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utterfly and moth species are crucial for ecosystems as pollinators, pests and 
biodiversity indicators, therefore necessitating their precise automated classification for 
extensive monitoring, conservation initiatives, and agricultural pest control. 

Nonetheless, considerable obstacles emerge from inter and intra-species variety in wing 
coloration, patterns, posture, and the effects of lighting and background circumstances on 
pictures. This study presents a comprehensive framework that enhances feature representation 
via a dual-phase methodology. Initially, pictures undergo preprocessing by Contrast-Limited 
Adaptive Histogram Equalization (CLAHE) to augment distinguishing features. Subsequently, 
elevated semantic features are derived using a ResNet50 backbone pre-trained on ImageNet, 
with a baseline accuracy of 92%. A unique Corner Rhombus Shape HOG (CRSHOG) 
descriptor is suggested to accurately capture detailed geometric and textural wing properties, 
utilizing rhombus-based grid sampling and gradient orientation encoding. These 
complementary deep and handcrafted features are carefully integrated to form a hybrid 
representation, improving resilience to cluttered backdrops and position changes. The 
integrated feature set is assessed using several classifiers, with an Ensemble Subspace KNN 
model attaining the greatest classification accuracy of 94.6% on the Butterfly and Moth Image 
dataset, exceeding traditional CNN (Convolutional Neural Network)-only and HOG-based 
methods. These findings highlight the benefits of combining domain-specific shape 
descriptors with deep-learning features to enhance fine-grained insect categorization. 
Moreover, depending exclusively on standard RGB photos facilitates practical implementation 
on mobile and aerial platforms for real-time biodiversity surveillance and pest management. 
Future endeavors will concentrate on expanding this hybrid feature technique to encompass 
live video tracking and open-set species detection in uncontrolled settings. 
Keywords:  Feature Extraction; Computer Vision; Deep Learning; CLAHE; Corner 
Rhombus Shape HOG (CRSHOG); ResNet-50.   
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Introduction: 
Butterflies and moths represent a diverse group of insects, characterized by distinctive 

wing patterns that are unique to their taxonomy. Numerous butterfly species exist worldwide, 
many of which share common characteristics, patterns, and colors [1]. Butterflies and moths 
are crucial to ecosystems as pollinators and bio-indicators, rendering their precise 
identification imperative for biodiversity monitoring and conservation initiatives. To conserve 
and maintain their natural habitats, experts and stakeholders require knowledge regarding the 
diversity of butterflies in each region. Moreover, some butterflies can damage crops, while 
others serve as vital pollinators for both cultivated and natural flora. Identifying butterfly 
species facilitates the recognition of both beneficial and detrimental species within the 
ecosystem [2]. Unfortunately, the present number of taxonomists and researchers is 
significantly lower than in the past [3]. Conventional classification techniques depend on 
manual identification, which is laborious, time-consuming, and susceptible to human mistakes. 
An automated identification system must be developed to minimize errors in butterfly species 
identification.  

The precise identification of butterfly species is highly challenging owing to their 
diverse wing patterns and shared characteristics. The decline in the number of taxonomists 
and scholars underscores the importance of this type of identification. Implementing an 
automated system for recognizing butterfly species is necessary to address this challenge. 
Recently, the Deep Neural Networks (DNNs) methodology, namely CNNs, has emerged as 
the most efficacious technique for several computer vision applications, including biometrics, 
classification, and object identification and recognition [4]. 

A fundamental approach in automated species recognition is machine learning, which 
enables the identification of complex patterns and the formulation of predictions from large 
datasets. Prior research identified k-nearest Neighbors (k-NN), Decision Trees, and Support 
Vector Machines (SVM) as prevalent machine-learning techniques for species classification. 
Due to the considerable variability in species morphology, lighting conditions, and image 
backgrounds, these algorithms rely on manual feature extraction, a process that is often time-
consuming and may not always produce optimal results.  These methods have established a 
platform for more advanced models that employ deep architecture for feature learning, 
notwithstanding their limitations.  

Recent breakthroughs in deep learning and computer vision provide a viable approach 
for automating species detection with high precision and efficiency. Due to their complex and 
extensive network architecture, CNNs can identify images with high precision [5]. CNNs 
generally comprise four layers: fully connected, pooling, activation function, and convolutional 
[6]. CNN architecture is predominantly based on the Convolutional Layer, comprising many 
filters or kernels designed to extract information from the image. The pooling layer reduces 
the complexity of feature maps while preserving essential data. The output becomes non-linear 
after the activation function layer, which follows the convolution layer. This layer regulates or 
amplifies the output. By constructing these layers according to requirements, CNNs can be 
customized. Utilizing pre-trained CNN models has numerous advantages, including enhanced 
performance, reduced training duration, and improved model accuracy [7]. VGG, AlexNet, 
Xception, Inception, EfficientNet, DenseNet, MobileNet, and ResNet are many prominent 
pre-trained models applicable to diverse deep-learning tasks [8]. CNN, however, sometimes 
faces the issue of overfitting, especially when suitable datasets are insufficient.  

This research investigates the utilization of deep learning-based convolutional neural 
networks (CNNs) for the automatic categorization of butterflies and moths. The suggested 
approach seeks to enhance classification performance among various species by utilizing 
transfer learning and sophisticated feature extraction techniques. A meticulously curated 
dataset of high-resolution photos is employed, featuring diverse orientations, lighting 
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situations, and backdrops to improve model generalization. The primary contributions of our 
research are as follows. 
Related Work: 

Algorithms pertinent to computer vision are facing new opportunities and challenges 
as machine learning progresses. The classification efficacy of deep learning systems in image 
recognition is advancing. This literature summary organizes recent research on deep learning 
and machine learning methodologies for the classification of butterflies and moths, 
emphasizing their advancements, limitations, and areas for further investigation. 
Machine Learning-Based Approaches: 

Classifying butterflies using traditional machine learning approaches has shown both 
promise and drawbacks. Using Gaussian Naive Bayes-Z-score fusion for spectral feature 
analysis, author[10] obtained 88.75–97.5% accuracy; nevertheless, performance was limited by 
spectral overlaps and motion artifacts. Like this, author[11] created LBP-based texture 
descriptors for Morpho butterflies. Using neural networks, they achieved 90.71% accuracy; 
however, scalability was constrained by human feature engineering. The trade-off between 
domain-specific optimization and cross-species and cross-environment generalization is 
highlighted by these techniques.  

Challenges in computing and adaptability confront advanced feature engineering 
efforts. By using multiscale invariant features from fan-beam projections, author[12] increased 
robustness to intra-class fluctuations, exceeding conventional techniques but necessitating 
computationally demanding operations. Wavelet-based feature extraction and edge defect 
correction were improved by author[13], but real-time deployment and cross-dataset 
generalization were difficult. Although these methods improved on conventional pipelines, 
their dependence on manually created features and intricate preprocessing highlights the 
necessity of automated deep learning solutions to strike a balance between precision, speed, 
and flexibility in ecological picture analysis. 
Deep Learning Based Approaches: 

Current deep-learning research on the classification of Butterflies and moths reveals a 
variety of methods and enduring difficulties. Though scalability issues were brought up by 
limited data and environmental unpredictability, author[14] used EfficientNet-B0 to obtain 
97.91% accuracy on a collection of 3,390 pictures spanning 25 species. Faster R-CNN and 
SSD were integrated by author[15] for real-time identification when creating a mobile 
application, however, they encountered dataset limitations and processing bottlenecks. Using 
transfer learning (VGG16, ResNet50) on 10,035 images of 75 species, author[16] used 
AlexNet on 419 images and achieved 83% accuracy without segmentation. Author[7] 
addressed class imbalance through augmentation but struggled with unequal test distributions. 
With customized layers and augmentation, author[17] enhanced InceptionV3, obtaining good 
results on 15 classes but having little generalization. DCNNs were used for 34,024 images by 
author[18], which improved scalability but had to deal with explainability gaps and processing 
costs. Although class imbalance and dataset merging issues remained, author[19] successfully 
integrated multi-source data with ResNet18 (86% accuracy). By using web-scraped photos of 
Indian species to train a CNN, author[20] achieved 88% accuracy without providing ecological 
validation. Author[21] uses a 50-layer ResNet50 CNN with dropout layers and Adam 
optimization to categorize butterfly/moth images. The model achieves a test accuracy of 
94.3% over 10 training epochs while incorporating measures to reduce network complexity 
and mitigate overfitting. However, the approach has limitations, including a relatively low 
number of training epochs, which may cap potential accuracy improvements. Additionally, 
despite strong performance on the test set, the model faces unresolved challenges related to 
generalizing previously unseen data. The study emphasizes the effectiveness of ResNet50 in 
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ecological image identification, but it also points out the necessity for more thorough training 
and robustness testing. 

Faster R-CNN was used by author[22], who struggled with species similarity and 
delayed processing despite reaching 70.4% accuracy. Author[23] successfully recognized four 
butterfly species using the GoogleNet architecture, achieving an impressive 97.5% accuracy 
on a dataset of 600 images. MdeBEIA was proposed by author[24] for joint segmentation 
classification, which improves task synergy but necessitates intricate integration. Author[25] 
faced challenges such as intra-class variability and inter-class similarity but still achieved an 
accuracy of 94.9% using convolutional neural networks (CNNs) combined with data 
augmentation. While their model's performance declined as the number of classes increased, 
author[26] demonstrated the effectiveness of the VGG-16 architecture, attaining 97% 
accuracy on a dataset of 832 images spanning 10 butterfly species. These investigations 
collectively highlight enduring constraints, including limited species variety (4–75 classes), tiny 
datasets (e.g., 419–3,390 pictures), computational intensity, and insufficient field testing. 
Although high accuracy (>95%) was attained in controlled environments, taxonomic 
complexity, class imbalance, and environmental unpredictability still pose challenges for real-
world implementation. For future work to reconcile laboratory success with real-world 
conservation applications, larger, biologically diverse datasets, hybrid structures that balance 
accuracy and efficiency, and standardized standards must be given top priority. 
Superiority of the Hybrid Feature Integration Framework: 

The classification of Butterflies and Moths using current approaches involves 
important trade-offs between practicality and accuracy. Conventional machine learning 
techniques (Barbedo's LBP [11], Chen's multiscale features [12], and Adje's Gaussian Naive 
Bayes [10] ) rely on manually created features and achieve 90.71% accuracy in controlled 
environments, but they have trouble with complicated field conditions and intra-species 
variability. While deep learning models (like GoogleLeNet [23] and EfficientNet-B0 [14]) 
achieve more accuracy (≤97.91%), they overfit on short datasets (like 419 photos [16] ), are 
difficult to read [18], and struggle in different lighting conditions (SSD/Faster-RCNN [15]), 
Surabhi’s CNN [20]: ~88% real-world accuracy).  

This gap is filled by our hybrid framework, which combines the semantic depth of 
ResNet50 with a new CRSHOG descriptor that is improved via CLAHE preprocessing. With 
94.6% accuracy on a variety of field photos, this combination removes reliance on spectral 
data [10] or multi-task architectures [24], outperforming both pure DL models (ResNet18 [19]) 
and conventional techniques (Rong's wavelet [13] ). Our lightweight Ensemble Subspace 
KNN model offers real-time performance without relying on image segmentation and retains 
interpretability by incorporating manually selected features. Unlike computationally intensive 
approaches such as Faster R-CNN [22]: which achieved 70.4% accuracy, and MdeBEIA [24], 
our method ensures efficiency and practical deployment while maintaining competitive 
accuracy.. By striking a balance between field resilience, efficiency, and precision (94.6%), the 
framework overcomes earlier shortcomings in ecological applicability and generalizability and 
is positioned as a scalable approach for biodiversity monitoring and pest management. 
Objectives: 
• A preprocessing pipeline utilizing Contrast-Limited Adaptive Histogram Equalization 
(CLAHE) to augment discriminative features in butterfly and moth photos, addressing issues 
related to illumination fluctuations and complex backgrounds.  
• A dual-feature extraction strategy utilizing a pre-trained ResNet50 model to capture 
high-level semantic patterns (achieving 92% baseline accuracy) and an innovative Corner 
Rhombus Shape HOG (CRSHOG) descriptor [9] to encode detailed geometric and textural 
characteristics of wings via rhombus-based grid sampling. 
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• Hybrid feature representation is achieved through the merging of deep ResNet50 
features with handcrafted CRSHOG descriptors, resulting in a robust representation against 
intra-species variability and pose discrepancies.  
• A lightweight classification framework utilizing an Ensemble Subspace KNN model, 
which effectively harnesses the feature set to attain a state-of-the-art accuracy of 94.6% in 
butterfly and moth recognition, surpassing traditional CNN and HOG-only methods. 
• Practical applicability to field-deployable systems utilizing standard RGB pictures, 
facilitating economic integration with mobile or aerial platforms for real-time biodiversity 
monitoring and pest management. 
Materials and Methods: 

This study utilizes the publicly available Butterfly and Moth Image Classification 
Dataset [27], which comprises 12,594 field-captured RGB images representing 100 species 
from diverse habitats, including tropical forests, temperate grasslands, and agricultural zones. 
The dataset also includes anonymized geolocation data and associated climatic metadata, 
enhancing its utility for ecological and classification research. Lighting fluctuations are 
addressed by CLAHE preprocessing, and then hybrid feature extraction is carried out using 
ResNet50 (ImageNet-pretrained) and CRSHOG for geometric-textural encoding. The best 
performance is obtained using an Ensemble Subspace KNN classifier (MATLAB 2023a), with 
complete reproducibility guaranteed by pre-trained weights, edge deployment rules, and open-
source code (GitHub). The framework uses real-time image processing to detect agricultural 
pests and enable scalable biodiversity conservation. 

 
Figure 1. Workflow of the Proposed CRSHOG-ResNet50 Hybrid Methodology. 

The flow diagram of the suggested framework for classifying images of butterflies and 
moths is shown in Figure 2, which highlights important phases ranging from data 
preprocessing to model prediction. 

The dataset employed in this work aims to identify species of butterflies and moths. 
The dataset has 100 categorical classifications for moths or butterflies, with each image input 
to the neural network sized at 224×224 pixels (50176 pixels total).  
The training consists of 12,594 photos categorized into 100 subdirectories, each representing 
a distinct species [27]. The test dataset has 500 photos organized into 100 subdirectories, each 
having 5 test images per category. Furthermore, the dataset has 5 validation photos in each 
category, culminating in a total of 500 photographs. Figure 3 displays some photos from the 
Butterfly and Moth Image Dataset. 
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Figure 2. Flow diagram for Butterfly and Moth image classification 

 
Figure 3. Sample images from the Butterfly and Moth Image Classification Dataset 

Preprocessing Via Contrast-Limited Adaptive Histogram Equalization (CLAHE): 
Preprocessing is essential for alleviating light discrepancies and augmenting 

distinguishing features in field-acquired butterfly and moth photos. The proposed approach 
utilizes Contrast-Limited Adaptive Histogram Equalization (CLAHE) to normalize local 
contrast, maintain edge details, and mitigate noise amplification [28]. In contrast to global 
histogram equalization, CLAHE functions on localized tile sections, guaranteeing effective 
adaptation to spatially variable illumination circumstances (e.g., shaded versus sunny wing 
areas) [29].  

The luminance channel Y of an input RGB picture I(x,y) is processed in the YCbCr 
color space. Let Tk represent a tile of dimensions m×n within Y, with k serving as the index 

for the tile. CLAHE calculates a localized histogram Hk(b) for Tk, where b ∈ [0, L−1] denotes 
the greyscale intensity bins (often L=256). To avert excessive noise amplification, a clip limit 
ββ restricts the histogram's height. 

𝐻𝑘
′ (𝑏) = 𝑚𝑖𝑛 (𝐻𝑘(𝑏), 𝛽.

𝑚.𝑛

𝐿
) (1) 

The truncated histogram Hk′(b) is uniformly redistributed across all bins, and the 
cumulative distribution function (CDF) Ck(b) for Tk is formulated as: 
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𝐶𝑘(𝑏) =
(𝐿−1)

𝑚.𝑛
∑ 𝐻𝑘

′ (𝑖)𝑏
𝑖=1  (2) 

This CDF correlates the intensity values in Tk to a standardized range. Bilinear 
interpolation mitigates tile border artifacts by blending the changes of four adjacent tiles for 
each pixel (x,y): 

𝑌𝐶𝐿𝐴𝐻𝐸(𝑥, 𝑦) = ∑ 𝑤𝑖. 𝐶𝑘𝑖(𝑌(𝑥, 𝑦))4
𝑖=1  (3) 

where wi represents the interpolation weights that are proportional to the pixel's 
closeness to the centers of the tiles.  

Figure 4 displays the original RGB image alongside its greyscale conversion utilizing 
CLAHE. 

 
Figure 4. (a) Original RGB image; (b) Grayscale conversion using CLAHE. 

Feature Extraction: 
A combination of geometric accuracy and semantic abstraction is required for accurate 

species classification to capture subtle morphological features such as spot patterns, scale 
textures, and wing venation. Our paradigm combines two complementary approaches: The 
new Corner Rhombus Shape HOG (CRSHOG) descriptor for structural representation and 
ResNet50 for high-level semantic feature extraction are both included.  

Pretrained on ImageNet, ResNet50 uses transfer learning to solve data scarcity by 
extracting hierarchical features (such as color gradients and global wing forms) through 
residual layers. At the same time, to ensure resilience to rotational and postural changes, 
CRSHOG uses corner-centric gradient histograms and rhombus-shaped grids to capture 
localized textures (such as marginal serrations and scale arrangements).  

Through the combination of CRSHOG's structural fidelity and ResNet50's contextual 
depth, this dual-stream method improves discriminability in intricate, field-captured 
Lepidoptera imagery by overcoming the drawbacks of standalone CNNs (which overlook 
geometric details) and handcrafted descriptors (which lack semantic richness). 
Feature Extraction via ResNet50: 

The ResNet50 architecture functions as the core deep learning backbone in our 
framework, facilitating hierarchical feature abstraction essential for differentiating subtle 
morphological characteristics in butterfly and moth images. The residual learning framework 
of ResNet50 alleviates vanishing gradients via skip connections, enabling the network to 
maintain discriminative features from low to high levels throughout its 50-layer architecture 
[30]. The output of the n-th residual block for an input image I is defined as: 

𝑥𝑙+1 = 𝐹(𝑥𝑙, {𝑊𝑖}) + 𝑥𝑙 (4) 
Here, F is the residual function, comprising a series of convolutional, batch 

normalization, and ReLU layers; xl signifies the input to the n-th block and represents the 
learnable weights. The skip connection xl guarantees consistent gradient flow during 
backpropagation, even in deep layers recording species-specific wing patterns. 
1. Batch Normalization (BN): Every convolutional layer is succeeded by batch 
normalization, which normalizes activations to a mean of zero and a variance of one [31]. 

�̂�𝑘 =
𝑥(𝑘)−𝜇𝐵

(𝑘)

√𝜎𝐵
(𝑘)2

+∈

 (5) 

yk = γkx̂k + β(k) 
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In this context, μB and σB represent the mean and variance of the batch, respectively, 
whereas γ and β denote the learnable affine parameters. Batch normalization mitigates internal 
covariate shift, essential for generalizing across heterogeneous field photos with diverse 
illumination and backdrops. 
Transfer Learning: Utilizing pre-trained weights from ImageNet, we refine ResNet50 on 
butterfly/moth data by minimizing a cross-entropy loss with L2 regularization[32]. 

𝐿 = − ∑ 𝑦𝑐 log(𝑝𝑐) + 𝜆‖𝑊‖2
2𝐶

𝑐=1  (6) 
In this context, pc represents the softmax probability for class c, etc is the one-hot 

encoded label, and λ regulates the level of regularization. This method eliminates the necessity 
for extensive lepidopteran datasets while maintaining resilience to differences in orientation 
and scale. 
Feature Extraction via CRSHOG: 

The Corner Rhombus Shape HOG (CRSHOG) descriptor is an innovative 
handcrafted feature extraction technique tailored for the morphology of butterfly and moth 
wings. In contrast to traditional HOG, CRSHOG utilizes a 4×4 mask with rhombus-corner 
fusion to detect directional gradients that are sensitive to wing venation patterns and scale 
microstructures [9]. The process consists of three phases: 
Rhombus-Corner Gradient Computation: 
For a greyscale image input, I(x,y): 
Corner Gradients: 
Compute mxCorner as the mean of the left and right corner pairs.  
Determine myCorner as the mean of the pairs of top and bottom corners. 
Rhombus Rib Gradients: 
Calculate mxRhombus using the averages of the left and right rhombus ribs.  
Calculate my rhombus using the averages of the top and bottom rhombus ribs. 

Fused Gradients: 
Final gradient magnitude m and direction θ are derived as: 

𝑚 = √𝑚𝑥
2 + 𝑚𝑦

2 ,      𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛
𝑚𝑦

𝑚𝑥
 (7) 

The magnitude 𝑚 = √𝑚𝑥
2 + 𝑚𝑦

2 Derived from horizontal (mx) and vertical (my) 

Sobel gradients, quantifies edge strength in wing venation and scale boundaries, with elevated 
values signifying sharp transitions (e.g., vein-membrane interfaces) and diminished values 

indicating uniform regions (e.g., pigmented scales). The angle 𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛
𝑚𝑦

𝑚𝑥
, computed 

within the range of 0°-180°, represents edge orientation by utilizing unsigned gradients to 
regard opposing orientations (e.g., 90° and 270°) as equivalent, hence maintaining the bilateral 
symmetry characteristic of lepidopteran wings.  

In order to calculate mxCorner, the left and right corners were averaged, as shown in 
Figure 5.  Likewise, my corner was calculated by taking the average of the top and bottom 
corners.  MyRhombus was then computed by taking the mean of the upper and lower rhombus 
ribs, and mxRhombus was computed by averaging the left and right rhombus edges.  
MyCorner and myRhombus were averaged to create my, while mxCorner and mxRhombus 
were averaged to create mx. These intermediate values were then concatenated.  Ultimately, 
the gradient direction (θ) and magnitude (m) were calculated using Equations 1 and 2. 
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Figure 5. Calculation of Gradient Magnitude and Gradient Direction for the Proposed 

CRSHOG. 
Histogram Binning with Unsigned Gradients: 
9-Bin Histogram spanning 0 to 180 (20° bin width) 
Unsigned Gradients: Treat θ and θ+180 equivalently to prioritize directional magnitude over 
polarity. 
Directional Voting: 
For gradient direction θ, compute contributions to adjacent bins using: 

𝑤𝑗 = 𝑔 [
𝐵𝑖𝑛𝑗+1−𝜃

∆𝜃
] (8) 

𝑤𝑗+1 = 𝜇 [
𝜃−𝐵𝑖𝑛𝑗

∆𝜃
] (9) 

Here, ∆𝜃 =
180°

9
= 20° , 𝐶𝑗 Is the value of 𝐽𝑡ℎ bin and g= magnitude. 

Figure 6 depicts the CRSHOG bin selection procedure, wherein gradient magnitudes 
were allocated to orientation bins according to angular proximity. For a gradient direction of 
27° with a magnitude of 16 (derived from the magnitude matrix), Equations 8 and 9 dictate 
the proportional distribution: 
• 10.4 is assigned to the 20° bin (closer to 27°) 
• 5.6 is allocated to the 40° bin (next adjacent bin) 

This weighted distribution ensures smooth transitions between bins, critical for 
resolving fine angular variations in wing venation and scale orientations. When the gradient 
direction aligns exactly with a bin center (e.g., 60° → 60° bin), the full magnitude is retained. 
The aggregated contributions across all pixels generated the final 9-bin histogram, optimized 
for butterflies and moths texture analysis. 

 
Figure 6. CRSHOG-Based Histogram of Gradients 

Block Normalization: 
L2-Hys Normalization: Concatenated histograms from overlapping rhombus blocks are 
normalized as: 
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ℎ𝑛𝑜𝑟𝑚 =
ℎ𝑟𝑎𝑤

‖ℎ𝑟𝑎𝑤‖2+∈
 

Where ∈= 10−5 prevents division by zero. 
Figure 7 presents the original image alongside the visualizations of HOG and 

CRSHOG magnitudes, highlighting the differences in feature representation between the 
standard HOG method and the proposed CRSHOG approach. A considerable disparity exists 
between the magnitudes of HOG and CRSHOG. CRSHOG yields more significant features. 

 
Figure 7. (a) Grayscale Image; (b) HOG Magnitude; (c) CRSHOG Magnitude. 
The CRSHOG descriptor (360-D feature vector per image) was manually 

concatenated with ResNet50’s 2048-D output, creating a hybrid feature space. 𝐹ℎ𝑦𝑏𝑟𝑖𝑑 ∈

 𝑅2408. This fusion ensures that ResNet50’s semantic context (e.g., color gradients) 
complements CRSHOG’s structural precision (e.g., serration geometry), addressing the 
limitations of unimodal approaches. 

By formalizing these geometric priorities, CRSHOG elevates handcrafted feature 
engineering to a domain-optimized tool, bridging the gap between deep learning’s abstraction 
and taxonomic discriminability. 
Classification: 

The use of hybrid feature engineering in the classification of butterflies and moths 
Taxonomic ambiguities in morphologically similar species were resolved by integrating the 
global morphological features (92.6% baseline) of ResNet50 with the localized texture 
descriptors (venation, scale patterns) of CRSHOG. This resulted in 94.6% accuracy via 
ensemble subspace KNN (30 subspaces, k=7) and fine KNN (k=1). In mimicry species, 
overfitting was decreased by Ensemble Bagged Trees (94.5% accuracy, 50 trees), but Boosted 
Trees (75.7%) failed due to the overemphasis on outliers. Fine KNN was the best KNN 
version for recognizing ocelli patterns, outperforming weighted KNN (94.6% vs. 92.1%). In 
high-dimensional separation, linear SVM (70.0%) failed, whereas cubic SVM (94.1%, degree-
3 kernel) outperformed quadratic SVM (93.4%) in modeling complicated color-texture 
relationships. Microstructure analysis (medium: 87.5%, σ=1.0) and microstructure detection 
(fine: 91.5%, σ=0.1) were balanced by Gaussian SVMs. Decision trees had to balance accuracy 
and complexity; medium trees (68.6%) could only be used for broad classification, while 
complex trees (91.0%) overfitted even with thorough venation analysis. This combination of 
geometric-textural encoding and deep learning abstraction shows better resilience to ecological 
complexity and intra-class heterogeneity in Butterflies and moths' taxonomy. 
Experimentation and Results: 

The proposed framework was developed using a hybrid computing environment to 
optimize performance and ensure reproducibility. Preprocessing, feature extraction (using 
ResNet50 and CRSHOG), and feature enhancement were carried out in Python 3.10 on 
Google Colab. TensorFlow 2.8 was employed for deep learning tasks, while scikit-image 0.19 
was used for computing geometric descriptors. The classification was performed in MATLAB 
2023a utilizing the Statistics and Machine Learning Toolbox, facilitating easy interoperability 
through output feature matrices in HDF5 format. 
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Table 1. Essential dependencies and computational environment. 

Model Evaluation and Experimental Results: 
Using the hybrid CRSHOG-ResNet50 feature set, we evaluated 12 classifiers 

(ensemble methods, SVMs, KNN variants, and ResNet50) on 10 butterfly/moth classes. The 
results showed that Ensemble Subspace KNN outperformed ResNet50 (94.6% accuracy vs. 
92.6% accuracy), leading to superior performance in complex-pattern species (e.g., Banded 
Orange Heliconian: 100% precision/recall). The morphological features extracted by 
ResNet50 and the geometric textures captured by CRSHOG worked together to address intra-
class variance, as demonstrated in cryptic species such as the Atlas Moth, where the approach 
achieved 100% recall compared to just 3.7% with Boosted Trees, and the Arcigera Flower 
Moth, where it effectively managed precision-recall tradeoffs. Class-specific patterns of 
variability showed that feature-engineered ensembles performed better than individual models, 
especially when dealing with ecological problems (Figure 8). This highlights the effectiveness 
of domain-specific feature enhancement combined with ensemble learning in achieving 
reliable image analysis for biodiversity studies. 

 
Figure 8. Performance evaluation of Ensemble classifiers 

Figure 8 represents the performance evaluation of Ensemble classifiers on species 
classification (e.g., Adonis, Banded Peacock). Highest accuracy: Subspace KNN (94.6%), 
followed by Bagged Trees (94.5%) and Boosted Trees (75.7%). 

Category Component Details 

Python 
Libraries 

TensorFlow 2.8 Used for ResNet50 fine-tuning 

scikit-image 0.19 Applied for CLAHE and CRSHOG 
implementation 

NumPy 1.21, OpenCV 4.6 Utilized for image preprocessing 

scikit-learn 1.0 Employed for feature normalization and 
fusion 

MATLAB 
Toolboxes 

Statistics and Machine 
Learning Toolbox 

Used for Ensemble Subspace KNN and 
Fine KNN classifiers 

Parallel Computing Toolbox Enabled accelerated classifier training 

Environment Python Experiments Executed on Google Colab cloud 
infrastructure 

MATLAB Operations Performed on local desktop (Intel Core i7-

11800H, 32 GB RAM, RTX-3060 GPU) 
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Figure 9. Comparison of Fine and Weighted KNN classifiers 

Figure 9 represents the comparison of Fine and Weighted KNN classifiers across 
multiple butterfly and moth species. Precision and recall scores highlighted Fine KNN’s 
superior performance, achieving an accuracy of 94.6%.  

 
Figure 10. Performance comparison of various SVM classifiers 

Figure 10 represents the performance comparison of various SVM classifiers across 
butterfly and moth species based on precision and recall. Quadratic SVM achieved the highest 
accuracy (93.4%), outperforming other kernel types consistently. 

 
Figure 11. Performance comparison of Decision tree classifiers. 
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Figure 11 represents the performance comparison of the Decision tree classifiers. In 
species identification (e.g., Atala, Banded Peacock). Complex Tree achieves the highest 
accuracy (91.0%), while Medium Tree trails at 68.6%.  

Table 2 illustrates the effectiveness of the ensemble classifiers (Bagged Trees and 
Subspace KNN) in balancing accuracy, True Negative Rate (TNR), and True Positive Rate 
(TPR) across ten butterfly and moth species. By using bootstrap aggregation, Ensemble 
Bagged Trees reduced the variation in mimicry species and achieved high true positive rates 
(for example, 100% for Atlas Moth). At the same time, Ensemble Subspace KNN showed 
better true negative rates (99.81% for Arcigera Flower Moth, for example) by using 
randomized feature subspaces, which improved resilience to intra-class variability. In ensemble 
techniques, intrinsic trade-offs between sensitivity and specificity were evident in the marginal 
accuracy differences, such as 94.6% versus 94.5% for "ANN 88."  

Table 2. Performance of Ensemble Classifiers: Bagged Trees vs. Subspace KNN 

Table 3 assesses Weighted KNN and Fine KNN classifiers, chosen from a variety of 
KNN variations for attaining ≥90% accuracy, for 10 species of moths and butterflies. With 
greater accuracy (94.6% for "ANN 88") and True Negative Rate (TNR: 99.21–100%), Fine 
KNN excels at accurately discriminating between species (e.g., 100% TPR/TNR for "Adonis" 
and "Banded Peacock"). Weighted KNN reflects its distance-based voting trade-offs by 
maintaining competitive accuracy (92.1–100%) with a slightly lower TNR (98.35–99.52%). By 
addressing important ecological issues such as intra-species polymorphism, both classifiers 
demonstrated their value in automated systems for identifying Lepidoptera. 

Table 3. Performance of Weighted KNN and Fine KNN Classifiers 

Classes Ensemble Bagged Trees Ensemble Subspace KNN 

 TPR (%) TNR (%) ACC (%) TPR (%) TNR (%) ACC (%) 

ANN 88 91 99.60 94.50 88 98.82 94.60 

Adonis 96 100  100 99.61  

African Giant 
Swallowtail 97 99.61  93 99.61 

 

American Snout 91 99.21  91 100  

Apollo 97 98.42  94 98.82  

Arcigera Flower 
Moth 81 99.81  87 99.81 

 

Atala 98 99.04  98 99.61  

Atlas Moth 100 98.85  100 98.08  

Banded Orange 
Heliconian 96 99.61  100 99.61 

 

Banded Peacock 97 99.61  97 100  

Classes Weighted KNN Fine KNN 

 TPR (%) TNR (%) ACC (%) TPR (%) TNR (%) ACC (%) 

ANN 88 92 100 92.10 88 99.21 94.6 

Adonis 86 99.53  100 100  

African Giant 
Swallowtail 96 98.57  97 99.61 

 

American Snout 91 98.58  91 99.21  

Apollo 100 99.05  94 98.42  

Arcigera Flower 
Moth 85 99.52  87 99.43 

 

Atala 87 98.35  95 99.23  

Atlas Moth 87 98.58  100 98.85  
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Table 4 compares the performance of the Cubic SVM and Quadratic SVM classifiers, 
which were selected from a range of SVM models based on their ability to achieve at least 90% 
accuracy. Their effectiveness was evaluated across ten butterfly and moth species. Quadratic 
SVM addresses intra-species variability in field circumstances by striking a balance between 
precision (93.4% accuracy for ANN 88) and computational efficiency, whereas Cubic SVM 
exhibits better accuracy (e.g., 94.1% for ANN 88) and robustness to mimicry (e.g., 100% TPR 
for Arcigera Flower Moth). 

Table 4. Performance of Cubic SVM vs. Quadratic SVM Classifiers 

Classes Cubic SVM Quadratic SVM 

 TPR (%) TNR (%) ACC (%) TPR (%) TNR (%) ACC (%) 

ANN 88 94 99.21 94.10 92 99.21 93.4 

Adonis 100 99.42  96 99.05  

African 
Giant 
Swallowtail 93 99.61  90 99.23 

 

American 
Snout 89 99.41  92 99.22 

 

Apollo 91 99.01  91 98.62  

Arcigera 
Flower 
Moth 100 98.87  93 99.24 

 

Atala 89 99.42  91 99.42  

Atlas Moth 93 99.61  94 99.61  

Banded 
Orange 
Heliconian 95 99.42  96 99.23 

 

Banded 
Peacock 100 99.42  98 99.61 

 

Ten Butterfly and moth species were evaluated in Table 5 using tree-based classifiers 
that achieve ≥90% accuracy (e.g., Complex Tree). Top performances, such as Apollo (97% 
TPR), Banded Orange Heliconian (93% TPR/100% TNR), and Arcigera Flower Moth (83% 
TPR/99.6% TNR), were highlighted by metrics (TPR, TNR, ACC). Based on these criteria, 
the study identified classifiers from a larger pool that showed robustness to intra-class variance 
and field-related problems, such as ANN (91% accuracy) and Adonis (100% TPR). These 
models were selected from a broader pool of candidates.  

Table 5. Performance of Complex Tree Classifier 

Banded Orange 
Heliconian 96 99.52  96 100 

 

Banded Peacock 100 99.52  100 100  

Classes Complex Tree 

 TPR (%) TNR (%) ACC (%) 

ANN 88 91 98.82 91.00 

Adonis 100 99.23  

African Giant Swallowtail 90 99.61  

American Snout 94 97.46  

Apollo 97 97.63  

Arcigera Flower Moth 83 99.62  

Atala 87 98.27  

Atlas Moth 78 99.61  
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Table 6 shows the performance comparison between Ensemble Subspace KNN and 
ResNet50 in the classification of butterflies and moths. With 100% TPR/TNR for complex-
pattern species (such as the Atlas Moth and Banded Orange Heliconian), superior TNR for 
cryptic taxa (like the Arcigera Flower Moth), and higher overall accuracy (94.6% vs. 92.6%), 
the Ensemble fared better than ResNet50. As demonstrated by its strong performance on the 
American Snout (91% TPR vs. ResNet50's 96% TPR, but with higher TNR), the Ensemble's 
feature subspace variety improved its resilience to intra-class variation. Even though ResNet50 
performed exceptionally well in categorizing species with significant contrast, such as the 
Apollo (100% TPR), these findings demonstrated the Ensemble's potency in fine-grained 
lepidopteran classification tasks. 

Table 6. Performance Comparison of Ensemble Subspace KNN vs. ResNet50 

Classes Ensemble Subspace KNN ResNet50 

 TPR (%) TNR (%) ACC (%) TPR (%) TNR (%) ACC (%) 

ANN 88 88 98.82 94.60 96 100 92.60 

Adonis 100 99.61  82 99.06  

African Giant 
Swallowtail 93 99.61  92 98.10 

 

American Snout 91 100  96 98.58  

Apollo 94 98.82  100 99.52  

Arcigera Flower 
Moth 87 99.81  87 99.76 

 

Atala 98 99.61  89 99.52  

Atlas Moth 100 98.08  91 98.11  

Banded Orange 
Heliconian 100 99.61  96 99.52 

 

Banded Peacock 97 100  96 99.52  

As a baseline on the Butterfly and Moth dataset, Table 7 shows that ResNet50 
achieves an accuracy of 92.6%, indicating the limitations of purely data-driven fine-grained 
taxonomy. Our proposed method improves this performance to 94.6% by combining global 
morphology analysis from ResNet50 with rhombus-corner gradient descriptors for wing 
textures using CRSHOG. Enhanced accuracy demonstrates the effectiveness of synergistic 
feature strengthening in addressing mimicry and intra-class variance. 

Table 7. Accuracy Metrics across Different Methodologies. 

Methods Accuracy 

ResNet50(Our) 92.6% 

Proposed Methodology (Baseline) 94.6% 

Description: 
An innovative hybrid computational framework is presented in this work to tackle the 

difficulties of classifying moth and butterfly species in practical settings. A unique Corner 
Rhombus-based Histogram of Oriented Gradients (CRSHOG) descriptor, deep feature 
extraction using ResNet50, and contrast-limited adaptive histogram equalization (CLAHE) for 
picture improvement are all integrated into the suggested methodology. Achieving 94.6% 
classification accuracy with enhanced precision (93.9%) and recall (94.6%), experimental 
results show that the ensemble-based classification strategy works better than traditional deep 
learning models. The framework may be used with conventional RGB images on devices with 
limited resources because of its streamlined architecture, which guarantees computational 
efficiency. In order to improve taxonomic coverage, future research will concentrate on real-

Banded Orange Heliconian 93 100  

Banded Peacock 95 99.61  
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time implementation through model quantization, extended dynamic feature fusion for 
temporal analysis, and cooperative ecological data gathering. With these developments, a 
useful tool for ecological decision-making, conservation planning, and biodiversity evaluation 
will be developed. 
Conclusion: 

Our hybrid framework for classifying Butterflies and moths addresses intra-species 
variability and complex field conditions by combining CLAHE preprocessing, ResNet50 deep 
features, and a novel CRSHOG descriptor. It achieves robust performance via Ensemble 
Subspace KNN (93.9% precision, 94.6% recall) and 94.6% accuracy (beating standalone 
CNNs [92.6%]). The system shows the combination of domain-specific feature engineering 
and deep learning working well on low-resource devices with conventional RGB inputs.  
Future Recommendations: 

Future research will use TensorFlow Lite and model quantization to optimize real-
time deployment, extend dynamic feature aggregation for temporal video analysis, and 
improve interpretability with saliency maps. Ecological partnerships will expand datasets to 
encompass uncommon species in a range of climates, and open-set recognition (metric 
learning, outlier detection) will enhance variability. These developments seek to create a field-
ready instrument for evidence-based policymaking, conservation prioritization, and 
biodiversity monitoring. 
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