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his article presents a local radial basis function-based differential quadrature method 
for solving the time-fractional advection-diffusion equation. Backward difference 
formula is utilized to approximate Caputo fractional derivative. Differential 

quadrature approach is employed to compute the space derivatives by 3-point central 
scheme in the neighborhood of a node. Two types of radial basis functions are utilized in 
numerical simulations. Accuracy and computational efficiency of proposed technique is 

assessed via 𝐿∞, 𝐿2 error norms, fractional order, time and spatial step sizes, rate of 
convergence and execution time. Three nonhomogeneous test problems are solved to 
validate the method, and the results are compared with finite volume method to show its 
superiority. 
Keywords: Caputo fractional derivative, Radial basis functions, Fractional Advection-
Diffusion equation, Differential quadrature, Backward difference formula. 
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Introduction: 
Fractional partial differential equations (FPDEs) extend classical partial differential 

equations by incorporating derivatives of non-integer (fractional) order. This advancement 
provides a flexible mathematical framework for modeling complex phenomena across 
various disciplines including physics, biology, imaging science, and engineering, particularly 
in systems characterized by unusual behaviors such as memory effects, spatial heterogeneity, 
and long-range dependencies [1], [2], [3]. Unlike conventional PDEs, FPDEs are capable of 
capturing long-range dependencies in both time and space, making them particularly 
effective for describing processes such as viscoelastic behavior, fluid flow in porous media, 
and anomalous diffusion in irregular environments. Although the use of fractional 
derivatives adds complexity to both analytical and computational methods, it enables more 
accurate and realistic modeling of intricate systems that traditional equations may not 
adequately represent. Given the memory-dependent characteristics and intrinsic complexity 
of fractional differential equations, obtaining analytical solutions is often highly challenging 
and impractical.  

Consequently, the design of efficient and accurate computational algorithms has 
become crucial for their numerical solution. In contrast to traditional mesh-based methods 
such as finite element, finite difference, and spectral techniques [4], [5], Radial Basis 
Function (RBF) based meshless methods utilize scattered nodes, removing the requirement 
for structured grid generation and providing enhanced flexibility for modeling complex and 
irregular domains [6], [7]. Moreover, mesh-based methods are time consuming, expensive 
and hard to implement while RBF provides highly accurate results, easily extendable to 
higher dimensional problems, and having simple implementation in complicated geometries 
[8], [9], [10], [11], [12]. Radial basis function (RBF) techniques that incorporate all 
interpolation nodes across the entire problem domain are referred to as global RBF 
interpolation methods. These methods construct a full interpolation matrix incorporating 
contributions from every node, which generally enhances accuracy as the number of nodes 
increases. However, this improvement comes at the cost of increased computational expense 
and ill-conditioning of the interpolation matrix, often leading to instability. To address the 
challenges of numerical differentiation, authors[13] introduced the differential quadrature 
(DQ) method in 1971 for approximating derivatives of sufficiently smooth functions. 
Recognized as an efficient alternative to finite difference and finite element methods, DQ 
offers high accuracy with fewer computational resources by using a relatively small set of 
nodal points [14], [15].  

To mitigate the instability and ill-conditioning issues of global RBFs, author[16] 
proposed the local RBF method combined with differential quadrature for solving the 
incompressible 2D Navier–Stokes equations. In recent years, RBF-based methods have been 
successfully applied to a wide range of problems, including space-fractional diffusion 
equations on 3D irregular domains [17], multi-dimensional hyperbolic telegraph equations in 
nuclear materials science [18], dam break problems [19], 2D time-fractional Sobolev 
equations [20], the time-fractional cable equation [21], and oil water two-phase Darcy flow 
[22]. The fractional advection-diffusion equation is a significant type of FPDE used to 
model transport phenomena in complex systems, including air pollution, groundwater 
contamination, chemical solute dispersion, discharge of contaminated fluids, heat transfer 
processes, thermal pollution in river systems, and seawater intrusion, among others [23], [24]. 
In this study, we consider the following time-fractional advection-diffusion equation 
(TFADE), as presented in [24]: 
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∂α

∂tα
u(x, t) + K1

∂

∂x
u(x, t) − K2

∂2

∂x2
u(x, t) = f(x, t),   0 < α < 1, a < x < b, 0 < t

≤ T,   (1)    
with 

u(x, 0) = φ(x),       a ≤ x ≤ b,             (2) 

u(a, t) = χ(t),   u(b, t) = ς(t),    0 < t ≤ T, (3) 

where 𝑢(𝑥, 𝑡) denotes the field variable which can describe solute concentration 

besides other phenomenon, 𝐾1 represents the constant velocity of fluid and 𝐾2 represents 

the coefficient of dispersion, 𝑥 is space variable and 𝑡 is the time variable, and 
𝜕𝛼

𝜕𝑡𝛼 denotes 

the 𝛼-order Caputo fractional derivative. 𝜑(𝑥), 𝜒(𝑡) and 𝜍(𝑡) are given smooth functions 

while 𝑓(𝑥, 𝑡) represents sinks/sources. 
Several researchers dedicated significant effort and proposed various methods for 

the solution of Eq. (1). author[23] solved Eq. (1) using finite volume element method. 
Author[24] utilized an upwind implicit finite difference method to get solution of Eq. (1). 
Author[25] used Lagrange square interpolation and weighted and shifted Legendre 
polynomials to get the solution of Eq. (1). Author[26] provided a Haar wavelet based 
technique to solve Eq. (1). Author[27] applied Legendre collocation method to find the 
solution of Eq. (1). Recently, author[28] obtained the approximate analytical solution of Eq. 
(1) using the homotopy analysis method.  
Novelty Statement: 

The novelty of this work lies in the integration of local RBFs with the differential 
quadrature method and the backward difference formula to overcome the limitations of 
global RBF methods, such as ill-conditioning and high computational cost. This hybrid 
meshfree technique offers an effective approach for approximating space-time fractional 
derivatives in complex domains, providing improved accuracy and convergence compared to 
existing finite volume and finite difference methods. The results of the proposed method are 
compared with those obtained using the finite volume element method (FVEM) [23] to 
demonstrate its superiority. 
Objectives of the Study: 

The primary objective of this study is to develop an accurate, stable, and 
computationally efficient numerical method for solving time-fractional advection-diffusion 
equations, which are widely used to model transport processes exhibiting memory and non-
local effects. 
Proposed Methodology: 

To develop the local radial basis functions-based differential quadrature method, we 

discretized the space interval [𝑎, 𝑏] and time interval [0, 𝑇] as 𝑎 = 𝑥1 < 𝑥2 < 𝑥3 < ⋯ <
𝑥𝑀 = 𝑏 and 𝑡𝑗 = 𝑗∆𝑡, 𝑗 = 0,1,2, … , 𝐿, respectively.       

The following mathematical notions were used to achieve the suggested method: 
Definition-1: 

A function Φ: ℝ𝑛 → ℝ is called radial if there exists a univariate function 𝜑: [0, ∞) → ℝ 
such that  

Φ(𝑥) = 𝜑(  ⃦𝑥  ⃦),  where 𝑥 ∈ ℝ𝑛 and    ⃦.  ⃦ represents the Euclidean norm [6]. 
Definition-2: 

A radial basis function 𝜑(𝑟) is a one variable continuous real valued function. 

Furthermore, it relies on the distance from the origin (or any other fixed center point 𝑑) [6]. 
The following types of infinitely smooth RBFs are used in the proposed method [6]: 
Multiquadric (MQ): 

𝝋(𝒓𝒋) = √𝒓𝒋
𝟐 + 𝒄𝟐, 
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Gaussian (GA): 𝜑(𝑟𝑗) = 𝑒−𝑐𝑟𝑗
2

, 

where 𝑟𝑗 =   ⃦𝑥 − 𝑑𝑗   ⃦ and 𝑐 is a shape parameter that impacts both the solution's accuracy 

and the conditioning of the system matrix (for details we refer to paper [6]). 
Definition-3 

The Caputo derivative 
𝜕𝛼𝑢(𝑥,𝑡)

𝜕𝑡𝛼  of order 𝛼, 0 ≤ 𝛼 ≤ 1, has the following form [29]:    

𝜕𝛼𝑢(𝑥,𝑡)

𝜕𝑡𝛼 =
1

Γ(1−𝛼)
∫ (𝑡 − 𝑠)−𝛼 𝜕𝑢(𝑥,𝑠)

𝜕𝑠
𝑑𝑠

𝑡

0
.  (4) 

Temporal Fractional Derivative Approximation: 
The following theorem was used to approximate the time derivative in Eq. (1). 

Theorem 
The Caputo derivative given in (4) has the following approximation using backward 

difference formula [29]:  
𝜕𝛼𝑢(𝑥,𝑡𝑁+1)

𝜕𝑡𝛼 =
1

Γ(2−𝛼)
∑ 𝑏𝑗

𝑢(𝑥,𝑡𝑁+1−𝑗)−𝑢(𝑥,𝑡𝑁−𝑗)

(∆𝑡)𝛼
𝑁
𝑗=0 + 𝑟∆𝑡

𝑁+1    (5) 

where   𝑏𝑗 = (𝑗 + 1)1−𝛼 − 𝑗1−𝛼, 𝑗 = 0,1,2, … , 𝑁, and 𝑟∆𝑡
𝑁+1 is the truncation error such that 

𝑟∆𝑡
𝑁+1 ≤ 𝐶𝑢∆𝑡2−𝛼. 

Spatial Discretization and Approximation: 

We used the DQ method [13] to approximate the spatial derivatives in Eq.(1) at 𝑥 =
𝑥𝑖 as follows: 

𝜕𝑛𝑢(𝑥𝑖,𝑡)

𝜕𝑥𝑛 = ∑ 𝑎𝑖𝑙
(𝑛)𝑀

𝑙=1 𝑢(𝑥𝑙, 𝑡)     (6) 

where 𝑎𝑖𝑙
(𝑛)

, 𝑖 = 1,2, … , 𝑀, are called weighting coefficients, and 𝑛 = 1,2. 

Now using RBF to find the weighting coefficients 𝑎𝑖𝑙
(𝑛)

, 𝑖 = 1,2, … , 𝑀, we choose 

𝑥𝑖1
, 𝑥𝑖2

, … , 𝑥𝑖𝑀𝑖
, 𝑀𝑖 ≪ 𝑀,  in the neighborhood of 𝑥𝑖 and substituting in (6),    

𝜑𝑘
(𝑛)(𝑥𝑖) ≈  ∑ 𝑎𝑖𝑙

(𝑛)
𝜑𝑘(𝑥𝑙),

𝑖𝑀𝑖

𝑙=𝑖1
          (7) 

where 𝜑𝑘
(𝑛)(𝑥𝑖) =  

𝜕𝑛𝜑(‖𝑥𝑖−𝑥𝑘‖)

𝜕𝑥𝑛 , 𝑘 = 𝑖1, 𝑖2, … , 𝑖𝑀𝑖
.  

Matrix form of Eq. (7) is as follows: 

𝛗𝑖 = 𝐀𝒊𝐚𝑖
(𝑛)

, 

where        𝛗𝑖 = [

𝜑𝑖1

(𝑛)
(𝑥𝑖)

⋮

𝜑𝑖𝑀𝑖

(𝑛)(𝑥𝑖)
],        𝐀𝒊 = [

𝜑𝑖1
(𝑥𝑖1

) … 𝜑𝑖𝑀𝑖
(𝑥𝑖1

)

⋮ ⋱ ⋮

𝜑𝑖1
(𝑥𝑖𝑀𝑖

) … 𝜑𝑖𝑀𝑖
(𝑥𝑖𝑀𝑖

)

] and 𝐚𝑖
(𝑛)

= [

𝑎𝑖𝑖1

(𝑛)

⋮

𝑎𝑖𝑖𝑀𝑖

(𝑛)
]. 

Thus,  

𝐚𝑖
(𝑛)

= 𝐀𝑖
−𝟏𝛗𝑖.  (8) 

Thus, using Eqs. (4) and (8) in (1), we get      
1

Γ(2−𝛼)
∑

𝑢(𝑥𝑖,𝑡𝑁+1−𝑗)−𝑢(𝑥𝑖,𝑡𝑁−𝑗)

(∆𝑡)𝛼
𝑁
𝑗=0 𝑏𝑗 + (𝐾1𝐚𝑖

(1)
− 𝐾2𝐚𝑖

(2)
)

𝑡

𝐮𝑖
𝑁+1 = 𝑓(𝑥𝑖, 𝑡𝑁+1),  (9) 

where 𝐮𝑖
𝑁+1 = [𝑢𝑖1

𝑁+1, 𝑢𝑖2

𝑁+1, … , 𝑢𝑖𝑀𝑖

𝑁+1]𝑡, 𝑖 = 1,2, … , 𝑀. 

Algorithm: 
The proposed method (9) can be implemented in the following steps: 

1. 𝑀 nodes were selected from the space domain [𝑎, 𝑏] such that 𝑎 = 𝑥1 < 𝑥2 < ⋯ <
𝑥𝑀 = 𝑏. 

2. The time step size ∆𝑡 and fractional order  𝛼 were chosen such that 0 < 𝛼 ≤ 1. 

3. For each node 𝑥𝑖 a set of neighboring nodes 𝑥𝑖1
, 𝑥𝑖2

, … , 𝑥𝑖𝑀𝑖
 was selected.   

4. The weighting coefficients were computed using the radial basis function (RBF) approach. 
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5. The initial solution 𝐮𝑖
0 was calculated from Eq. (2), and Eq. (9) was solved to obtain 𝐮𝑖

𝑁+1 

6.  Steps 3 to 5 were repeated to determine the solution at each node 𝑥𝑖. 
The flow diagram of the proposed algorithm is shown below:   

Input  

𝑥𝑖 , ∆𝑡, 𝑡𝑗 , 𝛼, and 𝑢(𝑥𝑖, 0) 

↓ 
Selection of local nodes 

(𝑥𝑖𝑘
) 

↓ 
Computation weighting 

coefficients 𝑎𝑖𝑖𝑘

(1)
, 𝑎𝑖𝑖𝑘

(2)
 

↓ 
Application of Scheme 

↓ 

Output (the solution 𝑢𝑖) 

Figure 1. Flow diagram showing implementation of the local RBF-DQ Method 
This section presents numerical simulations of the proposed method. To validate its 

effectiveness, three examples were implemented over the spatial domain [0, 1]. To assess 
reliability, performance and accuracy of the present method, we utilized the following error 

norms 𝐿∞, 𝐿2, and rate of convergence (RoC) defined as [10]:  

𝐿∞ = max
1≤𝑖≤𝑀

|𝑢𝑖 − 𝑢̂𝑖|, 𝐿2 = √ℎ ∑ (𝑢𝑖 − 𝑢̂𝑖)2𝑀
𝑖=1 , and  RoC =

log10(‖𝐮−𝐮̂𝛿𝑡𝑖
‖/‖𝐮−𝐮̂𝛿𝑡𝑖+1

‖)

log10(𝛿𝑡𝑖/𝛿𝑡𝑖+1)
, 

where 𝑢𝑖 and 𝑢̂𝑖 represent exact and approximate solutions respectively. Moreover, to 

compare our results with the finite volume element method [23], the values of 𝐾1 = 1 and 

𝐾2 = 1 were taken. In each example, the functions 𝜑(𝑥), 𝜒(𝑡), 𝜍(𝑡) were extracted from 

the exact solution. The values of shape parameter 𝑐 used to get accurate results are 
mentioned in tables. Two-GB RAM, Corei3, 2.4GHz processor, and uniformly distributed 
spatial nodes were used for implementation of the proposed method. Computer execution 

time (RT) was calculated in seconds. 
Results and Discussion: 
Test Example-1 

We utilized analytical solution as 𝑢(𝑥, 𝑡) = 𝑒𝑥𝑡𝛽, in the first example, and source function 
as: 

𝑓(𝑥, 𝑡) =
Γ(𝛽 + 1)

Γ(𝛽 + 1 − 𝛼)
𝑒𝑥𝑡𝛽−𝛼     (10) 

Simulations were performed with various values of the parameters 𝛼, 𝛽, 𝛿𝑡, ℎ and 
MQ and GA types of RBFs, and the computed results are recorded in Tables 1-3. In Table 

1, 𝐿∞, 𝐿2 and computer run time are provided at different times 𝑡, 0 ≤ 𝑡 ≤ 1 using 𝛼 =
0.5, 𝛽 = 5, 𝛿𝑡 = 0.001, ℎ = 0.01, MQ and GA. Table 2 shows the computed values of 𝐿∞, 
𝐿2 and temporal RoC for 𝛼 = 0.1, 0.5, 0.9, 𝛽 = 5, 𝑁 = 100 and 𝛿𝑡 =
0.1, 0.05, 0.025, 0.0125, MQ and GA. Table 3 provides 𝐿∞, 𝐿2 and spatial RoC for 𝛼 =
0.1, 0.5, 0.9, 𝛽 = 5, ℎ = 0.1, 0.05, 0.025, 0.0125, 𝛿𝑡 = 0.001, MQ and GA. It can be 
observed from Tables 1-3, that MQ provides better accuracy than GA. Moreover, the 
accuracy of the proposed method improves as the time step is reduced. Graphical illustration 
of approximate solutions by the present scheme using MQ and error in approximation for 

𝛿𝑡 = 0.001, ℎ = 0.05, 𝛼 = 0.5, 𝑡 = 1 is given in Figures 2 and 3. Figure 2(a) presents both 
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the exact and approximate solutions, while Figure 2(b) illustrates the error associated with 
the approximate solutions. Figure 3 displays approximate solutions at different times in the 

interval 0 ≤ 𝑡 ≤ 1. 
Table 1. Error norms and RT using 𝛿𝑡 = 0.001, 𝑁 = 100, 𝛼 = 0.5 

 MQ (𝒄 = 𝟓. 𝟐) GA (𝒄 = 𝟎. 𝟏) 

𝒕 𝐿∞ 𝐿2 RT(sec) 𝐿∞ 𝐿2 RT(sec) 

𝟎. 𝟏 1.80𝑒−8 1.31𝑒−8 0.2931 1.80𝑒−8 1.31𝑒−8 0.2345 

𝟎. 𝟐 1.65𝑒−7 1.20𝑒−7 0.6018 1.65𝑒−7 1.20𝑒−7 0.4858 

𝟎. 𝟑 5.90𝑒−7 4.29𝑒−7 0.9439 5.95𝑒−7 4.32𝑒−7 0.7659 

𝟎. 𝟒 1.44𝑒−6 1.05𝑒−6 1.3110 1.46𝑒−6 1.06𝑒−6 1.0848 

𝟎. 𝟓 2.85𝑒−6 2.07𝑒−6 1.7386 2.92𝑒−6 2.12𝑒−6 1.4345 

𝟎. 𝟔 4.95𝑒−6 3.60𝑒−6 2.1723 5.13𝑒−6 3.72𝑒−6 1.8676 

𝟎. 𝟕 7.84𝑒−6 5.69𝑒−6 2.6665 8.23𝑒−6 5.97𝑒−6 2.2579 

𝟎. 𝟖 1.16𝑒−5 8.40𝑒−6 3.2106 1.24𝑒−5 8.96𝑒−6 2.7502 

𝟎. 𝟗 1.62𝑒−5 1.18𝑒−5 3.7848 1.76𝑒−5 1.28𝑒−5 3.2801 

𝟏 2.17𝑒−5 1.58𝑒−5 4.3995 2.42𝑒−5 1.75𝑒−6 3.8526 

Table 2. Error Norms and RoC at 𝒕 = 𝟏 using 𝑵 = 𝟏𝟎𝟎 

  MQ GA 

𝛼 𝛿𝑡 𝑐 𝐿∞ 𝐿2 RoC (𝐿∞) 𝑐 𝐿∞ 𝐿2 RoC (𝐿∞) 

0.1 0.1 0.66 1.32𝑒−3 9.57𝑒−4 --- 0.1 1.37𝑒−3 9.95𝑒−4 --- 

 0.05  3.84𝑒−4 2.78𝑒−4 1.7846  4.36𝑒−4 3.16𝑒−4 1.6567 
 0.025  8.02𝑒−5 5.81𝑒−5 2.2582  1.32𝑒−4 9.58𝑒−5 1.7199 

 0.0125  1.36𝑒−5 9.88𝑒−6 2.5552  3.84𝑒−5 2.78𝑒−5 1.7831 

0.5 0.1 0.3 1.84𝑒−2 1.34𝑒−2 --- 0.05 1.99𝑒−2 1.44𝑒−2 --- 

 0.05  6.29𝑒−3 4.56𝑒−3 1.5503  7.71𝑒−3 5.59𝑒−3 1.3660 
 0.025  1.48𝑒−3 1.07𝑒−3 2.0861  2.89𝑒−3 2.10𝑒−3 1.4161 
 0.0125  3.43𝑒−4 2.50𝑒−4 2.1099  1.06𝑒−3 7.69𝑒−4 1.4467 

0.9 0.1 0.2 9.38𝑒−2 6.81𝑒−2 --- 0.11 1.01𝑒−1 7.35𝑒−2 --- 

 0.05  4.26𝑒−2 3.10𝑒−2 1.1378  4.95𝑒−2 3.60𝑒−2 1.0307 
 0.025  1.70𝑒−2 1.24𝑒−2 1.3228  2.37𝑒−2 1.72𝑒−2 1.0635 
 0.0125  4.66𝑒−3 3.38𝑒−3 1.8696  1.12𝑒−2 8.14𝑒−3 1.0809 

Table 3. Error Norms and RoC at 𝒕 = 𝟏 using 𝜹𝒕 = 𝟎. 𝟎𝟎𝟏 

  MQ GA 

𝛼 ℎ 𝑐 𝐿∞ 𝐿2 RoC (𝐿∞) 𝑐 𝐿∞ 𝐿2 RoC (𝐿∞) 

0.1 0.1 1.32 7.73𝑒−5 5.60𝑒−5 --- 0.19 9.40𝑒−5 6.82𝑒−5 --- 

 0.05  1.95𝑒−5 1.41𝑒−5 1.9865  2.32𝑒−5 1.68𝑒−5 2.0206 

 0.025  4.59𝑒−6 3.33𝑒−6 2.0879  5.47𝑒−6 3.96𝑒−6 2.0823 
 0.0125  8.26𝑒−7 5.98𝑒−7 2.4749  1.04𝑒−6 7.51𝑒−7 2.3992 

0.5 0.1 0.5 1.46𝑒−2 1.06𝑒−2 --- 3.0 1.47𝑒−2 1.06𝑒−2 --- 

 0.05  4.06𝑒−3 2.95𝑒−3 1.8460  3.76𝑒−3 2.73𝑒−3 1.9656 
 0.025  1.03𝑒−3 7.45𝑒−4 1.9844  9.62𝑒−4 6.99𝑒−4 1.9644 

 0.0125  2.39𝑒−4 1.74𝑒−4 2.0992  2.60𝑒−4 1.89𝑒−4 1.8875 

0.9 0.1 0.32 6.72𝑒−2 4.90𝑒−2 --- 14.0 2.75𝑒−1 2.00𝑒−2 --- 

 0.05  2.10𝑒−2 1.53𝑒−2 1.6759  7.05𝑒−2 5.13𝑒−2 1.9644 
 0.025  5.12𝑒−3 3.73𝑒−3 2.0391  1.82𝑒−2 1.32𝑒−2 1.9546 
 0.0125  7.76𝑒−4 5.67𝑒−4 2.7208  5.08𝑒−3 3.70𝑒−3 1.8407 
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Figure 2. Plots of (a) Exact and approximate solutions (b) Error in approximate solution, at 

𝑡 = 1 for 𝛿𝑡 = 0.001, ℎ = 0.05, 𝛼 = 0.5 corresponding to Test Example-1 

 
Figure 3. Profile of approximate solutions at different times over the space interval [0, 1] 

for 𝛿𝑡 = 0.001, ℎ = 0.05, 𝛼 = 0.5 corresponding to Test Example-1 
Test Example 2: 

In this example, we considered the exact analytical solution 𝑢(𝑥, 𝑡) = 𝑡2𝑥(1 − 𝑥2), so that 
the source term is given by:  

𝑓(𝑥, 𝑡) =
2𝑡2−𝛼

Γ(3−𝛼)
𝑥(1 − 𝑥) + 𝑡2(3 − 2𝑥)   (11) 

Computations are carried out and the results of the proposed method are noted in 

Tables 4-5 along with the results of FVEM for comparison. In Table 4, 𝐿∞, 𝐿2 are provided 

at time 𝑡 = 0.5 using 𝛼 = 0.5, ℎ = 0.001, different time step sizes 𝛿𝑡 and MQ. Table 5 

provides the computed values of 𝐿∞, 𝐿2 for 𝛼 =  0.5, 𝛿𝑡 = 0.001, various space step sizes 

ℎ, and MQ. It can be seen from Tables 3 and 4, that the present method provided more 
accurate solution than the FVEM. Furthermore, accuracy improves with mesh refinement, 

i.e., smaller 𝛿𝑡 and ℎ, reflecting the convergence characteristics of the proposed numerical 
scheme. Plot of approximate solutions obtained by the current method with MQ and error 

in approximation for 𝛿𝑡 = 0.001, ℎ = 0.03125, 𝛼 = 0.5 is given in Figures 4 and 5. Figure 
4(a) displays exact and approximate solutions while Figure 4(b) shows error in the 

approximate solutions, at 𝑡 = 1. Surface graph of approximate solutions at various times 

over the interval 0 ≤ 𝑡 ≤ 1, is shown in Figure 5. 
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Table 4. Comparison of errors in approximate solutions at 𝑡 = 0.5 using the present 

method with MQ, ℎ = 0.001, 𝛼 = 0.5 and FVEM 

  MQ FVEM  

𝜹𝒕 𝑐 𝐿∞ 𝐿2 𝐿∞ 𝐿2 

𝟎. 𝟓 0.036 4.2042𝑒−4 2.9716𝑒−4 2.9458𝑒−3 2.0888𝑒−3 

𝟎. 𝟐𝟓 0.043 4.5684𝑒−5 3.3322𝑒−5 1.1591𝑒−3 8.2174𝑒−3 

𝟎. 𝟏𝟐𝟓 0.056 1.4337𝑒−5 9.5842𝑒−6 4.3374𝑒−4 3.0747𝑒−4 

𝟎. 𝟎𝟔𝟐𝟓 0.071 2.6269𝑒−6 1.59188𝑒−6 1.6155𝑒−4 1.1451𝑒−4 

𝟎. 𝟎𝟑𝟏𝟐𝟓 0.094 1.5269𝑒−6 9.3414𝑒−7 5.8876𝑒−5 4.1734𝑒−5 

𝟎. 𝟎𝟏𝟓𝟔𝟐𝟓 0.123 2.8622𝑒−7 1.7318𝑒−7 2.4184𝑒−5 1.7144𝑒−5 

𝟎. 𝟎𝟎𝟕𝟖𝟏𝟐𝟓 0.164 1.52136𝑒−7 9.2554𝑒−8 4.0481𝑒−6 2.8682𝑒−6 

Table 5. Comparison of errors in approximate solutions at 𝑡 = 0.5 using the 

present method with MQ, 𝛿𝑡 = 0.001, 𝛼 = 0.5, 𝑐 = 4 and FVEM 

 MQ FVEM 

ℎ 𝐿∞ 𝐿2 ℎ 𝐿∞ 

0.25 1.9477𝑒−4 1.4294𝑒−4 0.25 1.9477𝑒−4 

0.125 4.9091𝑒−5 3.6120𝑒−5 0.125 4.9091𝑒−5 

0.0625 1.2056𝑒−5 8.8780𝑒−6 0.0625 1.2056𝑒−5 

0.03125 2.7571𝑒−6 2.0367𝑒−6 0.03125 2.7571𝑒−6 

0.015625 4.3102𝑒−7 3.2544𝑒−7 0.015625 4.3102𝑒−7 

0.0078125 2.4053𝑒−8 1.2094𝑒−8 0.0078125 2.4053𝑒−8 

 
Figure 4. Plots of (a) Exact and approximate solutions (b) Error in approximate solution, at 

𝑡 = 1 for 𝛿𝑡 = 0.001, ℎ = 0.03125, 𝛼 = 0.5 corresponding to Test Example-2 

 
Figure 5. 3D Surface plot of approximate solutions over the domain [0, 1] × [0, 1]for 𝛿𝑡 =

0.001, ℎ = 0.03125, 𝛼 = 0.5 corresponding to Test Example-2. 
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Test Example 3 

In the third example, we take 𝑢(𝑥, 𝑡) = 𝑡2sin(𝜋𝑥) as the analytical solution (1), then 
the source term is given by 

𝑓(𝑥, 𝑡) =
2𝑡2−𝛼

Γ(3 − 𝛼)
sin(𝜋𝑥) + 𝜋𝑡2(cos(𝜋𝑥) + 𝜋 sin(𝜋𝑥))      (12) 

Numerical results are given in Tables 6-7 for 𝛼 = 0.05 and 𝛼 = 0.95 alongwith the results 

of FVEM for comparison. In Table 6, 𝐿∞, 𝐿2 are provided at time 𝑡 = 0.5 using  ℎ =
0.01, different time step sizes 𝛿𝑡 and MQ. Table 7 provides the computed values of 𝐿∞, 𝐿2 

for  𝛿𝑡 = 0.01, 𝑡 = 0.5, different space step sizes ℎ, and MQ. It can be noted from Tables 5 
and 6, that the proposed method provided better accuracy than the FVEM. Additionally, the 

accuracy of the proposed method improves as both the time step 𝛿𝑡 and the space step size 

ℎ are reduced. Plot of approximate solutions obtained by the current method with MQ and 

error in approximation for 𝛿𝑡 = 0.01, ℎ = 0.03125, 𝛼 = 0.05 is given in Figures. 6 and 7. 

Figure 6(a) displays exact and approximate solutions and Figure 6(b) shows error plot at 𝑡 =
1. Profile of approximate solutions at different times over the interval 0 ≤ 𝑡 ≤ 1, is given in 
Figure 7. 

Table 6. Comparison of errors in approximate solutions at 𝑡 = 0.5 using present method   

with MQ, ℎ = 0.01, 𝛼 = 0.05, 0.95 and FVEM  

  MQ FVEM 

 𝛿𝑡 𝑐 𝐿∞ 𝑐 𝐿∞ 𝑐 

𝛼 = 0.05 0.25 0.41 1.7980𝑒−5 0.41 1.7980𝑒−5 0.41 

 0.125 0.61 4.3982𝑒−6 0.61 4.3982𝑒−6 0.61 
 0.0625 0.81 3.0722𝑒−6 0.81 3.0722𝑒−6 0.81 

 0.03125 1.05 2.6443𝑒−6 1.05 2.6443𝑒−6 1.05 
 0.015625 1.10 2.3538𝑒−6 1.10 2.3538𝑒−6 1.10 

𝛼 = 0.95 0.25 0.095 4.4368𝑒−4 0.095 4.4368𝑒−4 0.095 
 0.125 0.112 1.3345𝑒−4 0.112 1.3345𝑒−4 0.112 
 0.0625 0.135 8.6710𝑒−5 0.135 8.6710𝑒−5 0.135 

 0.03125 0.165 4.2574𝑒−5 0.165 4.2574𝑒−5 0.165 

 0.015625 0.204 2.4899𝑒−5 0.204 2.4899𝑒−5 0.204 

Table 7. Comparison of errors in approximate solutions at 𝑡 = 0.5 using present method 

with MQ, 𝛿𝑡 = 0.01, 𝛼 = 0.05, 0.95 and FVEM 

   MQ FVEM 

 ℎ 𝑐 𝐿∞ 𝐿2 𝐿∞ 𝐿2 

𝛼 = 0.05 0.25 1.1 1.7817𝑒−3 1.0465𝑒−3 1.7817𝑒−3 1.0465𝑒−3 
 0.125 1.1 3.3501𝑒−4 2.2696𝑒−4 3.3501𝑒−4 2.2696𝑒−4 
 0.0625 1.1 9.9547𝑒−5 5.9224𝑒−5 9.9547𝑒−5 5.9224𝑒−5 
 0.03125 1.1 2.4476𝑒−5 1.4934𝑒−5 2.4476𝑒−5 1.4934𝑒−5 
 0.015625 1.1 5.8366𝑒−6 3.6418𝑒−6 5.8366𝑒−6 3.6418𝑒−6 

𝛼 = 0.95 0.25 1.0 1.3573𝑒−3 8.1712𝑒−4 1.3573𝑒−3 8.1712𝑒−4 
 0.125 1.0 3.8755𝑒−4 2.3198𝑒−4 3.8755𝑒−4 2.3198𝑒−4 
 0.0625 0.78 8.5797𝑒−5 5.2524𝑒−5 8.5797𝑒−5 5.2524𝑒−5 
 0.03125 0.51 3.7031𝑒−5 2.4495𝑒−5 3.7031𝑒−5 2.4495𝑒−5 
 0.015625 0.313 1.7548𝑒−5 1.2310𝑒−5 1.7548𝑒−5 1.2310𝑒−5 
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Figure 6. Plots of (a) Exact and approximate solutions (b) Error in approximate solution, at 

𝑡 = 1 for 𝛿𝑡 = 0.01, ℎ = 0.03125, 𝛼 = 0.05 corresponding to Test Example-3 

 
Figure 7. Profile of approximate solutions at different times over the space interval [0, 1] 

for 𝛿𝑡 = 0.01, ℎ = 0.03125, 𝛼 = 0.05 corresponding to Test Example-3 
Conclusion: 

A local radial basis functions based differential quadrature method is presented for 
approximate solution of time-fractional Advection-Diffusion equations having Caputo 
derivative. Three benchmark nonhomogeneous problems are provided for its validation, and 
the results are analyzed through error norms, fractional order, numerical convergence, and 
factional order. The method is computationally efficient and the reported results 
demonstrate that the present method produced better accuracy for relatively small time and 
space step sizes. The outlined technique achieved better accuracy compared to finite volume 
element method. Based on remarkably agreement with the exact solution, this approach is 
efficient, accurate, simple, and economical for obtaining approximate solutions of wide class 
of fractional Advection-Diffusion equations. 
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