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Traffic flow prediction is crucial for smart transportation systems, as it plays a key role in 
improving traffic management and planning infrastructure. While many machine learning 
techniques have been used for this purpose, ensemble methods have proven to be especially 
effective because they enhance prediction accuracy by combining the strengths of multiple 
models. This paper offers a detailed overview of how ensemble methods are applied to traffic 
flow prediction. We start by exploring the basics of traffic flow prediction, including common 
data sources, types, and performance metrics. Then, we categorize ensemble methods into 
bagging, boosting, and hybrid approaches, reviewing important studies that show how these 
methods work, the datasets they use, and their performance results. Real-world examples and 
case studies are included to highlight the practical effectiveness of these methods in various 
traffic situations. Finally, we discuss the current challenges and suggest future research 
directions, aiming to provide a valuable resource for researchers and practitioners interested 
in improving traffic flow prediction with ensemble techniques. 
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Introduction: 
Traffic flow prediction (TFP) is a crucial part of modern intelligent transportation 

systems (ITS), which are vital for improving traffic management, urban planning, and 
navigation. Accurate predictions help traffic managers optimize signals, inform drivers of 
delays, and plan infrastructure improvements, reducing congestion and enhancing road safety. 
The task involves estimating how many cars will pass through a specific road segment within 
a set time frame, considering factors like the time of day, weather, accidents, and special events 
[1]. This makes the task challenging due to the complex, dynamic, and often non-linear 
patterns of traffic flow. Traffic flow prediction is usually divided into two types: Short-Term 
Prediction (forecasting traffic flow minutes to hours ahead, essential for real-time 
management) and Long-Term Prediction (predicting traffic flow days, weeks, or even months 
in advance for planning infrastructure and policies) [2]. 

Research Context: Accurate traffic flow forecasting requires high-quality data from 
various technologies, such as fixed sensors, cameras, GPS devices, crowdsourced data, social 
media, and weather information [3][4]. These diverse sources offer a comprehensive view of 
traffic conditions and are typically used in two forms. The first is time series data, which 
consists of data points showing traffic flow at regular intervals. The second is spatial-temporal 
data, which combines time series with spatial information, capturing traffic flow across 
different locations over time [5]. 

Traditional prediction methods, like statistical models, often struggle to capture the 
complex, non-linear patterns in traffic data. This has led to the growing use of machine 
learning, known for its strong modeling capabilities. Among these, ensemble methods are 
particularly effective because they combine the strengths of several models to improve 
accuracy. These methods overcome the weaknesses of individual models by using different 
algorithms, resulting in more reliable and precise traffic flow predictions. They are especially 
suited for handling large and complex traffic datasets. However, there is a lack of 
comprehensive surveys focusing on ensemble methods in traffic flow prediction, which is why 
these paper aims to review and analyze recent research in this field. 

Scope and Objective: This paper contributes to the field of TFP by exploring ensemble 
methods. It provides an in-depth analysis of these techniques and categorizes them into three 
main types: bagging, boosting, and hybrid approaches. The survey serves as a foundation for 
understanding the current methods used in the literature. The study also compares different 
ensemble approaches, highlighting their advantages and disadvantages to help identify the 
most suitable methods for specific scenarios and datasets. This provides valuable insights for 
both researchers and professionals. 

The paper includes case studies and real-world applications, showing how ensemble 
methods can be applied to solve TFP problems. It demonstrates how theoretical advances can 
lead to practical solutions in real-world scenarios. To encourage further research and 
innovation in this area, the paper also discusses current challenges and proposes future 
research directions. 

The structure of the remaining document is as follows: Section 2 provides an overview 
of ensemble methods, Section 3 reviews their applications in TFP, Section 4 discusses the 
challenges and prospects, and Section 5 presents the key findings and recommendations. 
Ensemble Methods in Traffic Flow Prediction: 

The flowchart in Figure. 1 outlines the logical structure of the survey paper. It begins 
with defining the objectives and scope, followed by a comprehensive literature review. The 
reviewed studies are then categorized into key methodological areas, including ensemble 
approaches, hybrid models, LSTM-based methods, data sources, spatiotemporal features, 
decomposition techniques, model comparisons, and real-world applications in urban planning. 
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Ensemble techniques are a powerful machine learning domain that combines multiple 
weak learners to form a single, strong, and reliable prediction model. The core idea is that by 
aggregating the predictions of several weak learners, the ensemble can achieve better 
performance and generalization than any individual model. This approach takes advantage of 
the diversity among models to reduce errors and improve accuracy. Ensemble methods are 
typically categorized into three main types: bagging, boosting, and hybrid approaches. 

 
Figure 1: Methodology process used to identify papers reviewed 

Bagging (Bootstrap Aggregating): 
The core concept of bagging involves training multiple instances of the same model 

on different subsets of the training data and then averaging their predictions (for regression) 
or using a majority vote (for classification). A prominent example of this method is Random 
Forest (RF), which is an ensemble of Decision Trees (DT). In RF, each tree is trained on a 
bootstrapped sample of the data, and at each node, a random selection of features is 
considered for splitting. 
Boosting: 

Boosting train models sequentially, where each new model attempts to correct the 
errors made by the previous ones. The final prediction is a weighted sum of the predictions 
from all models. Key boosting techniques include: Gradient Boosting Machines (GBM) are a 
class of models that optimize a loss function by building models sequentially. Extreme 
Gradient Boosting (XGBoost) is an enhanced version of GBM that introduces regularization 
to prevent overfitting, making it more robust. LightGBM offers a faster implementation of 
GBM by employing a histogram-based approach for training, which improves efficiency and 
scalability. CatBoost is another gradient boosting library specifically designed to automatically 
handle categorical features, simplifying the preprocessing steps and enhancing performance. 
Hybrid and Advanced Ensemble Methods: 

Hybrid and advanced ensemble methods combine various ensemble and machine 
learning techniques to enhance model performance. Key approaches include stacking and 
blending, where multiple base models are combined using a meta-model. Stacking typically 
employs cross-validation to train the meta-model, while blending often relies on holdout 
validation sets. Deep learning ensembles merge multiple neural networks to capitalize on their 
strengths and are especially effective in capturing complex spatial and temporal dependencies, 
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such as those found in traffic flow data. Additionally, hybrid models integrate different types 
of algorithms by combining classical machine learning techniques with deep learning models 
to further optimize predictive performance. 
Review of Recent Studies: 

This comprehensive review synthesizes recent research on TFP using ensemble 
methods, focusing on machine learning and deep learning models applied to diverse datasets 
and methods. Ensemble techniques have proven to significantly enhance prediction accuracy 
by combining the strengths of different base models. 
Ensemble Approaches: 

Ensemble approaches, particularly bagging and boosting techniques, have been 
extensively utilized in TFP due to their robustness and enhanced predictive capabilities. 
Methods such as RF and Gradient Boosting Machines (GBM) show the effectiveness of these 
strategies. For example, the application of combined with boosting [1] has shown superior 
performance compared to traditional models, including Long Short-Term Memory (LSTM) 
networks and linear regression.  

Hybrid models that integrate deep learning techniques, such as LSTM, Convolutional 
Neural Networks (CNN), and Gated Recurrent Units (GRU), with traditional machine 
learning algorithms have gained considerable attention in the field of traffic flow prediction. 
For instance, studies conducted by Cini et al. [2] have shown that deep ensemble models, 
which combine multiple deep learning architectures, significantly outperform individual 
models. This suggests that hybrid approaches offer a promising direction for capturing the 
complex spatial and temporal dynamics inherent in traffic data. 
LSTM Models: 

LSTM models have been widely adopted in TFP due to their ability to capture long-
term temporal dependencies in sequential data. Studies like [6] have demonstrated that 
combining LSTM with other models, such as Deep Belief Networks (DBN), within an 
ensemble framework can significantly enhance predictive performance. This integration allows 
the model to leverage the strengths of both deep learning architectures, resulting in more 
accurate and reliable traffic flow forecasts. 

For short-term traffic flow prediction, LSTM models combined with boosting 
methods have demonstrated superior performance compared to traditional baseline 
approaches such as the Autoregressive Integrated Moving Average (ARIMA) model. This 
improvement underscores the effectiveness of sequential model building, where the LSTM 
captures temporal dependencies while boosting enhances the model's generalization and 
accuracy.  
Data Sources and Datasets: 

The reviewed studies utilized a wide range of datasets, encompassing both historical 
and real-time traffic data collected from diverse urban environments such as New York and 
Sydney. Prominent sources include standardized and widely used datasets like the Caltrans 
Performance Measurement System (PeMS), which provide high-resolution traffic flow 
information. The geographic and temporal diversity of these datasets underscores the 
adaptability and robustness of ensemble methods across varying traffic conditions and 
infrastructural contexts. 
Feature Engineering and Preprocessing: 

Data decomposition techniques, such as Ensemble Empirical Mode Decomposition 
(EEMD), have been employed to address the challenges posed by noisy traffic data. EEMD 
effectively decomposes complex traffic signals into simpler, more interpretable components, 
allowing for improved feature extraction and noise reduction. Following decomposition, base 
learners such as XGBoost or LSTM networks are utilized to perform traffic flow predictions. 
Studies [7], [8] have demonstrated that this two-step approach enhances predictive accuracy 
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by enabling models to focus on the underlying patterns in the data rather than being influenced 
by noise and irregularities. 

Several studies have emphasized the incorporation of spatiotemporal features to 
enhance the accuracy of TFP models. These features capture spatial dependencies across 
different lanes, road segments, or regions, as well as temporal dependencies over time. By 
modeling both dimensions, spatiotemporal approaches provide a more comprehensive 
understanding of traffic dynamics, which is essential for accurately predicting fluctuations in 
traffic flow, particularly in complex and rapidly changing urban environments [9], [10].  
Comparison of Ensemble Models: 

Ensemble models, including stacking, blending, and bagging, have been systematically 
compared with traditional machine learning algorithms, such as linear regression, decision 
trees, and k-Nearest Neighbors, as well as with standalone deep learning techniques. Stacking 
ensembles, which integrate predictions from multiple base models using a meta-learner, have 
shown marked improvements in accuracy and reductions in error rates. Studies [11], [12] 
highlight that such ensemble configurations outperform individual models by effectively 
leveraging the complementary strengths of diverse learning algorithms. 

Several studies have combined gradient boosting frameworks such as LightGBM, 
XGBoost, and CatBoost to improve predictive accuracy in traffic flow forecasting. These 
models are recognized for their high computational efficiency and robust performance, 
particularly in handling large-scale and high-dimensional data. When aggregated within an 
ensemble framework, these algorithms complement each other’s strengths, resulting in 
enhanced model performance. Empirical evidence from studies [5][13] demonstrates that such 
ensembles consistently outperform individual models, achieving greater accuracy and 
reliability in traffic prediction tasks. 
TFPin Urban Planning: 

TFP extends beyond the goal of accurate forecasting; it plays a pivotal role in 
improving urban infrastructure and enhancing the efficiency of transportation systems. For 
instance, studies such as [13] have applied TFP models to optimize traffic light systems, 
effectively reducing congestion. By adjusting traffic signal timings in real time based on 
predicted traffic conditions, these models enable more dynamic and responsive traffic 
management. This approach not only improves traffic flow but also contributes to overall 
urban mobility, reducing delays and minimizing the environmental impact of traffic 
congestion. 

Multistep traffic forecasting models have been developed in several studies to predict 
traffic flow over various time horizons, offering significant improvements in long-term traffic 
management systems. By extending the forecasting window, these models provide valuable 
insights into future traffic conditions, enabling proactive planning and decision-making. The 
ability to predict traffic flow at multiple time steps enhances the accuracy of resource 
allocation, infrastructure management, and congestion control, contributing to more efficient 
urban transportation systems. Studies such as [14] and [15] highlight the effectiveness of these 
multistep approaches in improving the robustness and reliability of traffic prediction models 
for long-term applications. 

The use of ensemble methods for TFP has proven to be highly effective in improving 
the accuracy and robustness of traffic forecasts. By leveraging the strengths of multiple base 
models, researchers have been able to address complex spatiotemporal dependencies in traffic 
data. Future work could focus on further optimizing ensemble techniques, integrating real-
time traffic data, and refining hybrid models to cater to specific urban traffic management 
challenges. Additionally, improving model efficiency in terms of computation time and 
scalability remains an area for enhancement, especially for real-time applications in large cities. 
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Table 1: Performance of reported ML and Ensemble Models in existing literature. 

Ref ML Models MAE RMSE R2 MAPE% 

[1] RF 13.76 22.39 0.9341 - 

LSTM 14.74 23.50 0.9275 - 

LR 17.80 27.04 0.9040 - 

RF (Baging) 13.69 22.21 0.9352 - 

[2] LSTM 0.1656 - 0.9248 - 

GRU 0.1657 - 0.9213 - 

CNN 0.1675 - 0.9258 - 

Ens1 0.1590 - 0.9301 - 

Ens2 0.1553 - 0.9366 - 

[6] LR - 8.190 0.860 - 

DT Regressor - 6.981 0.898 - 

Sequential (DNN) - 9.903 0.795  

Model Stacked - 5.556 0.932  

[16] MLP-NN 10.8281 15.4202 0.9304 21.16 

RF 10.8827 15.5481 0.9296 21.84 

GRU 10.8843 15.6191 0.9278 22.85 

LSTM 10.8806 15.6771 0.9267 22.32 

LR 11.2010 15.8545 0.9263 24.32 

Stochastic Gradient 12.8230 18.3727 0.9003 29.01 

GB 10.8508 15.4121 0.9305 21.99 

[9] Proposed 3.27 1.76 - 4.24 

[7] Seasonal ARIMA  93.74 - 13.08 

LSTM  64.79 - 10.96 

E-ARIMA (uniform weight)  60.12 - 10.51 

E-ARIMA (distance-based weights)  60.11 - 10.50 

[17] Single model approach 

SVR 13.1604 17.7800 - - 

LSTM 13.3999 18.0299 - - 

HA 13.9525 19.0658 - - 

CNN 21.9240 30.940 - - 

Ensemble model approach 

WRegression 13.1788 17.7886 - - 

GBRT 13.2907 17.8656 - - 

TCAE (LSTM, HA) 13.0387 17.4541 - - 

TCAE (HA, SVR) 12.9583 17.3950 - - 

TCAE (SVR, LSTM) 12.9443 17.3748 - - 

TCAE SVR, LSTM, HA) 12.9113 17.3086 - - 

[12] ARIMA - 141.5 - 13.35 

BP - 136.48 - 12.49 

SVM - 136.1 - 11.94 

DBN - 135.44 - 11.48 

LSTM - 135.24 - 10.78 

EEMD-BP - 135.98 - 11.97 

EEMD-LSTEM - 132.31 - 10.21 

EEMD-DBN - 133.45 - 10.86 

EEMD-mRMR-DBN - 131.58 - 10.19 
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[18] RF 17.38 - - - 

XGBoost 17.27 - - - 

GBDT 17.25 - - - 

KNN 18.63 - - - 

DT 18.45 - - - 

GRU 18.54 - - - 

Stacking 17.07 - - - 

Ba-Stacking 16.99 - - - 

DW-Ba-Stacking 16.87 - - - 

[10] GCN 27.66 41.04 - 22.24 

LSTM 26.82 41.23 - 19.40 

DCRNN 24.70 38.12 - 17.12 

STGCN 22.70 35.55 - 14.49 

ASTGCN 22.93 22.93 - 16.56 

STSGCN 21.19 33.65 - 13.90 

LightGGM 21.39 33.71 - 14.92 

Proposed 20.55 32.66 - 14.21 

[14] ARIMA 3.041 4.141 - 16.506 

ENN 2.813 3.845 - 15.469 

SVM 3.128 4.413 - 16.480 

ESN 6.352 9.810 - 32.366 

Proposed 2.730 3.752 - 15.136 

[19] SARIMA - 366.93 - 10.55 

Kalman Filter - 269.99 - 10.36 

RF - 266.81 - 7.79 

CWGB-HR - 141.36 - 5.52 

[13] LR 318.717 511.908 511.90 - 

DT 63.209 134.135 0.971 - 

GB 63.203 125.709 0.975 - 

KNN 71.713 147.039 0.966 - 

RF 54.826 111.844 0.980 - 

[20] ARIMA 4.21 5.78 - 21.34 

MLP 4.27 5.84 - 23.06 

BPNN 4.22 5.78 - 22.27 

LSTM 4.24 5.81 - 21.30 

GRU 4.27 5.83 - 21.45 

XGBOOST 4.26 3.82 - 22.77 

Wavelet-XGBoost 2.50 3.85 - 14.66 

EMD-XGBoost 2.56 3.54 - 14.37 

EEMD-XGBoost 2.04 2.86 - 11.43 

CEEMDAN-XGBoost 1.79 2.54 - 9.88 

[21] LSTM - - - 9.88 

EnLSSVR - - - 8.44 

E-ELM - - - 7.79 

MLP - - - 7.69 

NCAE-ELM-EA - - - 7.58 

[22] MLP 0.75 1.344 - 0.6030 

RF 0.81 1.37 - 0.59 
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KNN 0.51 1.04 - 0.382 

[8] LSTM 16.13 21.53 8.31 - 

LSTM+WL (haar) 5.22 9.12 3.35 - 

LSTM + WL (db) 2.36 3.75 1.37 - 

LSTM + WL (sym) 2.95 4.85 1.58 - 

LSTM + WL (coif) 2.64 4.03 1.31 - 

LSTM + EMD 2.23 2.88 1.46 - 

LSTM + EEMD 1.21 1.58 0.91 - 

Comparative Analysis: 
The analysis reveals several critical insights regarding traffic forecasting and model 

performance. Firstly, long-term traffic forecasting generally exhibits lower accuracy compared 
to short-term forecasting, primarily due to the heightened complexity and variability inherent 
in extended prediction horizons. Additionally, standard K-fold cross-validation proves 
inadequate for time-series data, as it risks data leakage by incorporating future data into the 
training set. Instead, a more appropriate validation strategy is the blending method, which 
preserves temporal integrity by reserving the last 20% of the data for validation. In terms of 
predictive accuracy, boosting methods such as XGBoost and LightGBM consistently 
outperform other models, demonstrating their efficacy in capturing complex data 
relationships, particularly in TFP tasks. Hybrid models and deep learning ensembles also 
exhibit superior performance by effectively identifying intricate patterns in the data. From a 
computational standpoint, LightGBM emerges as the most efficient algorithm, significantly 
reducing training time compared to other boosting techniques, while bagging methods like RF 
remain relatively effective for large datasets despite being less efficient. Furthermore, ensemble 
methods overall demonstrate greater robustness and resilience to overfitting, enabling 
consistent performance across varying data conditions. Notably, boosting algorithms such as 
XGBoost and CatBoost maintain strong predictive capabilities across diverse datasets, 
reinforcing their widespread adoption in forecasting applications. 

The evaluation of different ensemble methods reveals distinct strengths and 
limitations across various approaches. Bagging methods, such as RF, are recognized for their 
robustness and ease of implementation; however, they can become computationally expensive, 
particularly for large datasets, due to high memory demands. In contrast, boosting methods 
like XGBoost and LightGBM demonstrate superior accuracy, excelling in modeling non-linear 
and complex relationships. Nevertheless, their performance is highly sensitive to 
hyperparameter configurations, necessitating meticulous tuning to prevent overfitting and 
ensure optimal results. Hybrid and advanced ensemble techniques, which integrate multiple 
modeling approaches, offer enhanced accuracy and robustness by leveraging the 
complementary strengths of different algorithms. However, these methods often introduce 
greater implementation complexity and demand significant computational resources, 
especially when incorporating deep learning-based ensembles. 

In summary, boosting methods such as XGBoost and LightGBM are highly effective 
for traffic flow prediction, offering a strong balance between accuracy and computational 
efficiency. However, their performance heavily depends on proper hyperparameter tuning to 
ensure optimal results. Hybrid models and deep learning-based ensembles further enhance 
predictive accuracy and robustness, making them particularly suitable for complex traffic 
forecasting tasks, albeit at the cost of increased model complexity and higher computational 
demands. While simpler methods may be adequate for short-term predictions, long-term 
forecasting necessitates more sophisticated ensemble approaches to effectively capture the 
inherent complexities and variability in the data. These findings underscore the importance of 
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selecting appropriate modeling techniques based on prediction horizon, data characteristics, 
and available computational resources. 
Conclusion: 

Boosting methods, particularly XGBoost, consistently demonstrate superior 
performance due to several key characteristics that enhance model accuracy and generalization. 
First, boosting constructs models in a sequential manner, where each new model is trained to 
correct the errors made by its predecessor. This iterative error-correcting process enables the 
ensemble to progressively improve. Second, boosting assigns greater weight to data samples 
that are difficult to predict, thereby directing more learning capacity toward complex or 
misclassified instances. This targeted focus enhances the model's overall predictive capability. 
Third, unlike bagging methods, which primarily reduce variance, boosting effectively reduces 
both bias and variance, leading to improved generalization across diverse datasets. 
Furthermore, XGBoost incorporates built-in L1 (Lasso) and L2 (Ridge) regularization 
techniques, which help mitigate overfitting and ensure robust performance on unseen data. 
Lastly, XGBoost employs advanced optimization strategies, including the use of second-order 
gradients and shrinkage (learning rate reduction), which contribute to faster convergence and 
higher model accuracy. 

Ensemble methods, including bagging, boosting, and hybrid approaches, have 
demonstrated significant potential in improving TFP accuracy while minimizing errors 
compared to standalone models. However, several challenges remain that hinder their 
widespread adoption. Data quality and accessibility issues continue to pose limitations, as the 
performance of these models heavily depends on the availability of reliable and comprehensive 
traffic datasets. Additionally, while ensemble models often achieve high predictive accuracy, 
their inherent complexity reduces interpretability, creating barriers for real-world 
implementation where model transparency is crucial. Furthermore, the computational 
demands of advanced ensemble techniques, particularly deep learning-based approaches, raise 
concerns regarding scalability and efficiency, especially when applied to large-scale traffic 
networks. 

To address the existing challenges in traffic flow prediction, this paper identifies 
several promising avenues for future research. First, advancing data fusion methodologies 
could enhance predictive accuracy by integrating diverse data sources, thereby creating more 
comprehensive and representative training datasets. Additionally, there is a critical need to 
develop interpretable models that maintain high performance while offering transparency—a 
key requirement for real-world deployment in transportation systems. Another crucial area 
involves establishing stable training methodologies, particularly for handling the variability 
inherent in large and heterogeneous traffic datasets. 

This study identifies several critical research directions to advance TFP capabilities. 
First, developing sophisticated data fusion methodologies could significantly enhance 
prediction accuracy by intelligently integrating heterogeneous data sources, including IoT 
sensors, GPS trajectories, and traffic camera feeds, to construct more comprehensive datasets. 
Secondly, optimizing scalable algorithms remains essential to efficiently process ever-growing 
urban mobility datasets while meeting the low-latency requirements of real-time applications.  

A particularly pressing research challenge involves improving the stability of ensemble 
models to guarantee consistent performance across diverse traffic conditions, geographical 
regions, and temporal scales. Future investigations should focus on developing adaptive 
ensemble frameworks that maintain reliability despite data distribution shifts, while 
simultaneously addressing computational efficiency concerns. These advancements would 
significantly strengthen the practical utility of traffic prediction systems in smart city 
infrastructures. 
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The findings of this study carry significant implications for advancing traffic prediction 
methodologies within ITS. Addressing the identified improvement areas would enable 
researchers and practitioners to develop more precise, reliable, and computationally efficient 
TFP models. Such advancements would directly contribute to optimizing traffic management 
strategies, reducing congestion, and improving overall transportation system performance. 

These research directions promise to yield traffic regulation systems that are not only 
more accurate but also better adapted to real-world operational conditions. The resulting 
improvements could transform ITS capabilities, enabling more responsive and adaptive traffic 
management solutions that account for the dynamic nature of urban transportation 
ecosystems. Ultimately, such progress would support the development of smarter, more 
efficient cities with improved mobility for all users. 
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