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river identification systems play a crucial role in enhancing vehicle security and 
delivering personalized experiences for drivers. Traditional identification methods 
typically use individual machine learning models, which often struggle to perform 

well due to their limited ability to adapt to diverse driving behaviors. In this study, we present 
a novel stacking ensemble framework optimized using the Crow Search Algorithm (CSA) to 
overcome these challenges. The CSA-optimized ensemble combines the strengths of several 
base models—Logistic Regression (LR), Naïve Bayes (NB), Random Forest (RF), and K-
Nearest Neighbour (KNN)—with a meta-learner designed to boost both accuracy and 
robustness. CSA is used to fine-tune the ensemble’s hyperparameters, ensuring optimal 
performance. Experimental results on a driving dataset demonstrated that the proposed 
method significantly outperforms existing approaches in terms of identification accuracy, 
precision, and recall. This framework holds promise for a wide range of applications, including 
intelligent transportation systems and automotive cybersecurity. 
Keywords: Crow Search Algorithm, Driver Identification, Stacking Optimization, Stacking 
Ensemble, Intelligent Transportation System 
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Introduction: 
Driver identification, also known as driver fingerprinting, refers to the process of 

recognizing or verifying the identity of a vehicle’s operator based on their unique driving 
behavior [1][2]. These behavioral patterns—shaped by personal characteristics such as age, 
gender, and driving experience—manifest as distinctive driving styles that act as digital 
signatures. Advances in in-vehicle sensor technology and the increasing availability of driving 
data have significantly propelled this research area, enabling the development of data-driven 
methods to distinguish drivers with high accuracy. Driver identification plays a pivotal role in 
enhancing safety, enabling personalization, and improving security. It helps prevent 
unauthorized access, reduces accident risk, and supports personalized in-vehicle experiences 
by adapting settings to individual preferences [3][4]. Additionally, these systems are 
foundational to intelligent transportation systems (ITS), where secure and adaptive vehicle 
interactions are essential [2]. 

Despite advances, accurately identifying drivers remains a complex challenge. 
Traditional methods, such as license checks, are slow and error-prone. Modern approaches 
now leverage machine learning to process sensor-derived behavioral data—such as 
acceleration, braking, and steering patterns—to achieve real-time and automated driver 
recognition [5][6]. However, single-model classifiers like Support Vector Machines (SVM) and 
Decision Trees (DT) often underperform due to their limited adaptability to diverse and noisy 
data. To improve performance and generalization, ensemble learning—particularly stacking—
has emerged as a promising solution. Stacking combines the strengths of multiple base 
classifiers using a meta-learner, resulting in more robust predictions. However, its success 
depends on optimal model selection and hyperparameter tuning, which are often resource-
intensive when done manually. 
This study introduces a Crow Search Algorithm (CSA)-optimized stacking ensemble to 
address these challenges. CSA is a nature-inspired metaheuristic that effectively balances 
exploration and exploitation, enabling efficient hyperparameter optimization. Our framework 
leverages CSA to fine-tune model configurations for improved driver identification accuracy. 
The primary objective of this study is to develop a high-performance driver identification 
system that addresses the limitations of traditional models by integrating ensemble learning 
with metaheuristic optimization. The novelty of the proposed framework lies in: 

• The hybrid use of Recursive Feature Elimination (RFE) for dimensionality reduction 
and CSA for hyperparameter optimization. 

• A novel ensemble structure that automatically selects and optimizes base learners to 
maximize predictive performance. 

• Comprehensive empirical evaluation demonstrating superior performance over 
conventional methods. 

The paper begins with a review of existing driver identification techniques in Section 
II. The proposed methodology is detailed in Section III, followed by a comprehensive 
explanation of the experimental setup in Section IV. Finally, Section V presents the key 
findings and outlines future research directions. 
Related Work: 

The challenge of driver identification has attracted significant attention from 
researchers, leading to a wide range of proposed solutions—from traditional approaches to 
modern machine learning techniques. This section explores key contributions across three 
major areas: single-model approaches, ensemble learning techniques, and optimization 
algorithms. 

Early studies focused on individual classifiers such as SVM, DT, and K-Nearest 
Neighbors (KNN) for behavior-based driver identification [7]. These models utilized sensor 
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data capturing acceleration, braking, and steering patterns. While effective to some extent, 
their limited adaptability to diverse and noisy driving behaviors constrained their performance. 
Subsequent work explored enhancements in feature engineering and preprocessing. For 
instance, studies applied techniques like Fast Fourier Transform and sensor calibration to 
improve recognition accuracy [8]. Some researchers also investigated driver state detection 
(e.g., intoxication) using simulator data and RF-based feature selection [9], highlighting the 
potential of behavioral indicators like accelerator depth and lane deviation. However, these 
methods still struggled with generalization in real-world scenarios. 

To overcome the limitations of single models, ensemble methods such as Bagging, 
Boosting, and Random Forest (RF) have been widely adopted. These techniques leverage 
multiple learners to improve accuracy and robustness. Among them, stacking ensembles have 
shown particular promise by combining predictions from several base models through a meta-
learner. However, their performance often hinges on appropriate model selection and 
parameter tuning. Several recent studies have applied stacking in driving-related applications. 
For example, lane-change intention recognition using stacked models that combine RF, SVM, 
LSTM, and Bi-LSTM has achieved over 98% accuracy [10][11]. These results underscore the 
effectiveness of ensemble architectures but also highlight their reliance on complex deep-
learning models and finely tuned-parameters. 

To automate and enhance the configuration of ensemble models, various nature-
inspired optimization algorithms have been explored. Techniques such as Genetic Algorithms 
(GA), Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), and Artificial 
Bee Colony (ABC) have been successfully used to select optimal base classifiers and fine-tune 
model parameters [12][13][14]. These metaheuristic approaches have demonstrated superior 
performance over traditional ensemble setups, particularly when applied to stacking 
architectures. For instance, ABC-optimized stacking models have shown notable 
improvements in prediction accuracy and adaptability across datasets [13][15]. 

Despite these advances, the CSA—a relatively recent addition to nature-inspired 
optimizers—remains underutilized in ensemble learning contexts. Known for its effective 
balance between exploration and exploitation, CSA has shown promise in solving complex 
problems like feature selection and hyperparameter tuning. This study addresses this gap by 
applying CSA to optimize stacking ensemble configurations for driver identification. 

Overall, while prior research has made significant progress using machine learning and 
optimization for driver identification, challenges remain in achieving high generalizability and 
automation. By integrating a CSA-based optimization mechanism with a stacking ensemble 
framework, this study introduces a novel and efficient solution aimed at enhancing 
identification performance in diverse and dynamic driving environments. 
Methodology: 

This section presents the methodology used for driver identification through driving 
behavior analysis, employing an optimized stacking ensemble model in which base model 
selection is guided by the CSA, as illustrated in Figure 1. The ensemble model is built using a 
combination of six base learners: RF, KNN, SVM, Logistic Regression (LR), XGBoost, and 
Naïve Bayes (NB). These models were chosen due to their complementary strengths in 
handling structured data. Each base model is individually trained on the dataset to capture 
distinct patterns in driver behavior. 

LR is selected as the meta-learner to combine the outputs of the base models and 
produce the final prediction. This meta-learner acts as a decision-making layer, mitigating the 
individual weaknesses of the base models by leveraging their combined strengths. The 
hyperparameters of all base learners are fine-tuned using the CSA. This optimization process 
enables the ensemble to achieve high performance with minimal computational overhead. An 
overview of the proposed system is shown in Figure. 1. 
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Figure 1. Overview of the Proposed Methodology for Driver Identification 

Data Description: 
Driver identification heavily relies on behavioral data collected through instrumented 

vehicles equipped with various sensors, including accelerometers, gyroscopes, GPS modules, 
and OBD. These sensors record crucial driving patterns such as acceleration, braking, steering 
angles, and speed. To ensure the system's robustness, data was collected from multiple drivers 
representing diverse driving styles. 

In this study, we utilize the driving behavior dataset provided by the Hacking and 
Countermeasures Research Lab (HCRL) [16]. This dataset includes 51 features extracted from 
in-vehicle CAN-BUS data and OBD-II. It encompasses driving data from ten individuals on 
three different road types in Seoul—highways, city streets, and parking lots—covering a total 
distance of 23 kilometers. Once the raw driving data is collected, it must be preprocessed to 
ensure quality and consistency for model training. 
Data Preprocessing: 

High-quality data is critical for building an effective driver identification system. The 
preprocessing phase includes the following tasks: 
1. Handling Missing Values: Missing values, often caused by sensor errors or data 
transmission issues, are handled using techniques such as interpolation or statistical imputation 
to ensure data completeness. 
2. Normalization: Normalization is applied to scale all feature values to a common 
range. This standardization ensures that features with larger numerical ranges do not 
disproportionately influence the model's learning process. 

Overall, preprocessing involves cleaning the data, ensuring consistency, and preparing 
relevant features for subsequent modeling stages. After data preprocessing, we focus on 
selecting the most relevant features to improve model performance. 
Feature Selection: 

To improve classification accuracy and computational efficiency, feature selection is 
applied. The objective is to reduce the feature space by retaining only the most relevant and 
non-redundant attributes. 

A correlation heatmap is used as a visual tool to examine the relationships among 
features. This helps identify highly correlated features that may introduce multicollinearity, 
which can reduce model interpretability and stability. As illustrated in Figure. 2, the heatmap 
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supports informed decision-making during feature selection, ensuring that the chosen features 
enhance the model's performance while minimizing redundancy. 

 
Figure 2. Correlation Heatmap of Selected Features 

Recursive Feature Elimination (RFE): 
RFE is employed as the primary technique for feature selection in this study. RFE 

works by recursively removing the least significant features and building a model using the 
remaining subset. The importance of each feature is evaluated based on its contribution to the 
predictive performance of a machine learning model, such as SVM or RF. 
The RFE process involves the following steps: 
1. Initial Model Training: A machine learning model is trained using the complete set 
of features. 
2. Feature Ranking: Features are ranked according to importance scores, which are 
derived from model coefficients (for linear models) or feature importance metrics (for tree-
based models). 
3. Feature Elimination: The least important features are removed. 
4. Iteration: Steps 2 and 3 are repeated until an optimal subset of features is selected, 
based on evaluation metrics such as classification accuracy. 

RFE assists in identifying the most informative features that significantly contribute 
to the classification task, thereby improving generalization and reducing model complexity. 
The final set of 20 features selected using RFE includes: 
• Engine_soaking_time 
• Fuel_consumption 
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• Accelerator_Pedal_value 
• Throttle_position_signal 
• Intake_air_pressure 
• Absolute_throttle_position 
• Long_Term_Fuel_Trim_Bank1 
• Engine_speed 
• Engine_torque_after_correction 
• Torque_of_friction 
• Engine_coolant_temperature 
• Engine_torque 
• Calculated_LOAD_value 
• Maximum_indicated_engine_torque 
• Activation_of_Air_compressor 
• Wheel_velocity_front_left-hand 
• Wheel_velocity_rear_right-hand 
• Wheel_velocity_rear_left-hand 
• Master_cylinder_pressure 
Stacking Ensemble Classification: 

Stacking is a powerful ensemble learning technique that combines multiple models to 
improve overall classification performance. It operates on a two-level architecture: 
• Level 1 (Base Learners): A diverse set of classifiers (e.g., RF, KNN, SVM, NB, 
XGBoost, etc.) are trained independently on the training dataset. Their outputs (predictions 
or class probabilities) form a new dataset. 
• Level 2 (Meta Learner): An LR model is employed as the meta-learner, trained on 
the outputs from the base models to make final predictions. 

The base learner selection is a critical aspect of stacking and is performed using the 
CSA, which optimizes the choice of classifiers and their configurations. 

The architecture of the stacking model is depicted in Figure. 3. The original input data 
is first processed through the base-level models (Level 1), and their predictions are then fed 
into the meta-level model (Level 2). This layered approach allows the meta-learner to capture 
patterns missed by individual classifiers, thereby enhancing model accuracy and robustness. 

By leveraging the strengths of heterogeneous models and using CSA for optimal base 
model selection, the proposed stacking ensemble significantly improves the performance of 
the driver identification system. 
Stacking Optimization Using CSA: 

The selection of base models plays a crucial role in constructing an effective stacking 
ensemble classifier. To ensure optimal performance, this study employs the CSA to identify 
the most suitable combination of base classifiers from a pool of candidate models. 
Crow Search Algorithm (CSA): 

CSA is a population-based metaheuristic optimization algorithm inspired by the 
intelligent foraging behavior of crows. Introduced by Askarzadeh in 2016 [17], CSA mimics 
how crows use memory and deception to locate and protect food resources. Its biological 
inspiration and competitive performance make it suitable for applications in engineering, 
machine learning, and data science. 
The algorithm operates through two main mechanisms: 
• Exploration: Crows explore the search space by randomly moving to new positions, 
which promotes diversity and prevents premature convergence. 
• Exploitation: Crows use memory to move toward the best-known solutions (hiding 
places), with a probability of deception (controlled by the Awareness Probability, AP) to avoid 
being followed. 
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Figure 3. Architecture of the Stacking Ensemble Model 

The general behavior of the CSA is illustrated in Figure. 4. 
CSA Implementation for Base Model Selection: 

In this study, CSA is applied to select the optimal combination of base learners for the 
stacking ensemble. The implementation involves the following steps: 

• Initialization: A population (swarm) of n crows is randomly initialized in a d-
dimensional space, where each crow represents a unique combination of base classifiers. 

• Fitness Evaluation: Each crow’s position (i.e., selected classifier combination) is 
evaluated using a fitness function that reflects the classification performance (e.g., accuracy or 
F1 score) of the resulting stacking ensemble. The fitness value is stored as the crow’s memory 
mi, representing its best-known solution. 

• Position Update: Each crow selects another crow at random, denoted as xj, and 
generates a random number r. 
o If r > AP, the crow xi moves toward the memory location mj of crow xj, simulating 
the act of following another crow’s hiding place. 
o If r ≤ AP, the crow moves randomly, representing deceptive behavior to mislead 
others. 

• Iteration: The process is repeated iteratively, updating the memory and positions of 
all crows, until a convergence criterion is met or a predefined number of iterations is reached. 

By balancing exploration and exploitation, CSA enables the automatic selection of an 
optimal base model set that enhances the predictive power of the stacking ensemble without 
exhaustive manual testing. 

• Crow updates its position by selecting a random other crow i.e. 𝑥𝑗  and following it to 

know 𝑚𝑗. Then new 𝑥𝑗 is calculated as follows:  

𝑥𝑖,𝑖𝑡𝑒𝑟 +𝑟𝑖 × 

𝑓𝑙𝑖,𝑖𝑡𝑒𝑟 × 

𝑥𝑖,𝑖𝑡𝑒𝑟+1 = (𝑚𝑗,𝑖𝑡𝑒𝑟 −𝑥𝑖,𝑖𝑡𝑒𝑟)        𝑟𝑗 𝐴𝑃𝑗,𝑖𝑡𝑒𝑟       (1) 

{𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

Where 𝐴𝑃𝑗,𝑖𝑡𝑒𝑟 refers to crow 𝑗 awareness probability, iter refers to iteration number, 

𝑟𝑖, 𝑟𝑗 refers to random numbers,  

𝑓𝑙𝑖,𝑖𝑡𝑒𝑟 is the crow 𝑖 flight length to denote crow 𝑗 memory.  



                                 International Journal of Innovations in Science & Technology 

Special Issue |ICTIS 2025                                                                       Page |251 

• Updating memory  

𝑥𝑖,𝑖𝑡𝑒𝑟      𝑓(𝑥𝑖,𝑖𝑡𝑒𝑟 (𝑚𝑖,𝑖𝑡𝑒𝑟) 

𝑚𝑖,𝑖𝑡𝑒𝑟+1 = (2) 

{𝑚𝑖,𝑖𝑒𝑟               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 
Figure 4. Crow Search Algorithm Architecture  

CSA-Selected Base Models for the Stacking Ensemble: 
Based on the optimization performed using the CSA, the following machine-learning 

algorithms were selected as the optimal base learners for the stacking ensemble: 
• RF Classifier 
• LR 
• KNN Classifier 
• NB 

These models were chosen due to their complementary strengths in capturing various 
patterns in driver behavior, as identified during the CSA optimization process. Meanwhile, 
XGBoost and SVM were excluded from the final ensemble configuration, indicating that their 
inclusion did not enhance the overall performance of the stacked model. This selection 
outcome is illustrated in Figure. 5, which visualizes the base model selection process and the 
comparative performance of candidate classifiers. 
Performance Evaluation: 

By applying CSA, the optimal combination of base models is selected, resulting in a 
more effective stacking ensemble classifier with enhanced predictive accuracy. The 
performance of the proposed driver identification system is rigorously assessed using widely 
recognized evaluation metrics to ensure the robustness and reliability of the classification 
results: 
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• Accuracy: Measures the proportion of correctly identified drivers out of the total 
number of test instances. 

• Precision: Indicates the ratio of true positive predictions to the total predicted 
positives, reflecting the classifier’s ability to avoid false positives. 

• Recall: This represents the ratio of true positives to the actual positives in the dataset, 
highlighting the model’s ability to capture all relevant instances. 

• F1-Score: The harmonic mean of precision and recall, offering a balanced metric that 
accounts for both false positives and false negatives. 

These metrics collectively provide a comprehensive evaluation of the classifier's 
performance in real-world driver identification scenarios. 

 
Figure 5. Stacking Ensemble Framework with CSA for Classifier Selection 

Results: 
All experiments were conducted using Google Colab, leveraging its cloud-based 

computational resources. The framework was implemented in Python, utilizing popular 
machine-learning libraries such as Scikit-learn, XGBoost, and NumPy. To enhance training 
and optimization efficiency, parallel processing techniques were employed, ensuring optimal 
usage of available computing power. 

The experimental setup was carefully designed to simulate realistic conditions for 
driver identification, ensuring a fair and meaningful evaluation of the proposed system. The 
optimized stacking ensemble model, with base classifiers selected via CSA and 
hyperparameters tuned accordingly, achieved the following performance metrics: 
• Accuracy: 0.9843 
• Precision: 0.9843 
• Recall: 0.9843 
• F1 Score: 0.9843 

These results demonstrate the superior predictive power and balanced classification 
capabilities of the proposed approach. 

To contextualize these results, six machine learning models were evaluated and 
compared based on Accuracy, Precision, Recall, and F1 Score. The Optimized Stacking Model 
outperformed all other models across every metric, reflecting its near-perfect classification 
ability and strong generalization to both positive and negative instances. A comparative 
summary is presented in Table 1. 
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• Optimized Stacking Model: Achieved the best performance with 98.43% across all 
metrics, confirming the effectiveness of CSA-based model selection. 
• Standard Stacking Ensemble: Showed strong results with 95.83% accuracy, 
indicating the inherent strength of ensemble learning even without optimization. 
• RF and KNN: Provided moderate to good results, with accuracies of 90.69% and 
85.73%, respectively, demonstrating reasonable classification capability. 

These findings validate the proposed method's robustness and effectiveness in driver 
identification tasks. The accuracy of each model is shown in Figure. 6. 

Table 1. Comparative Performance of Machine Learning Models Based on Classification 
Metrics 

Metric 
Random 
Forest 

Logistic 
Regression 

K-
Nearest 

Neighbor 

Naive 
Bayes 

Stacking 
Ensemble 

Optimized 
Stacking 
Model 

Accuracy 
(%) 

90.69 57.39 85.73 31.99 95.83 98.43 

Precision 0.9106 0.5745 0.8570 0.4048 0.9582 0.9843 
Recall 0.9069 0.5739 0.8573 0.3199 0.9583 0.9843 

F1 Score 0.9062 0.5669 0.8569 0.3015 0.9582 0.9843 

Evaluation of Model Performance and Overfitting Mitigation: 
In our evaluation, LR exhibited relatively lower performance with an accuracy of 

57.39%. This suggests that the model may not be well-suited for the driver identification task, 
as it struggled to correctly classify instances across the dataset. The low performance of LR 
indicates that its linear decision boundaries may not capture the complex, non-linear patterns 
inherent in driving behavior data. 

NB, on the other hand, demonstrated the lowest performance, with an accuracy of 
31.99%. This result underscores the challenges that NB faces when its assumptions, such as 
feature independence and Gaussian distribution, do not align well with the driving behavior 
data. Consequently, the Precision, Recall, and F1 Scores were also significantly low, reaffirming 
the model’s limited efficacy for this task. 

To mitigate the possibility of overfitting, particularly in light of the near-perfect results 
from the optimized stacking ensemble, several strategies were implemented during the 
experimental process: 
1. K-Fold Cross-Validation (k = 5): This technique partitions the dataset into five 
equally sized folds. For each iteration, the model is trained on k−1 folds and validated on the 
remaining fold, ensuring that every data point is used for both training and validation. This 
process provides a more comprehensive view of the model’s performance, helping to prevent 
the model from fitting too closely to any one subset of the data. 
2. Dataset Balancing: To avoid class imbalance biases, the dataset was balanced during 
training. This step ensures that the model generalizes better across all instances, reducing the 
likelihood of the model being biased towards the majority class and improving its robustness. 
3. Data Leakage Prevention: Special care was taken to avoid data leakage throughout 
the experimentation process. All data transformations, including normalization and encoding, 
were applied strictly within the training set and then independently transferred to the validation 
and testing sets. This careful separation prevented any unintended influence of the test data 
on model training, ensuring that the model's evaluation metrics were fair and reliable. 

These combined strategies ensured minimal risk of overfitting. The model showed 
consistent performance across the various cross-validation folds and a separate holdout test 
set, confirming the robustness of the proposed system. 
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Figure 6. Accuracy of the models. 

Discussion: 
Results obtained from this study further strengthen the facts of the integration of CSA 

in stacking ensemble with driver identification. The stacking ensemble optimized by CSA 
achieved the highest accuracy value of 98.43%, which surpasses the performance of individual 
classifiers like RF (90.69%), KNN (85.73%), LR (57.39%), and NB (31.99%) and that of the 
standard, non-optimized stacking ensemble (95.83%). Top-notch improvement comes from 
two things: (1) smart hyperparameter tuning and base model selection by CSA, which ensures 
classifier feasibility, and (2) using RFE, thus reducing noise and selecting the most informative 
subset of the features. 

Most importantly, though, its efficiency in computation makes it stand apart from 
others as compared to conventional state-of-the-art models available in the literature such as 
Bi-LSTM or attention-based architectures, reporting the accuracies of around 98.24% [10] and 
95.54% [11] respectively. Unlike deep learning models, which usually operate with large 
training datasets, high-performance GPUs, and long training times, the CSA-optimized 
stacking ensemble is lightweight and well-suited for real-time applications in ITS. 
The findings also highlight the shortcomings of classical models such as NB and LR 
concerning high-dimensional, non-linear behavioral data. The low performance of these 
models can be attributed to simplistic assumptions, such as feature independence in NB and 
linearity of decision boundaries in LR. 

Additionally, this research showcases the model's generalizability and strength. 
Through the use of methods such as k-fold cross-validation, data balancing, and a clear 
division of training and testing datasets (to avoid data leakage), we guaranteed that the 
performance measured is not a consequence of overfitting. The model showed stable results 
throughout all validation folds, indicating its viability for real-world use. 

Despite these strengths, certain limitations should be acknowledged. First, the dataset 
comes from a limited set of ten drivers in a controlled setting and we might not see an 
exhaustive set of variation across populations in real-world driving scenarios. Second, even 
though CSA was successful, its performance and convergence rate may have to be compared 
with newer metaheuristic optimizers like Grey Wolf Optimizer (GWO), Firefly Algorithm 
(FA), or PSO variants in the future to test their results. Furthermore, no real-time inference 
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latency and performance on embedded systems or edge devices were tested that should be 
considered in coming future. 
Conclusion: 

This study presents a CSA-optimized stacking ensemble framework for driver 
identification, achieving significant improvements in predictive performance compared to 
traditional methods. By leveraging the complementary strengths of ensemble learning and 
CSA-based optimization, the framework effectively addresses key challenges in driver 
identification, such as high variability in driver behavior and the complexity of sensor data. 

Previous studies, such as those in [10] and [11], demonstrated the advantages of 
integrating multiple classifiers, including RF, SVM, Long Short-Term Memory (LSTM), and 
Bidirectional LSTM (Bi-LSTM), with reported accuracy levels of 98.24% and 95.54%, 
respectively. In this study, the proposed framework further improves upon these results, 
achieving an accuracy of 98.43%, thereby surpassing the performance of existing models in 
driver identification tasks. 

While the current study validates the framework using a controlled dataset, its potential 
for real-world applications in ITS is substantial. Future work will focus on deploying the 
framework in real-world fleet environments, enabling the evaluation of its adaptability and 
robustness under diverse conditions. These conditions may include factors such as unseen 
drivers, varying environmental conditions (e.g., weather, traffic patterns), and different vehicle 
types. 

Additionally, the integration of dynamic datasets from connected vehicles and smart 
infrastructure will enhance the scalability and real-time applicability of the system. Another 
promising direction is the incorporation of edge computing techniques to enable on-device 
processing, ensuring low-latency, efficient operation in real-time ITS environments. 

These future efforts will contribute to a more comprehensive evaluation of the 
framework’s performance and its practical usability in large-scale ITS deployments, ultimately 
paving the way for its application in advanced transportation systems that require scalable, 
adaptive, and real-time driver identification solutions. 
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