% Yes Nil Nil 

Conclusion: 
The prime aim of the research was to address the challenges of multi-class 

classification of skin cancer and skin diseases using deep learning models. We successfully 
bridged the gap between research datasets and real-world medical diagnostics by collecting a 
diverse dataset of 6,820 images, including images from mobile cameras and dermoscopic 
devices. After evaluating several state-of-the-art classification models, YOLOv11 
demonstrated the best performance, achieving 97.5% accuracy and an F1-score of 0.9750. Our 
approach enhances real-world generalization of data, making it a valuable tool for assisting 
dermatologists and physicians. 

Future work can expand the dataset to include more skin disease and cancer classes, 
further improving the model's generalization. Additionally, incorporating cancer staging 
classification could provide additional diagnostic information, facilitating earlier detection and 
better treatment planning. Further improvements can also be achieved by integrating 
explainable AI methods, such as Grad-CAM or LIME, to enhance model interpretability and 
foster better predictions in clinical settings. 
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