
 International Journal of Innovations in Science & Technology

Special Issue |CSET 2025 Page |85

A Comparative Evaluating Auditing Tools for Unverified Smart
Contracts on Ethereum Blockchain

Nashaib Akbar, Muhammad Saleem Vighio
Department of Computer Science Quaid-e-Awam University of Engineering, Sciences &
Technology Nawabshah, Pakistan
*Correspondence: nashaibakbar30@gmail.com, saleem.vighio@quest.edu.pk
Citation| Akbar. N, Vighio. M. S, “A Comparative Evaluating Auditing Tools for Unverified
Smart Contracts on Ethereum Blockchain”, IJIST, Vol. 07 Special Issue. pp 85-96, May 2025
Received| April 12, 2025 Revised| May 10, 2025 Accepted| May 12, 2025 Published|
May 14, 2025.

The Ethereum blockchain has transformed decentralized finance (DeFi) and is widely used to
issue ERC20 tokens. However, many of these tokens rely on unverified smart contracts, which
pose serious security risks. Hackers can take advantage of vulnerabilities in these unverified
ERC20 tokens, leading to scams, financial losses, and a decline in user trust. Although several
tools are available to audit smart contracts, their effectiveness in analyzing unverified ERC20
tokens remains uncertain. This study examines three auditing tools HoneyBadger, Maian, and
Mythril by testing how well they detect security issues in unverified ERC20 tokens. The
SmartBugs framework was used to support the auditing process, enabling parallel execution,
standardized reports, and bulk auditing of contracts. For a thorough evaluation, two datasets
were used: one from 50,581 Ethereum blockchain blocks and another from the DappRadar
list of blacklisted ERC20 tokens. These datasets were chosen to provide a broad and realistic
view of how the tools perform on both typical and high-risk contracts. The tools were
compared based on their ability to detect issues, their execution speed, and their overall
effectiveness. The results revealed clear differences in performance: some tools were better at
finding vulnerabilities accurately, while others focused more on speed than depth. This study
emphasizes the need to improve smart contract auditing methods and highlights the
importance of developing more effective security tools to strengthen the Ethereum
blockchain.
Keywords: Ethereum Blockchain, smart contract, ERC20 token, security risks, vulnerabilities,
runtime bytecode.

mailto:nashaibakbar30@gmail.com
mailto:saleem.vighio@quest.edu.pk

 International Journal of Innovations in Science & Technology

Special Issue |CSET 2025 Page |86

Introduction:
Ethereum is a blockchain that supports a Turing-complete programming language,

allowing the creation of smart contracts capable of encoding complex state transition
functions. This powerful functionality enables users to build a wide range of systems by writing
relatively simple code [1]. Among its many applications, ERC20 tokens have become the most
widely adopted standard for digital assets. These tokens easily integrate with decentralized
applications (Dapps), supporting functions such as payments, staking, and governance.

However, the rise of scam tokens on the Ethereum blockchain is concerning.
Fraudulent activities like rug pulls and counterfeit tokens have become increasingly common
on decentralized exchanges. These scams often involve manipulated token prices that deceive
investors, leading to significant financial losses [2]. One of the main challenges Ethereum faces
is ensuring the security of smart contracts. Vulnerabilities in contracts have been exploited in
high-profile attacks, resulting in major financial damage and a decline in public trust in
blockchain ecosystems. With the growing use of decentralized applications and digital assets,
ensuring the security of end-user interactions has become increasingly critical. Similar to how
Android applications particularly games have become a common vector for malware due to
their popularity and users' limited visibility into their inner workings [3], smart contracts on
the Ethereum blockchain face similar risks when their source code is unverified. Just as
malicious Android apps can exploit users trust and compromise sensitive information through
hidden logic, unverified ERC20 tokens may embed vulnerabilities or malicious behaviors that
go undetected. This highlights the urgent need for robust auditing tools capable of analyzing
unverified smart contracts bytecodes to ensure security and protect users. Unverified ERC20
tokens are particularly problematic because, unlike verified contracts, their code is not openly
accessible for review. This allows developers to hide malicious logic, leading to more frequent
scams, greater financial loss, and growing distrust in blockchain systems. While current
auditing tools are effective with verified contracts that have accessible source code, they may
fall short when analyzing unverified contracts. Therefore, comprehensive studies are needed
to assess these tools' abilities to detect vulnerabilities and malicious behaviors in unverified
smart contracts.

This study aims to improve the security and reliability of smart contract ecosystems.
It utilizes two datasets: the first includes data from 50,581 Ethereum blockchain blocks, and
the second comes from a GitHub repository of blacklisted ERC20 tokens [4], containing 985
tokens.

The study analyzes the performance of three popular auditing tools HoneyBadger [5],
Maian [6], and Mythril [7] in detecting vulnerabilities and malicious behavior in unverified
ERC20 tokens. The SmartBugs framework [8] was used to facilitate the process by enabling
parallel execution and bulk auditing. This work provides a comparison of the tools in terms
of accuracy, execution time, and vulnerability detection. It also offers valuable insights into
the strengths and limitations of each tool, along with practical recommendations to improve
smart contract auditing and enhance security on the Ethereum platform.
Objectives:
This research will assess each tool and provide insights into their capabilities and limitations.
The key objectives of this research are as follows:

• To evaluate the effectiveness of tools named HoneyBadger [5], Maian [6], and Mythril
[7] in finding the vulnerabilities in unverified ERC20 tokens. In this, we will check accuracy,
execution time, and ability to detect the vulnerabilities.

• To check the performance of these tools we have two different datasets: One is
collected directly from the Ethereum Blockchain and the second is collected from the

 International Journal of Innovations in Science & Technology

Special Issue |CSET 2025 Page |87

DappRadar scam token repository [4]. This comparison provides an depth understanding of
tools performance over the unverified smart contracts.

• They contribute to the understating of the smart contract security in unverified ERC20
tokens and provide insights that can help improve the security of the Ethereum blockchain.
Novelty Statement:

This study uniquely focuses on auditing of unverified ERC20 smart contracts an area
often overlooked in prior research, which typically centers on verified contracts with public
source code. By evaluating the performance of three auditing tools Mythril, Maian, and
HoneyBadger on runtime bytecode from unverified contracts, and using a two-dataset
approach Ethereum blockchain and a blacklist of scam tokens, this research provides a
practical and targeted analysis. The findings help uncover tools limitations and highlight the
need for improved vulnerability detection in unverified smart contracts.
Related Work:

Recent advancements in the automated analysis, testing, and debugging of Ethereum
smart contracts have spurred significant research progress. However, comparing and
replicating these studies has been challenging due to variations in datasets and methodologies.
To address this, a study conducted an empirical evaluation of nine automated analysis tools
using two novel datasets. One dataset contained 69 annotated smart contracts with known
vulnerabilities, serving as a benchmark for testing the tools' accuracy, while the second dataset
included 47,518 smart contracts from the Ethereum blockchain, with Solidity code accessible
via Etherscan. These datasets were integrated into SmartBugs, a framework designed to
compare analysis tools. The study conducted a massive 428,337 analyses over approximately
564 days, making it the largest experimental setup of its kind. The results showed that only
42% of the vulnerabilities in the annotated dataset were detected across all tools, with Mythril
detecting the highest rate (27%). In the larger dataset, 97% of contracts were flagged as
vulnerable, revealing a high rate of false positives. Notably, only a few vulnerabilities were
detected by multiple tools, highlighting the evolving and fragmented nature of smart contract
security [9].

Smart contracts, which manage digital assets and power decentralized applications in
DeFi and supply chains, require a high level of security. This is difficult to maintain due to the
transparency of public blockchains and the rapid evolution of blockchain technologies. Several
code analysis tools exist to help identify vulnerabilities, but staying up-to-date remains a
challenge for both tools and developers. In another study [2], the authors evaluated the
effectiveness of these tools by analyzing how vulnerability detection has evolved over six years
of Ethereum data. They examined all deployed bytecode on Ethereum, using a "skeleton"
approach to group similar contracts, reducing the dataset from 48 million to approximately
248,000 unique samples. By enhancing the SmartBugs framework and integrating 12 different
tools, the study conducted a large-scale analysis that took 30 CPU years and identified over
1.3 million potential issues. However, it also showed a decline in reported vulnerabilities over
time and varying performance among the tools.

As security breaches in smart contracts continue to result in major financial losses and
reduced trust, it’s become essential to detect vulnerabilities before deployment. While many
static analysis tools exist for this purpose, there has been no standardized method to evaluate
their effectiveness. In response, a study [10] introduced the SolidiFI framework—a structured
approach for assessing smart contract analysis tools through bug injection. SolidiFI
systematically injects vulnerabilities into various parts of a contract, creating faulty versions
that are then scanned by the tools. This allows researchers to measure false negatives (missed
bugs) and false positives (incorrectly flagged bugs). Using a dataset of 50 contracts and 9,369
injected bugs, the framework evaluated six popular tools: Oyente, Securify, Mythril,
SmartCheck, Manticore, and Slither. The results showed that many vulnerabilities went

 International Journal of Innovations in Science & Technology

Special Issue |CSET 2025 Page |88

undetected and all tools produced a high number of false positives, raising concerns about
their practical reliability.

Smart contract security has become an increasingly important area of research,
prompting the development of many testing tools aimed at detecting vulnerabilities before
deployment. However, each tool is typically evaluated under different experimental setups,
using varied datasets and performance metrics. This inconsistency makes it difficult to
compare results across studies. In a comprehensive study [11], the authors addressed this issue
by introducing a standardized four-step evaluation methodology. They compiled a large
dataset of 46,186 source-available smart contracts from four major platforms to ensure
diversity in code structure and vulnerability types. Using nine well-known testing tools, they
conducted controlled experiments to assess performance differences under uniform
conditions. The results highlighted how changes in evaluation design can significantly affect
tool outcomes, sometimes leading to misleading conclusions. The study also identified
limitations in current testing tools and proposed directions for improving consistency and
reliability in future evaluations.
Research Questions:
RQ1: What is the prevalence of unverified ERC20 token contracts on the Ethereum
blockchain, and how are they linked to scam activities and security risks?
RQ2: How effective are current smart contract auditing tools at identifying vulnerabilities and
detecting malicious functions in unverified ERC20 token contracts?
RQ3: What are the limitations of existing auditing tools, and how can their accuracy and
performance be improved for analyzing unverified contracts in the Ethereum ecosystem?
Methodology:

This study adopts a structured approach that includes selecting auditing tools, collecting
relevant data, and evaluating performance. Effective tools are chosen to analyze unverified
ERC20 contracts using datasets from the Ethereum blockchain and a blacklist repository. The
tools are assessed based on their detection accuracy and operational efficiency. The goal is to
provide valuable insights for enhancing smart contract security by addressing key research
questions.

Table 1. Ethereum dataset findings.

Category Smart Contracts Count

1 Unverified Contracts 3,510

2 Verified Contracts 2,437

3 ERC20 Verified Tokens 1,364

4 ERC20 Unverified Tokens 353

5 Total ERC20 Tokens 1,717

6 Total Smart Contracts 5,947

The second source of the data is the DappRadar [4] blacklisted token repository, which has a
list of tokens that were involved in the scam activity over the Ethereum blockchain. This is an
important dataset that is involved in fraudulent activities. By using both datasets from the
Ethereum blockchain and DappRadar blacklisted tokens we create a comprehensive dataset
that allows us to explore the more common vulnerabilities in this study.

 International Journal of Innovations in Science & Technology

Special Issue |CSET 2025 Page |89

Figure 1. Flow diagram

Data Collection:
The first step of the methodology involved collecting data from the Ethereum

blockchain. We scanned blocks starting from block number 18,908,895 to block number
18,959,476, covering a total of 50,581 blocks. After examining each block, we identified and
collected a total of 5,947 smart contracts. Following this, we checked the status of each
contract to determine whether it was verified or unverified, as our study specifically focuses
on unverified ERC20 tokens.

Table 2. DappRadar dataset findings

Category Smart Contracts Count

1 ERC20 Verified Tokens 675

2 ERC20 Unverified Tokens 310

3 Total ERC20 Tokens 985

After collecting data from both sources, we proceeded to categorize the smart
contracts into verified and unverified contracts, as our study focuses only on unverified smart
contracts. From the 5,947 smart contracts collected, we found that 3,510 were unverified and
2,437 were verified. Focusing on ERC20 unverified tokens, we examined the 3,510 unverified
contracts and identified 353 as ERC20 tokens. The verification status of these contracts
(verified or unverified) was confirmed using the Etherscan API [12].
Data Filtration:

The data filtration phase focuses on the get the final data for the input of the auditing
tools from the unverified smart contract to the runtime bytecode of all collected data from
both of the datasets which are sourced from the Ethereum blockchain and DappRadar
blacklist token repository. The goal of this phase is to organize the collected smart contracts
into verified and unverified smart contracts to make sure they are perfectly categorized. The
dataset which is a direct source from the Ethereum blockchain has multiple types of contracts,
not a single category like they follow multiple standards like ERC711 and others, our study

 International Journal of Innovations in Science & Technology

Special Issue |CSET 2025 Page |90

focused on the ERC20 standard so first we filter the smart contract to only the ERC20
standard and we need to select the only unverified ERC20 token so we used the Etherscan
API and selected only unverified contract, now comes to the second dataset which is already
the blacklisted ERC20 tokens we need to divide this into two categories unverified ERC20
and verified ERC20 tokens and selects the addresses of the first unverified ERC20 tokens.
To evaluate the tools based on runtime bytecode, it was essential to collect the runtime
bytecode of these unverified ERC20 tokens. The bytecode is available on Etherscan, so we
utilized the Etherscan API and developed a Python script to gather the bytecode. We input
the contract addresses of the identified unverified tokens into the script and ran it on Google
Colab [13], collecting the runtime bytecode for all unverified ERC20 tokens, which was then
used in the subsequent auditing process.

Once the data is organized and well-structured now it is prepared for the next phase
of the auditing. The collected runtime bytecode which is sourced from the Ethereum
blockchain and the DappRadar blacklist token repository is now ready for the auditing phase.
This preparation includes the tagging of each runtime bytecode with their contract address
and the dataset group by this both datasets are correctly formatted and aligned for the use of
the auditing process.
Auditing:

The purpose of this phase is to audit the collected runtime bytecode of two datasets
to identify the vulnerabilities among them by the selected auditing tools. This phase is
important because in this phase we examined the auditing tools and give them input as selected
runtime bytes which are collected from the last few phases to find out the common
vulnerabilities such as reentrancy attacks, integer overflow, and funds leakages that could
potentially compromise the functionality and security ER20 tokens.
Selection of Tools:

In our study, we aim to evaluate the effectiveness of smart contract auditing tools that
support runtime bytecode analysis. From an initial list of 140 tools identified in the literature
[14], we narrowed the selection to 46 tools that specifically support bytecode analysis.
However, several of these tools had inactive repositories or were no longer fully accessible.
Selection Criteria:

To ensure the selection of effective and practical tools for analyzing unverified smart
contracts, the following four criteria were applied:

• Criterion #1: Public Availability & CLI Support: The tool must be publicly
available and support a command-line interface (CLI) to enable automation and bulk analysis.

• Criterion #2: Compatibility with Runtime Bytecode: The tool must be capable of
analyzing runtime bytecode, as unverified smart contracts do not have accessible source code.

• Criterion #3: Vulnerability Detection: The tool must detect security vulnerabilities.
Tools that only provide metrics or basic information were excluded.

• Criterion #4: Active Repository: The tool must be actively maintained, ensuring that
it receives regular updates and security patches.

Table 3. Tools identified as potential candidates for this study

Tools Tools Url

1 Mythril [7] https://github.com/wflk/mythril

2 Maian [6] https://github.com/ivicanikolicsg/MAIAN

3 Honey Badger [5] https://github.com/christoftorres/HoneyBadger

Selected Tools:
Mythril [7]: A symbolic execution-based tool designed to detect issues such as reentrancy,
integer overflows, and access control flaws. It uses advanced execution techniques to enhance

 International Journal of Innovations in Science & Technology

Special Issue |CSET 2025 Page |91

detection accuracy and supports both source code and runtime bytecode analysis. Mythril is
actively maintained and widely used in the security community.
Maian [6]: Focuses on identifying vulnerabilities like fund leakage, self-destruct risks, and
frozen funds. It analyzes Ethereum Virtual Machine (EVM) bytecode to find transaction
sequences that may trigger these critical issues.
HoneyBadger [5]: Specializes in detecting honeypot contracts, which are fraudulent smart
contracts that trick users into sending funds they cannot retrieve. It systematically analyzes
execution paths to uncover deceptive behaviors designed to trap funds.
Execution Framework: SmartBugs:

SmartBugs [8] is an extensible framework designed to streamline the auditing process
of Ethereum smart contracts. It supports integration with a wide range of static analysis tools,
making it well-suited for identifying vulnerabilities in unverified contracts. By offering a
centralized and modular environment, SmartBugs simplifies the auditing workflow and
enhances the detection of security issues in contracts lacking source code. In this study, all
selected tools were executed using the SmartBugs framework, which enabled parallel execution
and ensured consistent and efficient auditing of unverified ERC20 contracts.
Analysis and Results:

The results from the auditing tools Maian, Mythril, and HoneyBadger are carefully
reviewed to understand the vulnerabilities identified in the runtime bytecode of the unverified
ERC20 tokens. Since the source code is unavailable for these contracts, the analysis is based
on patterns identified within the bytecode. The tools detect vulnerabilities such as reentrancy
attacks, integer overflows, and honeypot traps. The findings from each tool are compared to
assess their consistency, and any discrepancies are examined for potential false positives. Each
detected vulnerability is validated by cross-referencing with known scam patterns from the
second dataset, which includes tokens flagged for fraudulent activities.
To assess the effectiveness of the selected tools, we evaluated their detection accuracy,
efficiency, and limitations. The tools were compared based on the following criteria:
• Detection Accuracy: The ability to identify critical vulnerabilities, such as access
control issues, reentrancy, and integer overflows.
• Efficiency: Measured by execution time per contract, highlighting the trade-off
between speed and the depth of analysis.

Table 4. Vulnerabilities mapping of tool findings

Category HoneyBadger Main Mythril

1 Access Control 0 0 12

2 Arithmetic 0 0 329

3 Denial of Service 0 0 0

4 Reentrancy 0 0 2

5 Unchecked Low Calls 0 0 1

6 Bad Randomness 0 0 0

7 Front Running 0 0 0

8 Time Manipulation 0 0 0

9 Short Addresses 0 0 0

10 Other 1 214 39

 Total 1 214 383

RQ1: Prevalence of Unverified ERC20 Tokens and Security Risks:
In this research, we audited the runtime bytecode of unverified ERC20 tokens to

identify vulnerabilities within those contracts. From both datasets, we found that 3,820 out of
6,932 contracts were unverified, accounting for 55% of the total collected data. This highlights
the critical need for checking unverified smart contracts on the Ethereum blockchain.

 International Journal of Innovations in Science & Technology

Special Issue |CSET 2025 Page |92

Unverified ERC20 token smart contracts pose a significant security risk and are
increasingly involved in scam activities. Due to the lack of verification, these contracts often
escape proper scrutiny, creating opportunities for malicious actors to embed harmful or
hidden functions in the code. Since users cannot view the source code, they are unaware of
the full functionality of these contracts and become vulnerable to attacks such as reentrancy,
integer overflows, access control flaws, or other malicious operations. These vulnerabilities
can be exploited to steal funds, lock assets, or perform unauthorized actions within the
Ethereum ecosystem.

Figure 2. Percentage of unverified and verified ERC20 datasets.

Moreover, unverified ERC20 token smart contracts often appear on blacklists due to
their association with fraudulent activities. In our experiment, we also examined a set of
blacklisted tokens, comprising those reported for fraudulent or suspicious activities. Of the
985 blacklisted tokens, 310 were unverified ERC20 tokens, making up 31.5%. These tokens
are frequently used in scams like pump-and-dump schemes, where token prices are artificially
inflated to deceive investors, or honeypots, where users are tricked into depositing funds into
a contract they cannot withdraw from. The data [12] reveals that unverified ERC20 token
smart contracts account for a significant portion of the Ethereum blockchain, with 59% of all
smart contracts being unverified and around 21% of ERC20 tokens falling into this category.
These unverified contracts are major contributors to security risks and scams, undermining
trust and security in the Ethereum ecosystem.

The vulnerability detection results, presented in Table 4, were derived from both
datasets to ensure a comprehensive evaluation. The first dataset provided a broad sample of
unverified contracts, while the second, containing blacklisted tokens, represented high-risk
cases. The consistent 0’s across multiple vulnerability categories indicates that these issues
were either absent in the dataset or not detected by the auditing tools used.

The presence of multiple zero detections across various vulnerability categories may
reflect limitations in the dataset size rather than the absence of such vulnerabilities. This
suggests a potential limitation of the current study, as a larger and more diverse dataset might
yield more meaningful insights. Future research should explore whether expanding the dataset
leads to improved detection outcomes or reveals vulnerabilities that remained undetected in
this study.
RQ2: Effectiveness of Smart Contract Auditing Tools in Detecting Vulnerabilities in
Unverified ERC20 Contracts:

The HoneyBadger tool completed the audit in an average time of 2.28 seconds per
contract, across both datasets, which included 353 unverified ERC20 tokens and 310
blacklisted unverified ERC20 tokens. Although HoneyBadger successfully audited all the
contracts, it did not identify any major vulnerabilities. This suggests that, while HoneyBadger

 International Journal of Innovations in Science & Technology

Special Issue |CSET 2025 Page |93

excels in processing speed, it may lack the capability to detect more complex vulnerabilities or
malicious functions in unverified and blacklisted ERC20 contracts. The inability of the tool to
identify common issues in these tokens often associated with fraudulent activities and hidden
risks remains a significant limitation, despite its speed.

Table 6. Average execution time for each tool.

Tools Average Execution Time Total

1 Mythril 0:12:14 132:27:46

2 MAIN 0:00:11 1:59:35

3 HONEY BADGER 0:00:02 0:24:40

Maian showed better vulnerability detection capabilities than HoneyBadger. In the
dataset of 663 contracts, which included 353 unverified ERC20 tokens and 310 blacklisted
ERC20 tokens, Maian completed the audits in 7,175.90 seconds (~0.08 days), averaging 11.06
seconds per contract. It detected vulnerabilities in 214 contracts, accounting for 32.3% of the
total audited contracts. While Maian required more processing time than HoneyBadger, it
proved to be more consistent in identifying security vulnerabilities across both datasets.
Finally, despite having the longest execution time, Mythril proved to be the most thorough
auditing tool. It took an average of 734.77 seconds per contract to analyze the 663 contracts
from the combined dataset (310 blacklisted ERC20 tokens and 353 unverified ERC20 tokens).
Mythril detected vulnerabilities in 383 contracts, accounting for 57.8% of the total analyzed
contracts.

Figure 3. Tools contribution to total vulnerability detection.
Although Maian detected fewer vulnerabilities than Mythril, it was still more effective

than HoneyBadger. However, Mythril proved to be the most effective tool for identifying
critical security issues and detecting hidden malicious features, especially within complex
contracts. Among all three tools, Mythril provided the most comprehensive analysis, making
it a valuable auditing resource despite its longer execution time.

Figure 4. Comparing vulnerabilities detected by each tool

 International Journal of Innovations in Science & Technology

Special Issue |CSET 2025 Page |94

All the results, including the input runtime bytecode, output reports from each auditing
tool Mythril, Maian, and HoneyBadger, and the Python scripts used for data collection and
processing, are available in the public GitHub repository [10].
RQ3: Limitations of Auditing Tools and Improving Accuracy for Unverified Ethereum
Contracts:

The findings of this study highlight several limitations in existing auditing tools when
analyzing unverified ERC20 contracts. While Mythril, Maian, and HoneyBadger provided
valuable insights, their effectiveness varied significantly based on contract complexity,
execution time, and detection capabilities.

One major limitation observed in Table 4 was the presence of multiple zero detections
across various vulnerability categories. This raises concerns about whether the tools were
unable to detect specific vulnerabilities or if such issues were genuinely absent in the dataset.
The zero detections in categories such as Denial of Service, Bad Randomness, and Short
Addresses suggest that either these vulnerabilities are rare in unverified ERC20 contracts or
that current tools are not fully equipped to detect them. To ensure accuracy, we verified that
the tools were properly configured and executed, confirming that the results were not due to
technical errors.

Additionally, these tools exhibited varying levels of false negatives, particularly in
detecting complex attack vectors like fund leakage and logic manipulation. While Mythril
provided the most comprehensive analysis, its high execution time limited its scalability for
large-scale contract auditing. Maian, though efficient, struggled with detecting deeper
vulnerabilities, and Honey Badger’s speed came at the cost of reduced accuracy, detecting only
a limited set of issues.

To improve the accuracy and reliability of smart contract auditing, future
improvements should focus on:
• Integrating machine learning models to detect evolving vulnerabilities more
effectively.
• Leveraging real-time threat intelligence to dynamically update detection
mechanisms.
• Developing a hybrid approach that combines automated scanning with manual
auditing for better validation of results.

These advancements would enhance vulnerability detection rates, reduce false
negatives, and strengthen the overall security framework for Ethereum smart contracts. Future
studies should also expand the dataset size to verify whether certain vulnerabilities become
more apparent with larger contract samples.
Discussion:

The core difference between prior auditing evaluations and our proposed study lies in
the contracts analyzed and the methodology used. Traditional studies primarily assess tools
using verified contracts with publicly available source code [9][11], which simplifies
vulnerability detection. In contrast, our study focuses on unverified ERC20 smart contracts
using runtime bytecode as the sole input. This approach allows our evaluation to reflect real-
world conditions where source code is unavailable and contracts may conceal malicious logic.
We tested three tools Mythril, Maian, and HoneyBadger on two datasets one collected from
50,581 Ethereum blockchain blocks and another from a blacklist of scam tokens [4]. This
dual-dataset strategy provided both breadth and depth to our analysis. Mythril outperformed
the others in detecting complex vulnerabilities but required significantly more execution time
[7]. Maian offered a balance between speed and accuracy [6], while HoneyBadger, though the
fastest, detected only limited issues [5]. These results show that when auditing unverified
contracts, tool selection must consider both detection capability and efficiency.

 International Journal of Innovations in Science & Technology

Special Issue |CSET 2025 Page |95

Conclusion:
In this study, we analyzed unverified smart contracts by auditing their runtime

bytecodes to uncover potential vulnerabilities. Our findings revealed that 3,820 out of 6,932
smart contracts (around 55%) were unverified, many of which were linked to scams and posed
significant security risks. To address this, we tested three auditing tools: HoneyBadger, Maian,
and Mythril, each demonstrating distinct strengths and weaknesses. Mythril emerged as the
best tool, capable of detecting a broad range of vulnerabilities such as reentrancy attacks,
integer overflows, and access control flaws. However, its long execution time made it less
practical for large-scale audits. Maian, while much faster and efficient for scanning large
datasets, struggled with detecting more complex vulnerabilities. HoneyBadger, the fastest of
the three, could only detect a limited number of vulnerabilities, notably missing critical issues
like reentrancy and fund leakage, which are major gaps in its detection capabilities.

This study emphasizes the importance of selecting the appropriate tool based on
whether speed or detection depth is prioritized. Future research should focus on developing
smarter and more efficient auditing tools that reduce false negatives, improve detection
accuracy, and handle complex contract analysis more effectively. By highlighting the strengths
and weaknesses of each tool, this study contributes to the advancement of Ethereum
Blockchain smart contract security and supports the overall Ethereum ecosystem.
Acknowledgment:

This paper is based on our Master’s thesis defended in April 2025 at Quaid-e-Awam
University of Engineering Science & Technology, Nawabshah. I also acknowledge the
developers of SmartBugs, HoneyBadger, Maian, and Mythril for providing the tools necessary
for this study. Additionally, I appreciate the Ethereum community for their contributions and
the reviewers for their helpful feedback.
References:
[1] V. Buterin, “Ethereum white paper,” gitHub Repos., pp. 22–23, 2013.
[2] A. Ghaleb and K. Pattabiraman, “How effective are smart contract analysis tools?
evaluating smart contract static analysis tools using bug injection,” ISSTA 2020 - Proc. 29th
ACM SIGSOFT Int. Symp. Softw. Test. Anal., pp. 415–427, Jul. 2020, doi:
10.1145/3395363.3397385;SUBPAGE:STRING:ABSTRACT;TOPIC:TOPIC:CONFERE
NCE-COLLECTIONS>ISSTA;CSUBTYPE:STRING:CONFERENCE.
[3] B. A. Dahri, K. A., Vighio, M. S., & Zardari, “Detection and prevention of malware
in the Android operating system,” Mehran Univ. Res. J. Eng. Technol., vol. 40, no. 4, pp. 847–
859, 2021, [Online]. Available:
https://www.researchgate.net/publication/355269909_Detection_and_Prevention_of_Mal
ware_in_Android_Operating_System
[4] DappRadar, “Tokens Blacklist,” GitHub Repos., 2024, [Online]. Available:
https://github.com/dappradar/tokens-blacklist/tree/main
[5] R. Torres, C. F., Steichen, M., & State, “The Art of The Scam: Demystifying
Honeypots in Ethereum Smart Contracts,” Adv. Comput. Syst. Assoc., 2019, [Online].
Available: http://usenix.org/system/files/sec19-torres.pdf
[6] A. H. Ivica Nikolić,, Aashish Kolluri, Ilya Sergey, Prateek Saxena, “Finding The
Greedy, Prodigal, and Suicidal Contracts at Scale,” ACSAC ’18 Proc. 34th Annu. Comput.
Secur. Appl. Conf., pp. 653–663, 2018, doi: https://doi.org/10.1145/3274694.3274743.
[7] B. Mueller, “Smashing Ethereum Smart Contracts for Fun and ACTUAL Profit,”
HITB SECCONF, 2018, [Online]. Available:
https://archive.conference.hitb.org/hitbsecconf2018ams/sessions/smashing-ethereum-
smart-contracts-for-fun-and-actual-profit/
[8] M. Di Angelo, T. Durieux, J. F. Ferreira, and G. Salzer, “SmartBugs 2.0: An
Execution Framework for Weakness Detection in Ethereum Smart Contracts,” Proc. - 2023

 International Journal of Innovations in Science & Technology

Special Issue |CSET 2025 Page |96

38th IEEE/ACM Int. Conf. Autom. Softw. Eng. ASE 2023, pp. 2102–2105, 2023, doi:
10.1109/ASE56229.2023.00060.
[9] T. Durieux, J. F. Ferreira, R. Abreu, and P. Cruz, “Empirical review of automated
analysis tools on 47,587 ethereum smart contracts,” Proc. - Int. Conf. Softw. Eng., pp. 530–541,
Jun. 2020, doi: 10.1145/3377811.3380364;PAGE:STRING:ARTICLE/CHAPTER.
[10] Nashaib Akbar, “Unverified Smart Contracts,” GitHub, [Online]. Available:
https://github.com/Nashaibakbar/Unverified-Smart-Contracts-
[11] M. Ren et al., “Empirical evaluation of smart contract testing: What is the best
choice?,” ISSTA 2021 - Proc. 30th ACM SIGSOFT Int. Symp. Softw. Test. Anal., pp. 566–579,
Jul. 2021, doi: 10.1145/3460319.3464837.
[12] Etherscan API, “Etherscan API Documentation,” Etherscan, [Online]. Available:
https://etherscan.io/
[13] Google Colab, “Google Colaboratory: Python in the Cloud”, [Online]. Available:
https://colab.research.google.com
[14] G. S. Heidelinde Rameder, Monika di Angelo, “Review of Automated Vulnerability
Analysis of Smart Contracts on Ethereum,” Front. Blockchain, vol. 5, 2022, doi:
https://doi.org/10.3389/fbloc.2022.814977.

Copyright © by authors and 50Sea. This work is licensed under
Creative Commons Attribution 4.0 International License.

